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Abstract: Chronic kidney disease (CKD) affects >10% of the adult population. Each year,

approximately 120,000 Americans develop end-stage kidney disease and initiate dialysis, which is

costly and associated with functional impairments, worse health-related quality of life, and high

early-mortality rates, exceeding 20% in the first year. Recent declarations by the World Kidney Day and

the U.S. Government Executive Order seek to implement strategies that reduce the burden of kidney

failure by slowing CKD progression and controlling uremia without dialysis. Pragmatic dietary

interventions may have a role in improving CKD outcomes and preventing or delaying dialysis

initiation. Evidence suggests that a patient-centered plant-dominant low-protein diet (PLADO)

of 0.6–0.8 g/kg/day composed of >50% plant-based sources, administered by dietitians trained in

non-dialysis CKD care, is promising and consistent with the precision nutrition. The scientific premise

of the PLADO stems from the observations that high protein diets with high meat intake not only result

in higher cardiovascular disease risk but also higher CKD incidence and faster CKD progression due to

increased intraglomerular pressure and glomerular hyperfiltration. Meat intake increases production

of nitrogenous end-products, worsens uremia, and may increase the risk of constipation with resulting

hyperkalemia from the typical low fiber intake. A plant-dominant, fiber-rich, low-protein diet may

lead to favorable alterations in the gut microbiome, which can modulate uremic toxin generation

and slow CKD progression, along with reducing cardiovascular risk. PLADO is a heart-healthy,

safe, flexible, and feasible diet that could be the centerpiece of a conservative and preservative

CKD-management strategy that challenges the prevailing dialysis-centered paradigm.
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1. The Burden of Chronic Kidney Disease

Chronic kidney disease (CKD) has no cure and affects more than 10% of the adult population

throughout the world [1]. If persons with CKD survive long enough, many will inevitably reach kidney

failure, also known as end-stage kidney disease (ESKD), which is not compatible with life without kidney

replacement therapy in the form of maintenance dialysis treatment or kidney transplantation [1–4].

However, ESKD patients who transition to dialysis often have poor clinical outcomes. Cardiovascular

morbidity and mortality of CKD are exceptionally high with an overall five-year survival less than

50% [5,6]. In the United States (US), total Medicare and Veterans Administrations (VA) spending

for CKD continues to increase [4]. Each year, approximately 120,000 Americans develop ESKD and

initiate dialysis [5], including 12,000 U.S. Veterans [5–8]. Despite the purported life-prolonging effects

of dialysis [9], 10% of these patients die in the first 90 days after dialysis transition and >20% in the

first year [6]. In addition to the high rates of early dialysis mortality, a large proportion of elderly

patients experience major functional decline after transition to dialysis therapy [10]. Hence, delaying

or preventing kidney failure to avoid kidney replacement therapy may improve clinical outcomes

while averting the high costs of dialysis therapy and preserving limited resources.

The World Kidney Day steering committee declared 2020 and 2021 as the years of CKD prevention

and living well with CKD, respectively. These declarations underscore the paramount importance

of both primary CKD prevention as well as secondary and tertiary interventions for early diagnosis

of CKD and treatment to control progression to ESKD and its complications, respectively [1,11].

Among the core components of the preventative strategies are nutritional and dietary intervention

as featured in this review article. Moreover, in July 2019, an unprecedented Executive Order by the

U.S. President, known as the “Advancing American Kidney Health Initiative,” sought to reduce the

number of Americans developing kidney failure by 25% by 2030 through improved efforts to slow

the progression of CKD [12]. This timely executive order underscores the importance of preventive

CKD measures and reiterates the critical, yet underappreciated role of leveraging dietary interventions

in optimizing kidney health [12]. This review article highlights past and contemporary data on the

dietary management of CKD with focus on the role of plant-based, restricted protein diets based on the

premise that feasible dietary approaches should be the cornerstone of non-pharmacologic strategies in

slowing CKD progression and avoiding or delaying ESKD [13].

2. High Protein Diets May Be Harmful to Kidney Health

While the U.S. National Academy of Medicine has maintained that Recommended Dietary

Allowance (RDA) of dietary protein intake (DPI) should be 0.8 g per kilogram of the ideal body

weight per day (g/kg/day), Americans on average consume much higher amounts of protein, i.e., 1.2

to 1.4 g/kg/day, mostly from animal sources, according to analyses from the National Health and

Nutrition Examination Survey (NHANES) [14]. In recent practice, higher DPI has been recommended

to combat obesity and diabetes [15,16], despite recent data suggesting higher risk of CKD incidence

and progression with higher DPI, especially from red meat [17–19]. Keto-diets, which are also high

in protein and animal fats, are gaining popularity across different healthcare systems throughout the

world as a recommended dietary intervention for adults with diabetes [20]. Despite its immediate

appeal for the use of type 2 diabetes, the ketogenic diet has not been as effective for glycemic control or

weight loss in randomized, controlled trials as often touted and may carry additional risks to long-term

health [21]. Furthermore, previous and emerging data (Table 1) suggest that high DPI in these diets,

by way of causing increased intra-glomerular pressure with resultant glomerular hyperfiltration, may

adversely affect kidney health over time across populations with or at-risk for CKD [17].
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Table 1. Selected studies of high-protein and kidney function. DPI: dietary protein intake; CKD: chronic

kidney disease.

Study (Year) Cohort, [N] (Country)
Duration Of
Follow Up

Findings

Esmeijer [22] (2020)
Alpha Omega Cohort
(2255) (Netherlands)

41 mo
↑ DPI 0.1 g/kg/day associated with ↑
eGFR decline of −0.12 ml/min/year

Jhee [23] (2020) South Korea (9226) 14 yrs
3.5-fold ↑ risk of hyperfiltration.

1.3-fold ↑ faster decline

Malhotra [24] (2018)
Jackson Heart (USA)

(5301)
8 yrs

↑ DPI density associated with ↑ eGFR
decline

Farhadnejad [24]
(2018)

Healthy Iranian adults
(1797)

6.1 yrs 48% ↑ risk of incident CKD in high DPI

3. A Low Protein Diet Preserves Kidney Function

A low protein diet (LPD), defined as DPI 0.6–0.8 g/kg/day, has consistently been shown to lower

intra-glomerular pressure (Figure 1) [25]. This effect, if exerted consistently, may preserve long-term

kidney function as corroborated in both animal models and in human studies of CKD, including

several meta-analyses [24,26–29]. The scientific premise for these DPI targets was presented in a recent

critical review and meta-analysis of 16 dietary trials with more than 30 CKD patients in each trial

(Figure 2) [28], and also discussed in a 2017 New England Journal of Medicine review paper [25]. These

data highlight the utility of LPD for the management of CKD (Table 2), suggesting that an LPD of

0.6–0.8 g/kg/day vs. higher amounts is associated with lower ESKD risk, higher serum bicarbonate

and lower serum phosphorus levels, less azotemia, and lower mortality trends [28]. Whereas we and

others have recommended DPI of 0.6–0.8 g/kg/day, some other investigators including Metzger et

al. [30] showed that a DPI of <0.6 g/kg/day may result in even slower CKD progression; however,

a DPI of 0.6–0.8 g/kg/day is considered the most pragmatic and safest target when used without

amino-acid or keto-analogue supplements to avoid protein-energy wasting (PEW). For persons without

established CKD but who are at high risk of CKD, such as those with a solitary kidney or diabetic

glomerular hyperfiltration, it is recommended that a high dietary protein intake >1.0 g/kg/day should

be avoided [31], especially since patients with diabetes develop more severe hyperfiltration in response

to high DPI [32].

Evidence suggests that safety and adherence to an LPD is equivalent to a normal protein diet

and that there is no risk of the malnutrition or PEW that might occur with very-low protein diets (DPI

0.3–0.6 g/kg/day), even sans supplementation with essential amino acids or their keto-analogues [28].

However, while most studies suggest that an LPD ameliorates CKD progression, there are also some

mixed findings [33,34], including the primary analyses of the Modification of Diet in Renal Disease

(MDRD) study. Most trials except for the MDRD were small, used surrogate endpoints, were considered

less rigorous compared to MDRD, used dietary interventions that were labor-intensive, were not

patient-centered, and were not aligned with contemporary culture of more plant-based sources. Due

to the impractical aspects of prior LPD regimens, and in part to the marginal effects of an LPD in the

MDRD, which did not achieve statistical significance, LPD has not been adopted in most CKD clinics.

Thus, there remains an unmet need for more contemporary, well-powered, pragmatic randomized

controlled trials that apply LPD as a convenient and patient-centered intervention, especially with a

newer focus on plant-dominant diet regimens.
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Figure 1. Effects of a plant-dominant low-protein diet on afferent arteriole contraction leading to

reduced intra-glomerular pressure and nephron longevity (adapted from Kalantar-Zadeh and Fouque,

N Engl J Med 2017) [25]..

 

 
Figure 2. Meta-analysis of the randomized controlled trials with low protein diet suggesting efficacy

of diet in lowering the risk of kidney failure. This meta-analysis includes six (out of 16) randomized

control trials of low protein diet (adapted from Rhee et al., J Cachexia Sarcopenia Muscle 2018) [28].
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Table 2. Low protein diet (LPD)-controlled trials with greater than 30 participants in each study [25]..

Study (Year) Participants Diet (g/kg/day)
Duration of
Follow Up

Results

Rosman (1984)
[35,36].

247 CKD 3–5 pts
0.90–0.95 vs. 0.70–0.80

vs. unrestricted
4 yrs

Significant CKD slowing
in LPD in male pts.

Ihle (1989) [37] 72 CKD 4–5 pts
LPD (0.6) vs. higher

DPI (0.8)
18 mo

Loss of GFR in control vs.
LPD (p < 0.05). Wt loss

Lindenau (1990)
[38]

40 CKD 5 pts
LPD vs. sVLPD (0.4) w

KA
12 mo

Decreased phos. with
sVLPD and improved

bone health

Williams (1991)
[39]

95 CKD 4–5 LPD (0.7) vs. 1.02–1.14 18 mo
No differences, minor Wt

loss

Locatelli (1991)
[40]

456 CKD 3–4 0.78 vs. 0.9 2 yrs
Trend for difference in

renal outcomes (p = 0.059).

MDRD Klahr
(1994) [41]

585 CKD 3–4 1.3 vs. 0.6 27 mo
No difference in GFR

decline at 3 years.

Montes-Delgado
(1998) [42]

33 CKD 3–5 LPD vs. sLPD 6 mo
Slower eGFR decline with

supplements

Malvy (1999) [43] 50 CKD 4–5
sVLPD (0.3) KA vs.

LPD (0.65)
3 yrs

Decreased SUN lean body
mass and fat in sVLPD

Teplan (2001) [44] 105 CKD 3b–4 LPD w vs. w/o KA 3 yrs Slower CKD progression

Prakash (2004)
[45]

34 CKD 3b–4 0.6 vs. 0.3 w KA 9 mo Faster decline in LPD

Brunori (2007)
[46]

56 > 70 yrs old
CKD 5

sVLPD (0.30) w KA vs.
dialysis

27 mo
Similar survival but more
hospitalizations in dialysis

Mircescu (2007)
[47]

53 CKD 4–5
sVLPD (0.3) vegan w

KA vs. LPD
48 wks

Less dialysis initiation in
sVLDP

Cianciaruso
(2008) [48]

423 CKD 4–5 0.55 vs. 0.80 18 mo
Reduced urinary urea, Na,

phos

Di Iorio (2009)
[49]

32 CKD w
proteinuria

VLPD vs. LPD 6 mo
58% greater reduction in

proteinuria

Jiang (2009 and
2011) [50,51].

60 PD w RKF
LPD vs. sLPD w KA vs.

HPD
12 mo

RKF decreased in the LPD
and HPD.

Garneata (2016)
[52]

207 CKD 4–5
LPD (0.6) vs. sVLPD w

KA
15 mo Less dialysis initiation

Abbreviations: Pts.: patients, yrs: years, mo: months, Et: weight, phos.: phosphorus, sVLPD: supplemented very
low protein diet.

4. Plant-Based Foods Have a Favorable Impact on Kidney Health

The typical American diet contains 15–20% protein with less than one-third of protein sources from

plants [53]. While human trials on the effects of high protein intake have yield mixed findings, animal

models are relatively consistent with evidence of histological damage, including a 60–70% increase in

renal and glomerular volumes, 55% more fibrosis, and 30% more glomerulosclerosis [54]. A recent

comprehensive and critical review of the literature concluded that daily red meat consumption over

years may increase CKD risk, whereas fruit and vegetable proteins may be renal protective [18]. Prior

studies summarized by some of the authors of this article [31,33,34,55–61] suggest that animal-based

protein is harmful to kidney health, while a plant-dominant diet may slow CKD progression.

A landmark study was presented by Kontessis et al. [62], who studied volunteers fed for 3 weeks with a

vegetable-based diet (N = 10), an animal protein diet (N = 10), or an animal protein diet supplemented

with fiber (N = 7), all with the same amount of total protein; animal-based protein diets increased GFR

more than similar amounts of plant-based proteins, i.e., higher glomerular hyperfiltration was observed
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with more meat and less vegetable-derived proteins [62]. Other important studies supporting the

benefit of a plant-dominant diet in slowing CKD progression include the study by Lin et al. [63] (who

examined 3348 women in the Nurses’ Health Study and found that the highest quartile of meat intake

was associated with 72% higher risk of microalbuminuria), Kim et al. [64] (who showed that in 14,686

middle-aged adults, higher adherence to a plant-based diet was associated with favorable kidney

outcomes), Haring et al. [65] (who showed that red and processed meat were associated with higher

CKD risk, while nuts, low-fat dairy products, and legumes were protective against the development of

CKD) and Chen et al. [66] (who showed lower mortality in CKD patients on diet with higher plant

sources).

5. Benefits of a Plant-Dominant Low Protein Diet

We define a plant-dominant LPD, also referred to as PLADO, as a type of LPD with DPI of 0.6–0.8

g/kg/day with at least 50% plant-based sources to meet the targeted dietary protein, and which should

preferably be whole, unrefined, and unprocessed foods (Figure 3). This is consistent with the RDA

of DPI of 0.8 g/kg/day, which has a high safety margin, given that based on established metabolic

studies [13], the lowest DPI requirement to avoid catabolic changes is 0.45 to 0.5 g/kg/day. It has been

suggested that ≥50% of DPI should be of “high biologic value” with high gastrointestinal absorbability

to ensure adequate intake of essential amino acids [3]. However, other metrics, including the “protein

digestibility-corrected amino-acid score,” which is a more accurate method recommended by the

Food and Agricultural Organization and the World Health Organization, grant high scores to many

plant-based sources and may be a more appropriate measure of protein quality [34]. Other features of

PLADO include relatively low sodium intake <3 g/day, higher dietary fiber of at least 25–30 g/day,

and adequate dietary energy intake (DEI) of 30–35 Cal/kg/day, assuming that the DEI calculations are

based on the ideal body weight, similar to the approach to calculating DPI (Figure 3).

 

≥

 

 

Figure 3. Overview of the plant-dominant low-protein diet (PLADO) for nutritional management of

CKD, based on a total dietary intake of 0.6–0.8 g/kg/day with >50% plant-based sources, preferentially

unprocessed foods, relatively low dietary sodium intake <3 g/day (but the patient can target to

avoid >4 g/day if no edema occurs with well controlled hypertension), higher dietary fiber of at least

25–30 g/day, and adequate dietary energy intake of 30–35 Cal/kg/day. Weight is based on the ideal body

weight. Note that serum B12 should be monitored after three years of vegan dieting.
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There are multiple pathways by which an LPD with at least 50% plant-based protein sources

ameliorates CKD progression, in addition to reducing glomerular hyperfiltration [33] (Table 3):

(1) Reduction in nitrogenous compounds leads to less production of ammonia and uremic toxins as

an effective strategy in controlling uremia and delaying dialysis initiation [28].

(2) Synergism with RAAS and SGLT2 inhibitors, since LPD reinforces the pharmaco-therapeutic

effect of lowering intra-glomerular pressure through complementary mechanisms (Figure 1) [67].

(3) Attenuation of metabolites derived from gut bacteria that are linked with CKD and CV disease:

Animal protein ingredients including choline and carnitine are converted by gut flora into

trimethylamine (TMA) and TMA N-oxide (TMAO) that are associated with atherosclerosis, renal

fibrosis [68], and increased risk of CV disease and death [69]. The favorable impact on the gut

microbiome [70] similarly leads to lower levels of other uremic toxins such as indoxyl sulfate and

p-cresol sulfate [71].

(4) Decreased acid load: plant foods have a lower acidogenicity in contrast to animal foods, and this

alkalization may have additional effects beyond mere intake of natural alkali [72].

(5) Reduced phosphorus burden: there is less absorbable phosphorus in plant-based proteins given

the presence of indigestible phytate binding to plant-based phosphorus. Fruits and vegetables

are less likely to have added phosphorus-based preservatives that are often used for meat

processing [59,73–75].

(6) Modulation of advanced glycation end products (AGE’s): higher dietary fiber intake results in a

favorable modulation of AGE [76], which can slow CKD progression [77], enhance GI motility,

and lower the likelihood of constipation that is a likely contributor to hyperkalemia.

(7) Favorable effects on potassium metabolism: a plant-based diet based on more whole fruits and

vegetables lessens the likelihood of potassium-based additives that are often found in meat

products [78,79].

(8) Anti-inflammatory and anti-oxidant effects: there is a decreased risk of CKD progression and CV

disease due to higher intake of natural anti-inflammatory and antioxidant ingredients, including

carotenoids, tocopherols, and ascorbic acid [80,81].

Table 3. Benefits and challenges of LPD with >50% plant-based protein sources.

Benefits of LPD with >50% Plant Sources Potential Challenges of LPD

• Lowering intra-glomerular pressure • Risk of protein-energy wasting (PEW)
• Synergistic effect with RAASi and SGLT2i • Inadequate essential amino acids
• Controlling uremia and delaying dialysis • Undermining obesity management
• Preventing cardiovascular harms of meat • High glycemic index
• Less absorbable phosphorus • High potassium load and hyperkalemia
• Lowering acid-load with less acidogenicity • Low palatability and adherence
• High dietary fiber enhancing GI motility • Inadequate fish intake if vegan
• Favorable changes in microbiome
• Less TMA N-oxide (TMAO), leading to less kidney fibrosis
• Less inflammation and oxidative stress

6. Features of PLADO Regimens

As stated above, the plant-dominant restricted protein diet consists of an LPD amounting to

0.6–0.8 g/kg/day with at least 50% of the dietary protein being from plant-based sources. Table 4

compares PLADO with a standard diet in the USA, in that the total amount and proportion of

plant-based protein is usually 1.2–1.4 g/kg/day and 20–30%, respectively, whereas the PLADO not

only has less total protein of 0.6–0.8 g/kg/day but it also includes 50% to 70% of plant-based sources

for this restricted DPI goal. Hence, an 80 kg person with CKD, for instance, would be recommended

to have 46 to 64 g of DPI per day, out of which 24 to 45 g will be from plant-based sources, while

the rest is according to patient choice and preferences. As shown in Table 4, the total amount of
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animal-based protein under PLADO regimen is 14 to 32 g/day, which is less than half of the 68 to 83

g/day in the standard diet, but the patient also has the choice of being nearly or totally plant-based.

There are different types of vegetarian diets [33]: (1) Vegan, or strict vegetarian (100% plant-based),

diets that not only exclude meat, poultry, and seafood but also eggs and dairy products; (2) Lacto-

and/or ovo-vegetarian diets that may include dairy products and/or eggs; (3) Pesco-vegetarian diets

that include a vegetarian diet combined with occasional intake of some or all types of sea-foods, mostly

fish; and (4) Flexitarians, which is mostly vegetarian of any of the above types with occasional inclusion

of meat [33]. The PLADO does not require adherence to any of these strict diets, but is a flexible LPD of

0.6–0.8 g/kg/day range with 50% or more plant-based sources of protein based on the patient’s choice

(Table 4). Whereas some nephrologists may promote a pesco-lacto-ovo-vegetarian LPD with >50%

plant sources, patients have the ultimate discretion to decide about the non-plant-based portion of the

protein ad lib. Based on our decades-old experience in running LPD clinics, most CKD patients will

adhere to 50–70% plant-based sources, while some may choose >70% or strictly plant-based diets.

Table 4. Comparing Low Protein Diet (LPD) >50% plant-based protein sources. Known as PLADO,

versus standard diet, based on 2400 Cal/day in an 80-kg person.

Protein Metric Standard Diet
LPD >50% Plant-based

Sources (PLADO)

Proportion of plant-based protein, % 20–30% 50–70% *
Total protein per kg IBW, g/kg/day >0.8, usually 1.2–1.4 0.6–0.8

Total protein intake, g/day 96 to 112 g 48 to 64 g
Protein density, g/100 Cal 4.4–5.1 2.2–2.9

Proportion of energy from protein, % 16–19% 8–11%
Total plant-based protein, g/day 24–34 24–45

Total animal-based protein, g/day 68–83 14–32 (or none *)

* up to 100% vegan is allowed based on patient choice.

We recommend a daily sodium intake <3 g/day for a more pragmatic approach [25], as opposed

to the American Heart Association’s suggested <2.3 g/day given the lack of strong evidence for the

latter [25]. The PLADO regimen is CKD-patient-centric and flexible with respect to the targeted dietary

goals, and is constructed based on the preferences of the patient as opposed to strict dietary regimens,

with the dietitian working with patients and their care-partners to that end. Whereas we recommend a

moderately low sodium intake of <3 g/day under the PLADO regimen, in those without peripheral

edema and well-controlled hypertension, we have allowed slightly higher sodium intake but not

greater than 4 g/day given that recent large cohort studies showed poor CKD outcomes with daily

urinary sodium excretion >4 g/day [82] (Figure 3).

7. Safety and Adequacy of a Plant-Dominant Low-Protein Diet

Potential challenges of PLADO are outlined in Table 3, which will be largely related to the

adequacy and safety of this type of dietary management of CKD patients. The risks of PEW and

sarcopenia are the leading concerns, although there is little evidence for these sequelae. As discussed

above and based on the U.S. recommended RDA for safe DPI ranges, it is highly unlikely that the

targeted DPI of 0.6–0.8 g/kg/day with >50% plant sources will engender PEW in clinically stable

individuals. No PEW was reported in 16 LPD trials cited above [13,28], including the MDRD trial [13],

although PEW per se is a risk of poor CKD outcomes including faster CKD progression [83]. However,

it is prudent that in patients who may develop signs of PEW or acute kidney injury (AKI), higher DPI

targets should be temporarily used until PEW or AKI is resolved. On the other hand, if there is concern

related to the likelihood of obesity and hyperglycemia, patients and providers should be reassured

that LPD therapy in CKD has not been shown to be associated with such risks, and indeed, an LPD

with plant-based sources has salutary effects on insulin resistance and glycemic index, as long as total

calorie intake remains within the targeted range of 30–35 kcal/kg/day [34,55].
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Another frequently stated concern is the perceived risk of hyperkalemia. We are not aware of

scientific evidence to support the cultural dogma that dietary potassium restriction in CKD improves

outcomes [84]. Evidence suggests that dietary potassium, particularly from whole, plant-based foods,

does not correlate closely with serum potassium variability [85,86]. Indeed, a high-fiber diet enhances

bowel motility and likely prevents higher potassium absorption, and alkalization with plant-based

dietary sources also lowers risk of hyperkalemia [87–91]. Of note, dried-fruit, juices, smoothies,

and sauces of fruits and vegetables require additional consideration given their high potassium

concentrations. Moreover, newly available potassium-binders, which were not FDA-approved during

the era of prior LPD trials such as the MDRD, may be used in the contemporary management of CKD

patients at the discretion of clinicians [92].

Diet palatability and adherence to LPD or meatless diets are often cited as dietary management

challenges. Based on our extensive experience in running patient-centered LPD clinics for hundreds of

CKD patients [3], and given prior data on dietary adherence research [3,93], the suggested PLADO

with DPI of 0.6–0.8 g/kg/day and >50% plant-based sources is feasible and well-accepted among

patients with CKD [3]. Patients have the opportunity to choose the contribution of protein plant

sources between 50% and 75% or >75%, and these two strata along with palatability, appetite [94], and

adherence should be monitored closely in CKD clinics. If there is concern about inadequate fish intake,

given data on the benefits of higher fish intake including fish oil in CKD [95–97], treated CKD patients

can be reminded of the opportunity to consume more fish products for their remaining non-plant

sources of the dietary protein. Likewise, concerns about B12 deficiency associated with meatless diets

can be mitigated by the use of oral supplements as needed [98].

8. Impact of PLADO on Microbiome in CKD

Eating a plant-dominant, fiber-rich LPD may lead to favorable alterations in the gut microbiome,

which can modulate uremic toxin generation and slow CKD progression, along with reducing

cardiovascular risk in CKD patients [25,99–101]. Uremic plasma impairs barrier function and depletes

the tight junction protein constituents of intestinal epithelium [102]. The influx of retained uremic

solutes from the bloodstream per se induces changes in the microbial population simultaneous with

gut wall inflammation and breakdown of epithelial junctions [103–114]. Bacterial-derived toxins then

translocate back across the leaky gut barrier into the systemic circulation and promote inflammation and

multi-organ dysfunction [103,115]. At least five major gut-derived uremic toxins have been associated

with cardiovascular disease and mortality in CKD: indoxyl sulfate, indole-3 acetic acid, p-cresyl sulfate,

TMAO, and phenylacetylglutamine [115]. In a small study that included nine CKD patients per group,

which had a short duration of 6 months, LPD with or without inulin prebiotic supplementation was

reported to modify the gut microbiome, increase serum bicarbonate, and improve physical function

scores [116], but the investigators did not examine CKD progression or levels of gut-derived uremic

toxins. Future studies should examine the role of PLADO regimens on gut microbiome in CKD patients.

9. Similarities and Distinctions between PLADO and other CKD Diets

In contrast to other diets used for the management of CKD, the PLADO offers a more pragmatic

and patient-centered nutritional management which is aligned with contemporary dietary management

goals. Unlike the diets used in the MDRD study and other studies that focused on hard outcomes,

the premise of PLADO is based on its expected effects on both hard endpoints and patient-centered

outcomes, including health-related quality of life, uremic symptoms, and diet palatability, while safety

and adequacy remain among important goals. It is important to note that the MDRD Study was

conducted in the early 1990s under dietary practices that are not relevant to contemporary practice.

While high-protein diets such as keto, Atkins, and Paleo diets are popular in contemporary culture,

there has been growing interest in plant-based diets across the lay and scientific communities and

professional societies including the National Kidney Foundation [117], which were not considered in

the MDRD Study.
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Restricted protein diets that are partially to entirely plant-based are more broadly generalizable to

the adult populations as compared to the prior LPD trials, including the MDRD study. PLADO can be

safely recommended to both patients with early CKD, including those with any degree of proteinuria

regardless of etiology [118], as well as to late-stage CKD populations, including those with an eGFR

<45 mL/min/1.73 m2, without a lower eGFR limit, to take advantage of the effects of LPDs in controlling

uremia and averting the need for dialysis. This stands in sharp contrast to the MDRD study, whose

participants had relatively high eGFRs (eGFR 25 to 55 mL/min/1.73 m2), and which focused on slowing

the progression of moderate CKD. Indeed, in the MDRD study, patients did not have diabetes [119],

whereas PLADO can be non-differentially prescribed to both patients with and without diabetes with

any degree of severity of CKD, consistent with the broader unmet need in the adult CKD population.

It is important to note that polycystic kidney disease (PKD) patients, who usually have slower CKD

progression rates, comprised 24% of the MDRD study participants [119].

10. Role of Dietitians in PLADO

The successful implementation of plant-based restricted protein diets is dependent on the

engagement of dietitians who are well trained in the field of non-dialysis CKD [120]. Dietitians should

assess regularly the dietary protein and energy as well as micronutrient intakes of CKD patients by

both periodic dietary assessments and 24-h urine collections to estimate dietary intakes of macro- and

micronutrients and to evaluate and improve adherence to dietary recommendations (Figure 4) [25].

Behavior change counseling by dietitians is a key skill set that is critical in successful lifestyle and

habit modifications. Registered dietitians who specialize in the field of renal nutrition are usually

trained to use the 24-h urine data, which may have an impact on accurate interpretation of daily

nutrient intake estimates and assessment of patients adherence to the recommended medical nutrition

therapy [121]. Both dietitians and other healthcare providers use telehealth increasingly frequently

since the inception of COVID-19 pandemic [122]. Easy-to-use telehealth alternatives are important

to overcome existing and emerging challenges in dietetic education including under the COVID-19

pandemic and other restrictions, so that patients are provided with pragmatic tools and comprehensible

and consistent dietary information and skills, which fosters ownership and self-monitoring in kidney

health management such as healthy kitchen approaches [122,123].

Unfortunately, however, an overwhelming majority of CKD patients never meet with a

CKD-specialized dietitian prior to dialysis initiation, and most patients remain uninformed about the

role of diet in disease progression and management. Among clinicians and patients, lack of awareness

about the benefits of plant-dominant, low protein dietary interventions (other than low potassium diets)

and available insurance reimbursement for medical nutrition therapy under guidance of a registered

dietitian are significant barriers. In many regions, especially in North America and Europe, the focus

and expertise of the dietitians have traditionally been centered on dialysis patient care as opposed to

preventative non-dialysis dependent CKD. Past and recent reports suggest under-utilization of dietetic

manpower and expertise for the purpose of non-dialysis CKD care [3]. A collective groundswell of

events has recently occurred which aim to improve CKD care: the World Kidney Day focuses on

reduction of the onset and progression of CKD through primary, secondary. and tertiary measures [1];

the U.S. Presidential Executive Order, “Advancing American Kidney Health” [12], refocuses kidney

care from dialysis incentives to avoidance of kidney failure; the US Veterans Health Administration

issued Directive 1053, “Chronic Kidney Disease: Prevention, Early Recognition, and Management,”

establishes federal policy targeting CKD prevention through integrated care including medical nutrition

therapy [124], and the advocacy of renal dietitians for patient-centric LPD regimens containing fewer

animal products and more plant-based sources of protein such as PLADO [125]. This is a sharp contrast

to prior LPD recommendations with less flexible regimens such as strict plant-based dieting or very

low DPI of <0.4 g/kg/day combined with supplements, that may be less palatable, unsustainable, and

non-pragmatic for broad application in the real-world scenarios of CKD patient care.
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Figure 4. An algorithm and steps for the approach to the nutritional management of patients with

CKD. Note that in addition to direct dietary assessments, periodic 24-h urine collections should be

used to estimate dietary protein, sodium, and potassium intakes in order to assess adherence to dietary

recommendations (adapted from the Supplementary-Appendix-Figure S4. Under Kalantar-Zadeh and

Fouque, N Engl J Med. 2017) [25]. * Comprehensive metabolic and glycemic panels include electrolytes,

SUN, creatinine, glucose, hemoglobin A1c, liver function tests, and the lipid panel. † The full equation

is: DPI = 6:25 × UUN + 0:03 × IBW † Add the amount of daily proteinuria in grams if proteinuria

>5 g/d. Calculate the creatinine index (24-hr urine creatinine divided by actual weight or IBW if obese)

and compare it to the expected value of 1–1.5 g/kg/d for women and 1.5–2 g/kg/day for men. ‡ Dietary

supplements can be added to provide additional sources of energy and/or protein including—but

not limited to—CKD specific supplements, essential amino-acids, or keto-analogues (ketoacids) of

amino-acids. ¶ To ensure adequate DEI of at least 30–35 Cal/kg/d, higher fat intake can be considered,

e.g., non-saturated fats, omega 3-rich flaxseed, canola, and olive oil. ‡‡ If worsening uremic signs and

symptoms occur, DPI < 0.6 g/kg/d with supplements can be considered. Abbreviations: BMI: body

mass index, CKD: chronic kidney disease, d: day, DEI: dietary energy intake, DPI: dietary protein

intake; eGFR: estimated glomerular filtration rate, GI: gastrointestinal, HBV: high biologic value, IBW:

ideal body weight, ISRNM: International Society of Renal Nutrition and Metabolism, K: potassium;

MIS: malnutrition–inflammation score; Na: sodium; Phos.: phosphorus; PTH: parathyroid hormone,

PEW: protein energy wasting, SGA: subjective global assessment, SUN: serum urea nitrogen, UUN:

urine urea nitrogen.

11. Recommendations for Practical Implementation of PLADO

After the first 3 months, which includes preliminary education on LPD regimens with >50%

plant sources and acquiring food preparation skills, participating CKD patients should be assessed

every 3 to 6 months by the dietitian. During each visit, dietary re-education along with dietary

assessment should be conducted and patient’s progress in reaching the goals should be examined.

In line with the pragmatic nature of PLADO regimens, the dietary re-education and follow-up visits can

be performed in parallel with routine follow-up CKD clinic visits on the same days of the ambulatory
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clinic appointments, thus avoiding the burden of additional diet-related travels to the CKD clinic.

In addition to in-person visits, there could be monthly to tri-monthly telephone calls with the CKD

patients under CKD therapy, or even more frequently if needed, to reinforce diet planning and

adherence and to answer questions about preparation of plant-dominant meals and cooking questions.

Adherence to PLADO should be evaluated by comparing the LPD goals, i.e., 0.6–0.8 g/kg/day and >50%

plant sources, to the estimated DPI using 24-hr urine nitrogen (see below) and 3-day diet assessments,

respectively. Complementary dietary education of the patients and their care-partners should be

provided both during the face-to-face visits and via phone calls.

The specialized knowledge and services of a renal dietitian ensure accurate nutrition education,

meal planning and evaluation of body composition to sustain health. Components of a CKD nutrition

evaluation may include the following (see Table 5): (1) Dietary education for LPD with>50% plant-based

protein sources, (2) Dietary assessment using a three-day diet diary with interview, (3) Simplified

anthropometry that includes triceps and biceps skinfolds [126] and mid-arm circumference [127],

(4) Body fat estimation using either bioimpedance analyses or near-infra red interactance [128–130],

(5) The Malnutrition-Inflammation Score (MIS) [131–134], including Subjective Global Assessment [135],

and (6) Handgrip strength test [136]. The dietary education along with the above evaluations usually

take 30 min to one hour of the dietitian’s time during each visit according to our previous and ongoing

nutritional clinic operations.
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Table 5. Overview of the recommended ambulatory visits and tests under the PLADO regimen (* these items are more relevant to sophisticated centers or under

research protocols).

Timeline of for PLADO Therapy Visits
“Run-in”

Period
Year 1

(Quarterly)
Years 2+

(Semi-Annual)
Needed Time

PALDO Months 0 1 3 6 9 12 18 24 30 36

History and physical examination with updates on clinical and dietary
status

X x x x x X x x X x 10–20 min

Lab tests

Routine lab panel: CMP/LFT, anemia, MBD, A1c X x x x X x x X x <10 min
Spot urine, urinalysis, protein, albumin, creatinine X x x x X x x X x <5 min
24 hr urine: Nitrogen, Na, K, creatinine, alb, prot. X x x x X x x X x Collected at

homeeGFR assessment and creatinine and urea clearance X x x x X x x X x

Dietitian visit

Dietary education for LPD >50% plant based X x x x x X x x X X 10–20 min
Dietary assessment, three-day diet diary with interview X x x x x X x x X X 10–20 min

Anthropometry: triceps and biceps skinfolds, mid-arm circumference * X x x x X x x X X 2–4 min
Body fat estimation * X x x x X x x X X 1–2 min

Malnutrition-inflammation score * X x x x X x x X x 2–5 min
Handgrip strength test * X x x x X x x X x 1–2 min

Phone calls to reinforce PLADO education, adherence, and meal
preparation

x x x x x X x x X x 10–30 min

Questionnaires

Diet palatability and appetite questionnaire x x x X x X x x X x 15–30 min
Food Frequency Questionnaire * x x X x x X x 15–30 min

Quality of life: KDQOL™ including SF36 quest * x x x x X x x X x 10–15 min
Uremic symptoms questionnaire x x x x X x x X x 10–15 min

Self-Perception and Relationship Questionnaire * x x x x X x x X x 10–15 min

Abbreviations: RD: Registered dietitian, CMP: comprehensive metabolic panel, LFT: liver function tests, MBD: Mineral and bone disease markers, Na: sodium, K: potassium, Na, K,
creatinine, alb: albumin, prot.: protein, KDQOL: Kidney disease quality of life, SF36: Short Form with 36 items of quality of life.
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12. Concurrent Pharmacotherapy and Other Interventions

Regardless of the type of the dietary regimen, participation in the PLADO plan does not interfere

with any other aspects of the CKD patient care including prescribed medications such as angiotensin

pathway modulators, other anti-hypertensive medications, anti-diabetic medications such as SGLT2

inhibitors, phosphorus binders, potassium binders, sodium bicarbonate, etc. Indeed, it is expected that

dietary protein restriction will have a synergistic effect on these pharmacotherapies [67]. The inclusion

of plant-based foods should not necessitate a reduction in any of these medications over time.

13. Laboratory Tests for Nutritional Management of CKD

Consistent with the pragmatic and cost-efficient nature of the PLADO regimen, all relevant

laboratory tests are performed in the clinical laboratories of the respective medical centers typically as

part of routine CKD care. With the exception of a semi-annual serum vitamin B12 level, quarterly to

semi-annual laboratory tests include routine chemistry panels (including serum Na, K, CO2, Cl, urea,

creatinine, glucose), liver function tests, hemoglobin A1c, anemia and mineral and bone disorders

(MBD) parameters including calcium, phosphorus, and parathyroid hormone. Urinalysis and spot

urine for urinary protein/albumin and creatinine should be tested, and eGFR is calculated [137].

Participating patients are instructed to collect 24-h urine samples according to the directions that

should be repeated during each ambulatory visit and/or each phone call, i.e., not collecting the first AM

urine of Day 1, collecting the first AM urine of Day 2 as the last collection component, and the entire

micturition in-between. The 24-hr urine should include measurements of urine urea nitrogen (UUN),

sodium (UNa), potassium UK, creatinine (UCr), albumin, and protein, as well as urine volume (UV).

The following measures should be calculated and reviewed by both the nephrologist and dietitian

during each visit [25]:

(1) Creatinine clearance: UCr*UV/SCr in ml/min, and to compare to eGFR;

(2) Creatinine index: UCr/Weight (mg/kg), to identify 24-h urine collection inaccuracies including

under- and over-collections by comparing it to the expected value of 1–2 mg/kg/d for women and

1.5–2.5 mg/kg/day for men;

(3) Estimated DPI (eDPI): UUN*6.25+0.03*weight (in g/kg/day); for patients with substantial

proteinuria >3 g/day, the daily proteinuria amount is added to the above eDPI [3,25];

(4) Estimated dietary Na intake: UNa in mmol/44 (g/day);

(5) Estimated dietary K intake: UK in mmol/25 (g/day);

(6) 24-h urinary protein and albumin excretion (mg/day).

See Table 5 for the overview of the laboratory tests.

14. Suggested Self-Administered Questionnaires

Based on the goals and the extent of the operation and resources of the CKD clinic, some to all of

the following self-administered questionnaires can be used during each or alternating ambulatory visit:

(1) Diet, Palatability, and Appetite Questionnaire: the appetite component allows grading appetite

and recent changes [138]. The palatability component includes 12 items and grades palatability

and feasibility of dietary intervention [138]. These items are combined with diet assessment of the

HEMO Study [139]. (2) Quality of life KDQOL™ including SF36: This has been used and validated

extensively [133]. (3) Uremic symptoms questionnaire: This questionnaire is derived from the

“Symptom Assessment Instrument” by Weisbord et al. [140], which was created and validated in US

veterans with stage 5 CKD. (4) Self-Perception and Relationship Questionnaire: This item will assess

the psychosocial-spiritual well-being using the 28-item scale [141]. (5) Food Frequency Questionnaire

(FFQ) [142]: this questionnaire has been developed by Kalantar-Zadeh et al. using the Block FFQ from

UC Berkeley, and can be used semi-annually to annually (see Table 5).
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15. Diet Safety and Transient Dietary Regimen Suspension

Once a patient has completed the 3-month run-in period including dietary education and food

preparation training and adjustments, there should be periodic (every 3–6 months) ambulatory visits

with continued data collection and review. If PEW signs are observed, or in case of an event that

requires suspension of the LPD such as hospitalization with AKI, regardless of dialysis need, or major

adverse cardiovascular events (MACE), the LPD can be transiently suspended, and the patient can

resume the LPD and the study protocol at a later time, usually within 90 days of the suspension of the

dietary regimen participation if deemed safe. Serum potassium levels >5.5 mEq/L will preferentially

be managed by potassium-binders (first line) and/or reducing the potassium-rich components of

the diet (second line), as opposed to the current standard of care in that traditional low-potassium

dietary adjustments are pursued as the main approach, followed as needed by the administration

of potassium-binders.

16. Challenges and Pitfalls of the Dietary Management of CKD

As stated above, the proposed plant-dominant diet may cause hyperkalemia and could thus

be hazardous to patients with advanced CKD. Nephrologists and dietitians should closely monitor

patients during the 3-month run-in period and thereafter for adverse events. Dietitian support is

necessary for appropriate education on culinary strategies to reduce excessive potassium content

while preserving flavor and nutrition. Physicians should take appropriate actions including the use of

potassium-binders or suspension of the patient’s participation if this should be the safest approach.

We do not expect that most patients on plant-based diets will develop hyperkalemia, as these diets

are alkalinizing and alter intestinal transit time (see above), especially if dried fruit, juices, smoothies,

and sauces can be minimized or avoided along with judicious avoidance of processed food with

added potassium-based additives and preservatives [92]. Those who are extremely prone to develop

hyperkalemia would display this early in the course of the intervention and the PLADO would be

discontinued if hyperkalemia cannot be controlled. Less constipation as a result of PLADO is associated

with favorable cardiovascular and renal outcomes [143,144].

It is important to note that the emerging standard of care in CKD is a restricted protein diet

of 0.55–0.6 g/kg/day for non-diabetic CKD and 0.6–0.8 g/kg/day for diabetic CKD according to the

updated KDOQI nutrition guidelines as of September 2020 [145], and if this is implemented, this is in

support of our PLADO regimen. Whereas it is true that an LPD should be the stated goal according to

the 2020 KDOQI guidelines, this is typically not followed in everyday clinical practice, where dietary

interventions are driven by biochemical abnormalities such as hyperkalemia or hyperphosphatemia.

Indeed, prior KDOQI guidelines had recommended DPI of 0.8 g/kg/day without any clear range, which

is rarely pursued in a real-world scenario.

It could be argued that under the PLADO regimen there is no clear meal plan. However, the

reasonably wide dietary protein range of 0.6–0.8 g/kg/day along with the recommended plant-based

proportion of 50% or higher ensures the intended flexibility and pragmatism of the PLADO regimen,

so that further adjustments to individualized characteristics of different patients can be implemented

according to the principles of the “precision nutrition” as also shown for the dietary management

of diabetes [146]. Some health care providers, as well as patients, may express concerns that the

carbohydrates burden of plant-dominant diets confounds dietary management of obesity, metabolic

syndrome, or diabetes. However, different types of carbohydrates have different glycemic indices,

and high protein or ketogenic diets, which may be recommended for these conditions, are associated

with untoward consequences in disease and health [21]. Complex carbohydrates, including whole

and minimally processed foods, are high in fiber and antioxidants and can reduce insulin resistance

and improve glycemic control by a variety of biologically plausible mechanisms [147]. Indeed, whole

food plant-based diets can help reduce weight in overweight and obese persons and help improve

the lipid profile and other risk factors related to cardiovascular disease or diabetes [148], and they are

also more cost-effective than meat-dominant foods [149]. Indeed, plant-based foods are less expensive
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than animal based foods, including meat and poultry, in terms of cost per serving [150]. The patient

and the dietitian should work together in establishing a patient-specific “Healthy Kitchen for CKD”

and patients and their care-partner should gain experience in implementing patient-centered dietary

interventions for CKD management. Careful and balanced industry partnership can be sought to

develop innovative “Healthy Kidney Diet Plans” to help people with CKD change their diet to delay

the progression of the disease and to defer and prevent kidney failure.

It has been argued that many people with CKD enjoy eating high amounts of meat, and it is

highly unlikely that they will adopt an LPD with >50% plant-sources, especially since many dietitians

recommend a high protein diet as an approach against obesity and diabetes. Several authors of this

review paper, including both nephrologists and dietitians, have successfully implemented an LPD

and plant-dominant diet education in CKD in their respective medical centers. They are aware of

the cultural and dietary challenges, including in Americans and other Westerners, as described in

their published reports [3], and have been able to introduce and implement the PLADO regimens as

described here.

Another potential challenge is the misconception related to the definition of the conservative

management of advanced CKD, which is often confused with palliative and supportive care towards

the end of life and without requiring special diets. This incorrect assumption is the result of confusing

different types of conservative management of CKD, and their similarities and distinctions that have

recently been better clarified [9], in that a dietary approach including PLADO is a “preservative”

management of CKD and a life-sustaining and kidney rejuvenating alternative.

17. Anticipated Impact and Future Steps

Our proposed PLADO regimen, which has been successfully implemented in several centers in the

USA, reinvigorates the role of diet and nutrition in CKD management and may have major clinical and

public health implications among numerous populations who are at risk for or have underlying CKD,

as well as millions of Americans and people around the world with these conditions. The discussions

about plant-dominant diets such as PLADO will also lead to a generation of critical data about the

efficacy and safety of plant-dominant regimens, and will challenge the prevailing dialysis-centered

paradigm. It is also aligned with recent US national directives, such as the 2020 VA CKD Directive,

promoting medical nutrition therapy, and the July 2019 Executive Order’s restructuring of the ESKD

program by preemptively involving patients and dietitians in earlier phases of CKD care, rather than

dialysis preparation. This model stands in sharp contrast to the current payment system whereby the

renal dietitians’ focus of work is in the dialysis units, while patients at risk of kidney failure have little

or no access to nutritional support. The PLADO regimen also innovatively emphasizes the important

skillset provided by trained dietitians and other healthcare providers in CKD patient care outside the

dialysis arena. Averting and delaying dialysis will also result in major cost benefits to health care

systems and likely improve patient longevity and health-related quality of life.

Whereas well-designed, pragmatic randomized controlled trials are warranted to verify the efficacy

of PLADO in achieving improvement in clinical end points, this dietary regimen can be used safely

for the management of CKD. PLADO has the advantage of considering both dietary protein quantity

(LPD) and quality (>50% plant-based), instead of quantity alone or being solely plant-based. Its unique

pragmatic design efficiently leverages CKD clinic visits and hands-on involvement of nephrologists

and dietitians during routine ambulatory nephrology assessments, providing unique feasibility to

conduct CKD management successfully. Finally, examining mastery of self-management skills through

“Teach-to-Goal” under the “Healthy Kidney through your Kitchen” program by dietitians enable

patients with CKD to more effectively self-manage their diet and kidney disease [3].
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