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Abstract. The sensitivity of global carbon and water cycling

to climate variability is coupled directly to land cover and the

distribution of vegetation. To investigate biogeochemistry-

climate interactions, earth system models require a represen-

tation of vegetation distributions that are either prescribed

from remote sensing data or simulated via biogeography

models. However, the abstraction of earth system state vari-

ables in models means that data products derived from re-

mote sensing need to be post-processed for model-data as-

similation. Dynamic global vegetation models (DGVM) rely

on the concept of plant functional types (PFT) to group

shared traits of thousands of plant species into usually only

10–20 classes. Available databases of observed PFT dis-

tributions must be relevant to existing satellite sensors and

their derived products, and to the present day distribution of

managed lands. Here, we develop four PFT datasets based

on land-cover information from three satellite sensors (EOS-

MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and

ENVISAT-MERIS 0.3 km spatial resolution) that are merged

with spatially-consistent Köppen-Geiger climate zones. Us-

ing a beta (ß) diversity metric to assess reclassification simi-

larity, we find that the greatest uncertainty in PFT classifica-

tions occur most frequently between cropland and grassland

categories, and in dryland systems between shrubland, grass-

land and forest categories because of differences in the mini-

mum threshold required for forest cover. The biogeography-

biogeochemistry DGVM, LPJmL, is used in diagnostic mode

with the four PFT datasets prescribed to quantify the effect

of land-cover uncertainty on climatic sensitivity of gross pri-

mary productivity (GPP) and transpiration fluxes. Our re-

sults show that land-cover uncertainty has large effects in

arid regions, contributing up to 30 % (20 %) uncertainty in

the sensitivity of GPP (transpiration) to precipitation. The
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availability of PFT datasets that are consistent with current

satellite products and adapted for earth system models is an

important component for reducing the uncertainty of terres-

trial biogeochemistry to climate variability.

1 Introduction

Terrestrial biogeography holds a key role in determining spa-

tial patterns of biogeochemical cycling (Olson et al., 1983),

biodiversity (Kleidon et al., 2009) and the consumption and

production of natural resources (Foley et al., 2005; Haberl et

al., 2007). An improved understanding of global biogeogra-

phy is required to provide a baseline for assessing the vul-

nerability of the carbon and water cycle and other ecosys-

tem processes related to ongoing global change. Such base-

lines are also relevant to earth system modeling research, es-

pecially for dynamic global vegetation modeling (DGVM),

with applications extending to model initialization, optimiza-

tion, and benchmarking (Plummer, 2000). However, avail-

able remotely-sensed datasets for land cover show large vari-

ability (Giri et al., 2005), partly due to differences in data re-

trieval (i.e., satellite properties) and partly because there is no

standard approach to classifying continuous vegetation cover

into discrete categories. In addition, to be comparable to

plant functional type (PFT) definitions used by DGVM mod-

els, land-cover legends must be cross-walked (reclassified)

to broader PFT categories (Jung et al., 2006). To address the

variability between land-cover products and the challenges of

cross-walking land-cover legends, we developed a method-

ology to process an ensemble of PFT datasets corresponding

to the most common global land-cover products available. In

our analysis, the pattern and drivers of variability across this

ensemble is quantitatively assessed and attributed to inter-

pret the effects of land-cover uncertainty on biogeochemical

fluxes.
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Table 1. Characteristics of the remotely sensed land cover datasets used to develop the phenology, physiognomy, and natural/managed traits

for the PFT mapping.

Land cover

product

Satellite and

sensor type

Time

period

Spatial

resolution

Number

of classes

File size

(GB)

# rows # cols Classification

accuracy

GLC2000 v1.1 SPOT-4

(VEGA2000)

2000 1000 m 22 (modified

UN LCCS)

0.66 40 320 16 353 39–64 %

Mod12q1 C004 Terra 2001 1000 m 17 (IGBP legend) 0.93 43 200 21 600 75–80 %

Mod12q1 C005 Terra 2005 500 m 17 (IGBP legend) 3.47 86400 43200 72–77 %

GlobCover v2.2 Envisat

(Meris)

12-2004/

06-2006

300 m 22 (modified

UN LCCS)

7.82 129 600 64 800 67.1 %

There are now several (Table 1) moderate resolution global

land-cover datasets available from different satellite sensors

and research groups (Friedl et al., 2002, 2010; Bartholome

and Belward, 2005; Arino et al., 2008) providing an oppor-

tunity to assess ensemble variability. Although these land-

cover datasets provide new opportunities for model-data as-

similation studies to assess the effects of land-cover feed-

backs (Quaife et al., 2008; Sterling and Ducharne, 2008;

Jung et al., 2007), their approach for classifying land cover

is not yet consistent with Earth System Model (ESM) re-

quirements. This is because the concept of plant functional

types used in ESMs cannot be mapped directly using re-

mote sensing data since PFT traits represent a combination

of spectral relationships, and climatic, ecological, and the-

oretical assumptions (Smith et al., 1997; Sun et al., 2008;

Running et al., 1995; Ustin and Gamon, 2010). The PFT

concept consists of aggregating multiple species traits, al-

lowing for the reduction of thousands of species to a small

set of functional groups (typically <15) defined by their phe-

nology type, physiognomy, photosynthetic pathway, and cli-

mate zone. The advantage of the PFT classification system

is that it allows the possibility for posing testable hypotheses

that are feasible at global and centennial scales (Smith et al.,

1997).

Existing PFT datasets include those by Bonan et al. (2002)

for the Community Land Model, with updates from

(Lawrence and Chase, 2007), by Verant et al. (2004) for the

Orchidee DGVM, and by Lapola et al. (2008) for the SSiB

model. Improvements to these PFT datasets are currently

needed to expand the availability of land-cover datasets to al-

low consistency with a more complete set of satellite sensors

and more detailed or revised climate zone data, and to take

into account current human land-use patterns. For example,

Bonan et al. (2002) used multiple data sources to combine

the IGBP-DISCover Global Land Cover Classification data

(IGBP GLCC) and phenology-type data (from 1992–1993

AVHRR data) with vegetation continuous fields from De-

Fries et al. (2000). They assigned biome types from biocli-

matic definitions provided by Prentice et al. (1992) based on

gridded climate data from Legates and Wilmott (1990), cre-

ating one of the first ESM-relevant PFT legends (Table 2) for

the Community Land Model 3.0 (Dickinson et al., 2006). In

comparison, Verant et al. (2004) combined simplified Olson

biomes with IGBP GLCC data to create a PFT map for the

Orchidee DGVM (Krinner et al., 2005). Lapola et al. (2008)

developed a global PFT map by reclassifying legends from

Olson et al. (1983) and Matthews (1983) and filling areas of

mismatch with regional land cover information. A different

PFT legend accompanies the MODIS land cover product us-

ing categories defined by Running et al. (1995) and has been

developed from GLC2000 (Wang et al., 2006). For these

particular PFT legends, the classifications include phenology

type but not the associated climate zone, which is needed

to assign climate-specific physiological parameters to each

PFT (i.e., Sitch et al., 2003). As a consequence, vegeta-

tion models using these particular PFT datasets must assume

that biochemical and biophysical PFT parameters are con-

stant globally across different climate zones (e.g., see Alton

et al., 2009).

Our study contributes to ESM and DGVM modeling by

developing four global PFT datasets (Table 1) using a con-

sistent methodology applied to satellite data that vary by

sensor (spatial and spectral resolution), classification sys-

tem, and time period. The Köppen-Geiger climate classifica-

tion scheme is used to associate physiognomy and phenology

type with climate zone, and the pattern of uncertainty among

the four classification systems is evaluated using a beta di-

versity metric. We provide an example of the importance

of land-cover uncertainty on land-surface climate sensitivity

by prescribing vegetation types and analyzing biogeochem-

istry with the LPJmL DGVM. In this experiment, we quan-

tify the sensitivity of water and carbon fluxes to climate –

biogeochemical fluxes highly modified by human activities

(Oki and Kanae, 2006; Schimel et al., 2001) – and evaluate

how land-cover uncertainty alters these relationships.
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Table 2. Plant functional types (PFT) used in the Orchidee, LPJ and CLM dynamic global vegetation models. The PFTs are defined by

biome and by phenology, followed by temperature criteria (here shown from Sitch et al., 2003) for establishment (Tmin/Tmax, in ◦C, are

calculated from twenty year annual means).

Plant Functional Type (PFT) used in

LPJmL and Orchidee and CLM

(PFT code in parentheses)

Biome Phenology Class

(phenology code

in parentheses)

Tmin Tmax

Tropical broadleaf evergreen (TrBe)
Tropical

Broadleaf evergreen (BrEv) 15.5 –

Tropical raingreen (TrRg) Broadleaf deciduous (BrDe) 15.5 –

Temperate needleleaf evergreen (TeNe)

Temperate

Needleleaf evergreen (NeEv) −2 22.2

Temperate broadleaf evergreen (TeBe) Broadleaf evergreen (BrEv) 3.0 18.8

Temperate broadleaf summergreen (TeBs) Broadleaf deciduous (BrDe) −17.0 15.5

Boreal needleleaf evergreen (BoNe)

Boreal

Needleleaf evergreen (NeEv) − −2

Boreal needleleaf summergreen (BoNd) Needleleaf deciduous (NeDe) − −2

Boreal broadleaf summergreen (BoBs) Broadleaf deciduous (BrDe) − −2

Temperate herbaceous (NatGrassC3) Temperate Grass − 15.5

Tropical herbaceous (NatGrassC34) Tropical Grass 15.5 −

Managed grass C3 (MGrassC3) Temperate Grass − 15.5

Managed grass C4 (MGrassC4) Tropical Grass 15.5 −

2 Methods

2.1 Land cover and climate zone datasets

Land-cover datasets, described in Table 1, were manually re-

classified to PFT specific phenology type and physiognomic

categories. The resulting categories were merged with cli-

mate zones defined by the Köppen-Geiger classification sys-

tem to resolve to PFT classes. The merged dataset was aggre-

gated to 0.5◦ spatial resolution (corresponding to the climate

and soils data used in LPJmL), representing the fractional

abundance of PFT mixtures within a grid cell. All analyses

were conducted at the global scale in Plate-Carrée (WGS84)

projection, area correcting grid cells during post-processing

when necessary. The original land-cover datasets varied in

spatial resolution, time period of data collection, classifica-

tion approach, and accuracy and are discussed below.

The Köppen-Geiger dataset was created by Peel et

al. (2007) from over 4000 metrological stations contained in

the Global Historical Climatological Network v2.0 database.

The authors calculated climate indices (i.e., seasonal means,

minimums, and maximums) for the stations from precipita-

tion and temperature for their entire time series (mostly, the

20th century) and then interpolated to a 0.1◦ resolution grid

(not accounting for elevation). These indices were classified

into one of 32 possible climate zones (Table 3) according to

the original Köppen-Geiger classification system (Köppen,

1936).

The GLC2000 land-cover data were generated from

SPOT-VEGETATION (SPOT 4) and ATSR-2/DMSP sensors

and are available for most of the vegetated surface of the

globe (75◦ N to 56◦ S, excluding Antarctica) at 1 km resolu-

tion (Bartholome and Belward, 2005; Hugh et al., 2004). The

data were collected between November 1999 and December

2000. The GLC2000 classification (Table 4) was conducted

by regional expert groups following an unsupervised clas-

sification of 19 similar geographic regions using the LCCS

nomenclature (22 categories for global purposes).

The GlobCover data became available in 2008 (Arino et

al., 2008) and represent the highest-spatial resolution data

available for global extent at this time (0.3 km resolution).

The classification system also follows the LCCS system

(22 categories, Table 5) and the spectral data were acquired

from the MERIS sensor on-board the ENVISAT satellite be-

tween June 2004 and December 2006. Individual pixels are

classified using unsupervised and supervised approaches on

sub-global regional clusters.

Two versions of the EOS-MODIS land cover data

(MOD12Q1), V004 and V005, were used in the analysis.

These differ in several aspects, including temporal coverage,

spatial resolution, and classification methodology, but both

use the same 17 IGBP categories (Table 6) (Friedl et al.,

2010). These land-cover classes were categorized using a

globally consistent supervised classification approach. V004

is available globally at 1 km resolution from data acquired in

2001 while V005 is available at 0.5 km resolution at annual

resolution (starting in 2001). Both products have multiple

legends available, and here we worked with the IGBP leg-

end (Table 6), the primary MODIS legend from which the

other legends are derived and most relevant for reclassifying

to phenology categories (next section).
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Table 3. Köppen-Geiger biome types (Code column is defined in Peel et al., 2007) and their simplified equivalents required for DGVM PFT

classification. Where Thot and Tcold are temperature of the hottest and coldest month (◦C), and MAT is mean annual temperature (◦C).

Number Code Köppen-Geiger biome category PFT biome equivalent

(this study)

1 Af Tropical Tcold => 18 Tropical

2 Am

3 Aw

4 BWh Arid MAT =>18

5 BWk MAT <18 Temperate (warm)

6 BSh MAT =>18 Tropical

7 BSk MAT <18 Temperate (warm)

8 Csa Temperate

Thot >10

& Tcold <18

Thot => 22 Temperate (warm)

9 Csb Temperate (cool)

10 Csc

11 Cwa Thot => 22 Temperate (warm)

12 Cwb Temperate (cool)

13 Cwc

14 Cfa Thot => 22 Temperate (warm)

15 Cfb Temperate (cool)

16 Cfc

17 Dsa Cold

Thot >10

& Tcold <0

Thot => 22 Boreal (warm)

18 Dsb Boreal (cool)

19 Dsc

20 Dsd

21 Dwa Thot => 22 Boreal (warm)

22 Dwb Boreal (cool)

23 Dwc

24 Dwd

25 Dfa Thot => 22 Boreal (warm)

26 Dfb Boreal (cool)

27 Dfc

28 Dfd

29 ET Polar

Thot <10

Thot > 0

30 EF Thot < 0

31==29 ETH

32==30 EFH

2.2 Reclassifying the legends

The land-cover data were first cross-walked (reclassified) to a

phenology-based legend consistent with the plant functional

types used in major DGVM and land surface models (Ta-

ble 2). Figure 1 illustrates the flow of data processing, with

the merging of the phenology type and climate data described

in the following section. Manually reclassifying legends is

inherently subjective, especially with the treatment of mixed

vegetation categories where multiple possible classes must

be reduced to only one class (Jung et al., 2006; Giri et al.,

2005). The possible bias resulting from reclassification was

handled, in part, by comparing levels of agreement among

the aggregated PFT classification datasets. The comparison

highlighted the spatial pattern of dissimilarity and provided a

means for qualitatively evaluating the contribution of uncer-

tainty from reclassification problems and from actual remote

sensing differences. The reclassification was conducted on

the original resolution of the land-cover dataset and imple-

mented in C programming language.
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Table 4. The GLC2000 legend (based on LCCS) and corresponding DGVM phenology class (from Table 2).

GLC ID GLC2000 description DGVM phenology class

1 Tree Cover, broadleaved, evergreen 90 % BrEv, 10 % NatGrass

2 Tree Cover, broadleaved, deciduous, closed 100 % BrDe

3 Tree Cover, broadleaved, deciduous, open (open 15–40 % tree cover) 80 %BrDe, 20 % NatGrass

4 Tree Cover, needle-leaved, evergreen 100 % NeEv

5 Tree Cover, needle-leaved, deciduous 100 % NeDe

6 Tree Cover, mixed leaf type 25 % BrEv, BrDe, NeEv, NeDe

7 Tree Cover, regularly flooded, fresh water (& brackish) 25 % BrEv, BrDe, NeEv, NeDe

8 Tree Cover, regularly flooded, saline water 25 % BrEv, BrDe, NeEv, NeDe

9 Mosaic: Tree cover/Other natural vegetation 20 % BrEv, BrDe, NeEv, NeDe, NatGrass

10 Tree Cover, burnt 25 % BrEv, BrDe, NeEv, NeDe

11 Shrub Cover, closed-open, evergreen 40 % BrEv, NeEv, 20 % NatGrass

12 Shrub Cover, closed-open, deciduous 80 % BrDe, 20 % NatGrass

13 Herbaceous Cover, closed-open 100 % NatGrass

14 Sparse Herbaceous or sparse Shrub Cover 60 % NatGrass, 40 % bare

15 Regularly flooded Shrub and/or Herbaceous Cover 10 % BrEv, BrDe, NeEv, NeDe, 60 % NatGrass

16 Cultivated and managed areas 100 % ManGrass

17 Mosaic: Cropland/Tree Cover/Other natural vegetation 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass

18 Mosaic: Cropland/Shrub or Grass Cover 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass

19 Bare Areas Bare

20 Water Bodies (natural & artificial) Water

21 Snow and Ice (natural & artificial) Bare

22 Artificial surfaces and associated areas Urban

23 No data No data

Fig. 1. Illustration of the flow of analysis and the reclassification of the climate zone data to simplified biomes, and the land-cover data to

their phenology types, physiognomy and land-use counterparts.

www.geosci-model-dev.net/4/993/2011/ Geosci. Model Dev., 4, 993–1010, 2011
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Table 5. The GlobCover legend (LCCS) and corresponding DGVM phenology class (from Table 2).

ID GlobCover description DGVM phenology class

11 Post-flooding or irrigated croplands (or aquatic) 100 % ManGrass

14 Rainfed croplands 100 % ManGrass

20 Mosaic cropland (50–70 %)/vegetation

(grassland/shrubland/forest) (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, Nat-

Grass, 50 % ManGrass

30 Mosaic vegetation (grassland/shrubland/forest)

(50–70 %) / cropland (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, 20 %

NatGrass, 40 % ManGrass

40 Closed to open (>15 %) broadleaved evergreen

or semi-deciduous forest (>5 m)

50 % BrEv, BrDe

50 Closed (>40 %) broadleaved deciduous

forest (>5 m)

100 % BrDe

60 Open (15–40%) broadleaved deciduous

forest/woodland (>5 m)

80 % BrDe, 20 % NatGrass

70 Closed (>40 %) needleleaved

evergreen forest (>5m)

100 % NeEv

90 Open (15–40 %) needleleaved deciduous or

evergreen forest (>5 m)

40 % NeEv, NeDe, 20 % NatGrass

100 Closed to open (>15 %) mixed broadleaved and

needleleaved forest (>5 m)

25 % BrEv, BrDe, NeEv, NeDe

110 Mosaic forest or shrubland

(50–70 %)/grassland (20–50 %)

20 % BrEv, BrDe, NeEv, NeDe, Nat-

Grass

120 Mosaic grassland (50–70 %)/forest or

shrubland (20–50 %)

10 % BrEv, BrDe, NeEv, NeDe, 60 %

NatGrass

130 Closed to open (>15 %) (broadleaved or

needleleaved, evergreen or deciduous)

shrubland (<5 m)

20 % BrEv, NeEv, 10 % BrDe, NeDe,

40 % NatGrass

140 Closed to open (>15 %) herbaceous vegetation

(grassland, savannas or lichens/mosses)

20 % NeEv, 80 % NatGrass

150 Sparse (<15 %) vegetation 40 % NatGrass, 60 % bare

160 Closed to open (>15 %) broadleaved forest

regularly flooded (semi-permanently or

temporarily) – Fresh or brackish water

33 % BrEv, BrDe, NatGrass

170 Closed (>40 %) broadleaved forest or

shrubland permanently flooded – Saline or

brackish water

50 % BrEv, BrDe

180 Closed to open (>15 %) grassland or woody

vegetation on regularly flooded or waterlogged

soil – Fresh, brackish or saline water

20 % BrEv, BrDe, NeEv, NeDe,

NatGrass

190 Artificial surfaces and associated areas (Urban

areas >50 %)

100 % Urban

200 Bare areas 100 % Bare

210 Water bodies 100 % Water

220 Permanent snow and ice 100 % Bare

230 No data (burnt areas, clouds,. . . ) 100 % No data

Tables 4, 5, and 6 list the original land-cover classes from

GLC2000, GlobCover, and MODIS and their corresponding

reclassification into phenology type (Table 2). Six PFT-

specific phenology-type/physiognomy classes were pre-

defined, corresponding with categories used in several

DGVM models (broadleaf evergreen BrEv, broadleaf de-

ciduous BrDe, needleaf evergreen NeEv, needleleaf decid-

uous NeDe, natural grassland NatGrass, and managed grass-

land ManGrass (representing either pasture or crop)). For

some categories, the reclassification was straightforward,

i.e., GLC2000 “Tree cover, broadleaf, deciduous, closed”

was reclassified to “broadleaf deciduous.” Other categories,

for example, GLC2000 “Tree cover, mixed leaf type,” or

MODIS IGBP “Open shrublands” did not correspond to a

Geosci. Model Dev., 4, 993–1010, 2011 www.geosci-model-dev.net/4/993/2011/
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single PFT phenology/physiognomy class. In these cases, the

land cover class was reclassified to one of several possible

phenology-types and physiognomy classes whose probabil-

ity was assigned by assessing the supplementary data regard-

ing the legend definitions or examining the spatial pattern

of observed land cover classes, and based on expert opinion

on how the class might be composed of various phenology

types (similar to Wang et al., 2006). In these cases, for ex-

ample, a “mixed tree cover” category would yield 25 % equal

probability (using a uniform distribution for all mixed land

cover categories) with the grid cell being reclassified to ei-

ther BrEv, BrDe, NeEv, or NeDe. This approach resulted in

a single category cell, but when the cells were aggregated to

coarser resolution (described below), the relative PFT frac-

tions more realistically represented the original mixed for-

est classes (for example, aggregating from 1 km mixed forest

category to 0.5 degree resolution results in 0.5 degree frac-

tions equal to 0.25 for BrEv, BrDe, NeEv, and NeDe, sum-

ming to 1.0 for an aggregated cell).

2.3 Merging and aggregating phenology and

climate zones

The Köppen-Geiger dataset was first adjusted to expand its

coastal grid cell definitions to neighboring ocean grid cells

to allow a complete overlay of land cover with climate zone.

The buffered Köppen-Geiger data were then downscaled to

the spatial resolution of the corresponding land-cover dataset

using a nearest neighbor resampling algorithm. The resam-

pled Köppen-Geiger data were reclassified into one of three

major biome types (following the rules described in Table 3),

namely: tropical, temperate and boreal. The temperate and

the boreal biome were further subdivided into either cool

(<22 ◦C) or warm (=>22 ◦C) types to distinguish between

C3 or C4 photosynthesis in the former, and temperate needle-

leaf and broadleaf trees in the latter (based on their PFT

temperature establishment thresholds in Table 2). While C4

grasses can establish at cooler temperatures (i.e., the LPJ

model uses a temperature of 15 ◦C, Table 2), this tempera-

ture threshold (22 ◦C) has been shown in prior studies to be

a critical “crossover” temperature for C3 and C4 adaptations

(Collatz et al., 1998).

Each of the 4 reclassified phenology type datasets were

then merged with the climate zones to produce the final PFT

classification at the spatial resolution of the original land

cover data following the assembly rules in Table 7. Some

exceptions were made to account for the full combination

of phenology and climate zone possibilities. For example,

because there are few to no deciduous needleleaf PFTs ob-

served in tropical and temperate ecosystems, this phenology

type was treated as tropical broadleaf raingreen (deciduous)

or temperate broadleaf summergreen PFT. Natural and man-

aged grasslands were split into the C3 and C4 photosynthetic

pathways according to temperature thresholds that defined

tropical versus temperate, and cool versus warm temperate

biomes from the Köppen-Geiger data. This approach may

underestimate C3/C4 grass mixtures or C4 summer crops

(i.e., maize) that might be planted in cooler regions (Ra-

mankutty and Foley, 1998).

The PFT classifications were aggregated to a spatial reso-

lution of 0.5◦ by summing the area of each PFT class within

the corresponding 0.5◦ cell (16 classes, Table 7) and divid-

ing by the grid cell area. A spatial resolution of 0.5◦ was

chosen for this study because most models in the ESM com-

munity use climate and other ancillary driver (e.g., soil type)

data at this resolution, or greater (Zobler, 1986;New et al.,

2002). The aggregation of PFT fractions can also be carried

out at finer resolution, but at smaller window sizes the es-

timates of fractional PFT coverage may become more sen-

sitive to the selection of probability distribution. Each of

the four PFT fractional abundance files were filtered with

a global land/water mask, which was derived from a global

soils database (Zobler, 1986). This ensured that the terrestrial

surface area and land/ocean boundaries were equal between

datasets.

2.4 Measuring PFT agreement

We analyzed the agreement between PFT fractional abun-

dance (and re-groupings of PFTs by various traits) with a

beta (ß) diversity metric (mean Euclidean distance) calcu-

lated for each grid cell. Euclidean distance is a measure of

dissimilarity between groups with multiple members (Leg-

endre et al., 2005) and is commonly used to summarize land-

scape species diversity from multiple sampling plots (Whit-

taker, 1972). In our case, the “plots” were the grid cells

which contained the fractional PFT abundances contained

from the different classification datasets. This analysis had

two objectives; the first was to assess, geographically, where

regions of high uncertainty in PFT abundance may exist, the

second was to help evaluate the methods for the reclassifi-

cation of legends, especially for the mixed vegetation cate-

gories.

The beta diversity metric was calculated for each grid cell

for each of the four datasets, for the standard PFT classifica-

tion, and for three re-groupings based on PFT traits. These

regroupings were 1. Phenology type (total evergreen ver-

sus total deciduous fraction), 2. Physiognomy (total woody

versus total herbaceous fraction), and 3. Management status

(natural grass versus managed grass). Equation (1) presents

the variables used for calculating the Euclidean distance,

the mean of which, we consider to represent beta diversity,

ß. For every grid cell c, the Euclidean distance, D was

calculated between every combination of classifications, N

(1. . . 4) composed of 10 PFTs (I = 10) and their correspond-

ing fractional abundance Afor the different classifications (j

and k).

ßc=Dc=

N
∑

n=1

[

I
∑

i=1

(

Ai,j,c−Ai,k,c

)2
]0.5

N
(1)
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Table 6. Modis collection 4 and 5 legend (IGBP) and corresponding DGVM phenology class (from Table 2). For mixed phenology cells, it

was assumed that any phenology type could be found, these were determined randomly using a uniform distribution.

MODIS ID MODIS description DGVM phenology class

0 Water 100 % Water

1 Evergreen Needleleaf Forest 100 % NeEv

2 Evergreen Broadleaf Forest 100 % BrEv

3 Deciduous Needleleaf Forest 100 % NeDe

4 Deciduous Broadleaf Forest 100 % BrDe

5 Mixed Forests 25 % BrEv, BrDe, NeEv, NeDe

6 Closed Shrublands 10 %, BrEv, BrDe, 30 % NeEv, 10 % NeDe, 40 % NatGrass

7 Open Shrublands 10 % BrEv, BrDe, NeDe, NeEv, 20 % NatGrass, 40 % Bare

8 Woody Savannas 20 %, BrEv, 10 % BrDe, 20 % NeEv, 50 % NatGrass

9 Savannas 10 %, BrEv, 20 % NeEv, 70 % NatGrass

10 Grasslands 100 % NatGrass

11 Permanent Wetlands 20 % BrEv, BrDe, NeEv, NeDe, NatGrass

12 Croplands 100 % ManGrass

13 Urban and Built-Up 100 % Urban

14 Cropland/Natural Vegetation Mosaic 8 % BrEv, BrDe, NeEv, NeDe, NatGrass, ManGrass

15 Snow and Ice 100 % Bare

16 Barren or Sparsely Vegetated (<10 % veg. cover) 10 % NatGrass, 90 % Bare

17 (IGBP Water Bodies, recoded to 0 for MODIS Land Product consistency.) 100 % Water

254 Unclassified 100 % No data

255 Fill Value 100 % No data

Table 7. Final merging rules for phenology and climate zone, and legend for final PFT map (including non-PFT categories).

Biome Phenology PFT Category Data Band

Tropical Broadleaf evergreen Tropical Broadleaf Evergreen 1

Tropical Broadleaf deciduous Needleleaf deciduous Tropical Broadleaf Raingreen 2

Tropical Temperate (warm) Temperate (cool) Boreal (warm) Needleaf evergreen Temperate Needleleaf Evergreen 3

Temperate (warm) Temperate (cool) Boreal (warm) Boreal (cool) Broadleaf evergreen Temperate Broadleaf Evergreen 4

Temperate (cool) Temperate (warm) Boreal (warm) Broadleaf deciduous Needleleaf deciduous Temperate Broadleaf Summergreen 5

Boreal (cool) Needleleaf evergreen Boreal Needleleaf Evergreen 6

Temperate (cool) Boreal (cool) Needleleaf deciduous Boreal Needleleaf Deciduous 7

Boreal (cool) Broadleaf deciduous Boreal Broadleaf Summergreen 8

Temperate (cool) Boreal (warm) Boreal (cool) Natural Grass Natural grassland C3 9

Tropical Temperate (warm) Natural Grass Natural grassland C4 10

Temperate (cool) Boreal (warm) Boreal (cool) Managed Grass Managed grassland C3 11

Tropical Temperate (warm) Managed Grass Managed grassland C4 12

Non-vegetated

Barren/Bare 13

Water 14

Urban 15

No Data 16

The mean Euclidean distance (beta diversity) between groups

(Dc) was calculated as the mean of the diagonals from the

resulting matrix to represent overall dissimilarity (Legendre

et al., 2005; Whittaker, 1972). The variance of the Euclidean

distance matrix was also calculated using the same approach,

but taking the variance of the matrix diagonals rather than

the mean. The two approaches were used to aggregate the

distance matrix into a single index as recommended by Leg-

endre et al. (2005). ß was plotted as both geographic maps

and as latitudinal summaries to explore the spatial patterns of

uncertainty for each grouping.

An ordination analysis was conducted for four individual

grid cells representative of major biomes (temperate, tropi-

cal, boreal, and desert) to investigate the similarity between

PFT products and to display the main gradients partitioning

them. The PFT products included those developed in this

study, the existing products described in the Introduction for

Orchidee and CLM, and the results from a DGVM simula-

tion from LPJmL (described below). Non-metric multidi-

mensional scaling (NMDS) was chosen (using a Euclidean

distance matrix); this ordination method is less sensitive to

non-linear relationships among variables.

2.5 Prescribing PFT data to a dynamic global

vegetation model

PFT fractions were prescribed to the LPJmL DGVM, an

ecosystem model that simulates global biogeography and

biogeochemistry via coupled water-carbon cycling and veg-

etation dynamics (Sitch et al., 2003). Bioclimatic thresholds
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Table 8. Global plant functional type and non-vegetated cover (%) for land surface.

PFT GLC2000 Globcover Modis C004 Modis C005 StDev

Tropical Broadleaf Evergreen 7.97 6 11.47 11.13 2.62

Tropical Broadleaf Raingreen 7.52 8.96 2.71 3.15 3.13

Temperate Needleleaf Evergreen 3.68 5.68 5.32 5.6 0.94

Temperate Broadleaf Evergreen 2.86 3.3 5.24 5.22 1.25

Temperate Broadleaf Summergreen 5.51 5.38 3.08 3.22 1.33

Boreal Needleleaf Evergreen 5.78 5.24 5.77 5.62 0.25

Boreal Needleleaf Deciduous 3.87 4.05 2.45 3.78 0.73

Boreal Broadleaf Summergreen 4.05 3.09 2.39 2.47 0.77

Natural grassland C3 7.45 7.7 7.56 8.04 0.26

Natural grassland C4 13.87 11.21 17.99 19.13 3.67

Managed grassland C3 5.01 3.92 5.26 5.14 0.62

Managed grassland C4 8.56 8.83 4.87 4.95 2.19

Unvegetated (ice/barren, urban, water, no

data)

23.88 26.62 25.87 22.55 1.80

Fig. 2. The latitudinal distribution of the plant functional types for each land-cover dataset. The PFT acronyms correspond to those in

Table 2.

were removed to allow the establishment of PFTs wher-

ever they were prescribed from the external datasets. In the

LPJmL model, diagnostic PFT fractions replaced the variable

for maximum annual fraction of photosynthetic absorbed ra-

diation (FPAR) while not modifying the vegetation dynamics

or physiology modules. Monthly climate data (precipitation,

temperature, cloud cover, and wet days) and annual CO2 con-

centrations were prescribed from the Climatic Research Unit

TS3.0 dataset (Mitchell and Jones, 2005) and the Carbon

Dioxide Information Analysis Center (CDIAC). Following

a 1000-yr spin up to equilibrate vegetation and carbon pools,

a transient simulation, including the effects of prognostic fire
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Fig. 3. Map of the PFT fractions (at 0.5 degrees resolution) from (a) Modis C005 land-cover inputs using the IGBP legend, and (b) GlobCover

land-cover inputs using the LCCS legend. The PFT acronyms correspond to those in Table 2.

(Thonicke et al., 2001), was initiated beginning in 1901 and

ending in 2005. Managed grasslands were treated as in Bon-

deau et al. (2007), with harvest occurring repeatedly during

the year when peak leaf area index (LAI) was reached. An-

nual GPP and transpiration (from 1956-2005) were regressed

with mean annual temperature, total annual photosynthetic

active radiation (PAR), and total annual precipitation, from

the same time period, to calculate partial correlation coeffi-

cients used to interpret the sensitivity of the biogeochemical

fluxes to climate.

3 Results

3.1 Uncertainty in global PFT fractions

At the global scale, managed and unmanaged grassland

PFTs, which includes croplands and pasture, were most

abundant in terms of percent land area (∼30 %), followed

by tropical (∼15%), boreal (∼12 %), and temperate PFTs

(∼11 %) (Table 8). Classification agreement (Table 8) was

lowest (for globally averaged values) for C4 grasses, espe-

cially for natural C4 grasslands. Tropical raingreen (TrRg)

and tropical evergreen (TrEv) PFT fractional coverage also

had high uncertainty, both in savanna regions, and in the

Amazon and Congo River Basins (acronyms explained in

Table 2). The lowest uncertainty was found for the boreal

needleleaf PFT (BoNe) and natural/managed C3 grasslands.

The spatial uncertainty of PFT agreement was low in the

boreal biome, increasing to some extent in the temperate

biome, and highest in the tropics (Fig. 2). The disagreement

between land-cover datasets was greatest for deciduous PFT

phenology types compared to evergreen PFTs, which was es-

pecially important in the tropics where the GlobCover dataset

categorized the Amazon and Congo River Basins as mixed-

leaf or seasonal forest (in comparison to the “evergreen” phe-

nology type for the other datasets). Managed and natural

C3 grasslands showed high dissimilarity in the mid-western

United States mostly because GlobCover had low fractions

of managed grassland in this region (Fig. 2; MGrassC3 low

abundance between 40–50◦ N). C4 grasslands (both natu-

ral and managed) showed high dissimilarity because of dif-

ferences related to distinguishing natural versus managed

grassland, and because of differences in how the land-cover

datasets treated barren/dry areas. For example, much of
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Fig. 4. Close-up illustration of PFT fractions for (a) GLC2000, (b) GlobCover, (c) Modis C004 and (d) Modis C005 for Eastern Africa

where fine-scale topographic features and their effects on climate zones are apparent.

interior Australia was classified as “open shrublands” by the

IGBP MODIS legend (Fig. 3a; higher abundance of TrEv

and TrRg compared to Fig. 3b). Our reclassification for the

IGBP legend assigned 40 % of this class to woody PFTs,

20 % to grass PFTs and 40 % to barren. In comparison,

the LCCS legend reclassifies part of this region as “sparse

vegetation”, which we reclassified as 40 % grass PFT and

60 % bare, consistent with the supporting documentation for

LCCS (Fig. 3b; lower abundance of TrEv and TrRg). The

IGBP “open shrubland” category also includes tundra and

permafrost biomes (in addition to the warmer arid regions).

Herbaceous cover may be higher in these cooler regions than

in “open shrublands” of warm regions (Fig. 3b; NatGrassC3

replaces by BoNe), which suggests that further refinement

of shrubland categories could improve differences between

land-cover products.

Spatial resolution and the detail of land-cover categories

had important effects in intensively managed landscapes.

For example, in the Southeastern United States, the Glob-

Cover dataset (0.3 km) and LCCS legend (22 classes) bet-

ter distinguished secondary succession vegetation (Fig. 3b;

higher abundance of TeNe) (i.e., pine forests from agricul-

tural abandonment, Christensen and Peet, 1984). Climatic

differences across small gradients were generally detected by

the Köppen-Geiger classification, despite elevation not being

included in the interpolation process. These topographic fea-

tures were apparent in the north-south divide along the island

of Madagascar (Fig. 4a–d; NatGrassC4 versus TrRg), along

the Andes, separating the Amazon rainforests from high-

elevation grasslands, as well as in Ethiopia, where the effects

of the highland rift-valley corresponded to C3 grasslands in

a region mostly surrounded by C4 climate zones (Fig. 4a–d;

NatGrassC3).

GlobCover and GLC2000 detected higher fractions, ∼12–

13 %, of managed grasslands globally. Compared to the

MODIS products, this estimate is slightly less than ∼14 %

for cropland area found in previous studies scaled to FAO

country statistics (Ramankutty and Foley, 1998; Klein Gold-

ewijk et al., 2007). GlobCover also distinguished alpine veg-

etation communities in more detail (compared to GLC2000
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Fig. 5. Latitudinal distributions of mean dissimilarity for the 3 dif-

ferent grouping of PFT traits and for all PFTs (described in Meth-

ods: Measuring PFT agreement).

and MODIS) for the European Alps. C4 abundance was

higher than in Still et al. (2003) who found that globally, C4

vegetation compose ∼15 % of terrestrial vegetation (whereas

the estimates presented here are closer to ∼22 %, Table 8).

The higher estimates for C4 grass abundance are due, in

part, to differences in the IGBP “grasslands” and LCCS

“sparsely vegetated” categories, which corresponded to the

LCCS “sparse vegetation” or “barren” categories (Fig. 3a and

b; see MGrassC4). For IGBP, “grasslands” were reclassified

to 100 % grass cover (Table 6), but for LCCS “sparse vege-

tation,” only 40 % grass cover (Table 5).

The disagreement between PFT trait-groups (see cate-

gories described in Methods: Measuring PFT agreement),

was highest in the tropics (Fig. 5; 20◦ N to 20◦ S) and for

a “hotspot” in the mid-western United States (Fig. 5; 35–

55◦ N) resulting from managed versus natural grassland clas-

sification. Phenology-type disagreement was also high in

the tropics, but in general, structural (physiognomy) observa-

tions appear to have high agreement (Fig. 5). In the northern

temperate zone, grasslands were more consistently classified

as managed, with the exception of mid-western USA, where

GlobCover underestimated cropland fraction compared to

GLC2000 and MODIS (Fig. 2; MGrassC3). Tropical savan-

nas and warm-climate croplands emerged as bands of dis-

agreement, because of differences between the IGBP and

LCCS classification for natural and managed C4 grassland

and shrubland categories. A notable region of high uncer-

tainty was the Karakum desert in Central Asia which was

classified as “barren” or “sparse vegetation” in LCCS and as

“grassland” in IGBP leading to large differences in estimated

PFT fractions (Fig. 6).

3.2 Land cover and the uncertainty of fluxes to climate

In diagnostic mode (with PFT distributions prescribed),

global GPP ranged from 130.9 to 134.9 PgC a−1 (averaged

over 1996–2005) and transpiration ranged from 43 200 to

44 600 H2O km3 a−1. These global values were similar to the

prognostic (dynamic vegetation) simulation, using the Hyde

dataset for managed grasslands (Klein Goldewijk and Batjes,

1997), which produced values of 131.0 PgC a−1 and 39 000

H2O km3 a−1. All estimates are close to previous analyses

of global carbon Beer et al., 2010) and water fluxes (Gerten

et al., 2005). GPP and transpiration sensitivity to climate

followed similar patterns observed in previous studies (Ne-

mani et al., 2003), with temperature important in northern

latitudes, radiation more limiting in the wet tropics, and pre-

cipitation a dominant feature globally (Fig. 8a). As in Beer

et al. 2010), precipitation was the most important global cli-

mate variable controlling GPP (65–70%) and transpiration

(58–63 %). The range of uncertainty was similar for either

GPP or transpiration sensitivity to climate; with agricultural

regions in mid-western USA and Europe, and arid regions

in Australia and S. Africa showing high uncertainty in the

sensitivity of GPP to precipitation (Fig. 8b). In agricultural

regions, the lower fractional coverage of croplands in the

GlobCover product led to higher grassland LAI (because of

no harvesting), causing higher sensitivity (or correlation co-

efficient) to precipitation. In semi-arid regions, the MODIS

products led to higher GPP sensitivity to precipitation (Fig-

ure 8) because of a higher abundance of woody species (with

deeper rooting strategies) unable to compete efficiently for

minimal rainfall with grasses that had shallow rooting strate-

gies.

4 Discussion

4.1 PFT datasets and themes for improvement

PFT datasets must remain consistent with available satel-

lite products used for data assimilation (i.e., LAI, FPAR or

biomass assimilation) and account for recent changes associ-

ated with land-use dynamics. Here, we have evaluated an ap-

proach for establishing a series of PFT datasets for use within

Earth System Models and DGVMs, and explored patterns

of disagreement and their propagated effects to land-surface

process uncertainty. To date, available PFT datasets for ESM

models have been limited to single satellite sensors and partly

outdated land-cover data (i.e., 1992/1993 AVHRR data). The

approach used in this study increases the resources available

for evaluating ensemble uncertainties introduced from land-

surface state variables and we discuss possible opportunities

for refining classification methodologies.
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Fig. 6. TMap of mean fractional dissimilarity (0 is complete agreement and 1 is complete disagreement) considering all PFTs using the

beta-diversity metric (Eq. 1). Representative grid cells shown in Fig. 7 illustrate the main patterns of clustering and spread of the existing

products in comparison to the new PFT products presented here.

Fig. 7. Comparison of the 4 new PFT products to one another and the existing products based on older datasets. The NMDS ordination shows

the degree of differences and clustering of the products (black names) and the major PFT gradients (p < 0.05) that explain the differences in

the gradients (red names). The LPJ product is the PFT composition from a fully dynamic vegetation simulation, described in the Methods.
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Fig. 8. (a) Partial correlation coefficients (PCC) for modeled GPP to radiation, precipitation, and temperature variable for the MODIS C005

PFT product (b) standard deviation of the PCC for all four land-cover simulations.

The main areas of disagreement were found in regions

of intensive land management or in regions where accurate

spectral discrimination between similar land cover, but dif-

ferent land use, caused classification problems (e.g., cropland

and natural grassland). High-disagreement was also found in

warm/cool arid regions where land-cover categories were ei-

ther too broadly defined or because different legend types had

conflicting tree-cover thresholds to define forest vegetation.

Previous studies have also observed that dryland systems,

which include heterogeneous mixtures of grasslands, crop-

lands and savanna shrublands, feature as prominent zones of

disagreement (Giri et al., 2005; Herold et al., 2008; Fritz

and See, 2008). Our results confirm that this disagreement

scales to PFT groupings and contributes a large part of the

land-surface process uncertainty for GPP and transpiration

sensitivity to climate (Fig. 9).

Much of this disagreement results from differences in the

classification for forest land; the LCCS definition for forest is

an area with more than 15 % tree cover, whereas IGBP uses a

60 % tree-cover threshold. Consequently, the MODIS prod-

uct has a much larger fraction of (non-forest) shrubland and

savanna systems, which are categorized as various “open” or

“closed” forest types in GLC2000 and GLOBCOVER, Ta-

bles 4 and 6. Such problems stem from defining forest struc-

ture from forest cover, which may be overcome with new

developments in satellite-based lidar, which can successfully

provide measurements of tree height and vertical structure at

global extents (Lefsky, 2010). Overlap of cool or warm arid-

land categories (i.e., grassland, shrubland, barren), also in-

troduced error in deserts and tundra regions, where broadly

defined categories could be improved by including climate

information. Arid-regions have large global coverage and re-

cent work suggests that these ecosystems have a significant

influence on global biogeochemistry and the climate system

itself via biophysical properties (Rotenberg and Yakir, 2010),

hence a better understanding of their distribution could con-

tribute to reducing uncertainty of global climate processes.

The humid tropics remain an additional challenge for bio-

geochemical modeling, in part, due to a need to better under-

stand basic ecophysiological processes (Baker et al., 2008),

but also because of data collection limitations. Remote sens-

ing data for tropical vegetation must first be processed to re-

move seasonal cloud cover and aerosol contamination (Poul-

ter and Cramer, 2009; Kobayashi and Dye, 2005), and also

account for the rapid pace and complex spatial patterns aris-

ing from deforestation and fire (Morton et al., 2006). In our

study, these measurement problems contributed to land-cover

uncertainty in the classification of natural versus managed

grasslands in southeastern Brazil, and in the classification of

the phenology type for the wet-tropical forests. Quantifying

the degree of seasonal tropical forest phenology is a long-

standing problem and studies disagree at the level to which

these forests shed their leaves during the dry season (Samanta

et al., 2010; Saleska et al., 2007). Despite the disagreement

among tropical PFTs, the uncertainty in GPP and transpira-

tion sensitivity to climate was relatively low (Figs. 8b and

Fig. 9, Tropical America and S. Africa regions). This was

because of similarities in the ecological functioning of the

modeled raingreen and evergreen PFTs in non-water stressed

environments (see Poulter et al., 2009).
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Fig. 9. Cumulative partial correlation between GPP and precipitation using the same approach as described in Beer et al. (2010). Zones

correspond to TRANSCOM 3 biome regions (Gurney et al., 2003), and legend colors red for GLC2000, green for GlobCover, light blue for

Modis v4, and dark blue for Modis v5.

Our analysis suggests that the PFT uncertainties could be

reduced by using land-cover data based on high to moderate-

spatial resolution and a larger number of legend categories

(as in GlobCover). For example, the more detailed LCCS

legend was better able to handle dry-land classifications than

the coarser IGBP legend and GlobCover appears to classify

heterogeneous landscapes well. Future versions of MODIS

land-cover data are expected to include the LCCS legend

(Friedl et al., 2010), which in addition, should further reduce

errors from user-based reclassification necessary for land-

cover product comparisons.

4.2 Application with Earth System Models

Developments in ESM models will likely focus on includ-

ing a higher diversity of PFT and crop functional types and

entirely new approaches that include adaptive, rather than

fixed, traits for PFT parameters (Scheiter and Higgins, 2009).

The number of PFT types is not restricted to those pre-

sented in our study and the next generation of DGVMs, with

higher-functional diversity, will be better prepared to evalu-

ate ecosystem resilience and stability hypotheses related to

global change. However, increasing PFT diversity requires

detecting life history traits (i.e., growth form and disper-

sal rates) not readily observable at global scales or from

space (Ustin and Gamon, 2010). The utility of the PFT
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approach for hypothesis testing and linkage to remote sens-

ing will remain important. Finer resolution categories of

crop types has been shown to be important for global bio-

geochemical cycling (Bondeau et al., 2007) but crop types

or crop cover (or pasture) is not easily distinguished in the

global land-cover datasets, highlighting the importance of

integrated land-cover mapping approaches. Managed grass-

land categories can be subdivided using regional statistics

on crop use, similar to methods described by Ramankutty

et al. (1998), but many earth system models are at the early

stages of incorporating crop functional types.

By forcing LPJmL with diagnostic PFT fractions we were

able to illustrate the utility of ensembles of land-cover ap-

proaches and the application of diagnostic datasets. Interest-

ingly, global estimates of GPP and ET were similar, regard-

less of land cover, confirming studies conducted at continen-

tal scales (Jung et al., 2007). However, we show that there

are large regional differences, 20–30 %, in the sensitivity of

biogeochemical fluxes to climate that are directly linked to

land-cover uncertainty. High-PFT uncertainty did not always

correspond to high biogeochemical cycling uncertainty (e.g.,

wet tropics), illustrating that propagated errors may differ

from the initial condition agreement and that the choice of

evaluation metric is important. These PFT datasets have ap-

plications beyond ESM modeling and can be integrated with

bottom-up studies, include accounting methods for evaluat-

ing carbon stocks (Kindermann et al., 2008), or as base-maps

that can inform biodiversity-patterns related to biogeography

(Loucks et al., 2008).
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J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:

A dynamic global vegetation model for studies of the cou-

pled atmosphere-biosphere system, Glob. Biogeochem. Cy., 19,

GB1015, doi:1010.1029/2003GB002199, 2005.

Lapola, D. M., Oyama, M. D., Nobre, C. A., and Sampaio, G.:

A new world natural vegetation map for global change studies,

Annals of the Brazilian Academy of Science, 80, 397–408, 2008.

Lawrence, P. J. and Chase, T. N.: Representing a MODIS Consis-

tent Land Surface in the Community Land Model (CLM 3.0):

Part 1 Generating MODIS Consistent Land Surface Parameters,

J. Geophys. Res., 112, doi:10.1029/2006JG000168, 2007.

Lefsky, M. A.: A global forest canopy height map from the

Moderate Resolution Imaging Spectroradiometer and the Geo-

science Laser Altimeter System, Geophys. Res. Lett., 37,

doi:10.1029/2010GL043622, 2010.

Legates, D. R. and Wilmott, C. J.: Mean seasonal and spatial vari-

ability in global surface air temperature, Theor. Appl. Climatol.,

41, 11–21, 1990.

Legendre, P., Borcard, D., and Peres-Neto, P. R.: Analyzing beta

diversity: Partitioning the spatial variation of community com-

position data, Ecol. Monogr., 75, 435–450, 2005.

Loucks, C. J., Ricketts, T. H., Naidoo, R., Lamoreux, J. F., and

Hoekstra, J. M.: Explaining the global pattern of protected area

coverage: relative importance of vertebrate biodiversity, human

activities and agricultural suitability, J. Biogeogr., 35, 1337–

1348, 2008.

Matthews, E.: Global vegetation and land use: New high-resolution

data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474–

487, 1983.

Mitchell, C. D. and Jones, P.: An improved method of constructing

a database of monthly climate observations and associated high-

resolution grids, Int. J. Climatol., 25, 693–712, 2005.

Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O.,

Arai, E., del Bon Espirito-Santo, F., Freitas, R., and Morisette, J.

T.: Cropland expansion changes deforestation dynamics in the

southern Brazilian Amazon, P. National Academy of Science,

103, 14637–14641 2006.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper,

S. C., Tucker, C. J., Myneni, R. B., and Running, S.: Climate-

Driven Increases in Global Terrestrial Net Primary Production

from 1982 to 1999, Science, 300, 1560–1563, 2003.

New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution

data set of surface climate over global land areas, Clim. Res., 21,

1-25, 2002.

Oki, T. and Kanae, S.: Global hydrological cycles and world water

resources, Science, 313, 1068–1072, 2006.

Olson, J., Watts, J. A., and Allison, L. J.: Carbon in Live Vegetation

of Major World Ecosystems, ORNL-5862, Oak Ridge National

Laboratory, Oak Ridge, Tennessee, 164 pp., 1983.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated

world map of the Kppen-Geiger climate classification, Hydrol.

www.geosci-model-dev.net/4/993/2011/ Geosci. Model Dev., 4, 993–1010, 2011

http://dx.doi.org/10.1029/2006GB002915
http://dx.doi.org/10.1088/1748-9326/4/1/014007
http://dx.doi.org/10.1029/2006JG000168
http://dx.doi.org/10.1029/2010GL043622


1010 B. Poulter et al.: Plant functional type mapping for earth system models

Earth Syst. Sci., 11, 1633–1644, doi:10.5194/hess-11-1633-

2007, 2007.

Plummer, S.: Perspectives on combining ecological process models

and remotely sensed data, Ecol. Model., 129, 169–186, 2000.

Poulter, B. and Cramer, W.: Satellite remote sensing of tropical

forest canopies and their seasonal dynamics, Int. J. Remote Sens.,

30, 6575–6590, 2009.

Poulter, B., Heyder, U., and Cramer, W.: Modelling the sensitivity

of the seasonal cycle of GPP to dynamic LAI and soil depths in

tropical rainforests, Ecosystems, 12, 517–533, 2009.

Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud,

R. A., and Soloman, A. M.: A global biome model based on

plant physiology and dominance, soil properties and climate, J.

Biogeogr., 19, 117–134, 1992.

Quaife, T., Quegan, S., Disney, M., Lewis, P., Lomas, M. R., and

Woodward, F. I.: Impact of land cover uncertainties on esti-

mates of biospheric carbon fluxes, Glob. Biogeochem.l Cy., 22,

doi:10.1029/2007GB003097, 2008.

Ramankutty, N. and Foley, J. A.: Characterizing patterns of global

land use: An analysis of global croplands data, Glob. Bio-

geochem. Cy., 12, 667–685, 1998.

Rotenberg, E. and Yakir, D.: Contribution of semi-arid forests to

the climate system, Science, 327, 451–454, 2010.

Running, S., Loveland, T. R., Pierce, L. L., Nemani, R. R., and

Hunt, E. R.: A remote sensing based vegetation classification

logic for global land cover analysis, Remote Sens. Environ., 51,

39–48, 1995.

Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R.: Ama-

zon forests green-up during 2005 drought, Science, 318, 612,

2007.

Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E.

F., Knyazikhin, Y., Nemani, R. R., and Myneni, R. B.: Amazon

forests did not green-up during the 2005 drought, Geophys. Res.

Lett., 37, doi:10.1029/2009GL042154 2010.

Scheiter, S. and Higgins, S. I.: Impacts of climate change on the

vegetation of Africa: an adaptive dynamic vegetation modelling

approach, Glob. Change Biol., 15, 2224–2246, 2009.

Schimel, D. S., House, J. I., Hibbard, K., Bousquet, P., Ciais, P.,

Peylin, P., Braswell, B., Apps, M. J., Baker, D., Bondeau, A.,

Canadell, J. G., Churkina, G., Cramer, W., Denning, A. S., Field,

C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton,

R. A., Melillo, J. M., Moore III, B., Murdiyarso, D., Noble, I.

P., S.W., Prentice, I. C., Raupach, M., Rayner, P., Scholes, R.

J., Steffen, W., and Wirth, C.: Recent patterns and mechanisms

of carbon exchange by terrestrial ecosystems, Nature, 414, 169–

172, 2001.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A.,

Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T.,

Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dy-

namics, plant geography and terrestrial carbon cycling in the LPJ

dynamic global vegetation model, Glob. Change Biol., 9, 161–

185, 2003.

Smith, T. M., Shugart, H. H., and Woodward, F. I.: Plant functional

types: their relevance to ecosystem properties and global change,

Cambridge University Press, New York, 369 pp., 1997.

Sterling, S. and Ducharne, A.: Comprehensive data set of global

land cover change for land surface model applications, Glob.

Biogeochem. Cy., 22, doi:10.1029/2007GB002959, 2008.

Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R.: Global

distribution of C3 and C4 vegetation: Carbon cycle implications,

Glob. Biogeochem. Cy., 17, doi:10.1029/2001GB001807, 2003.

Sun, W., Liang, S., Xu, G., Fang, H., and Dickinson, R. E.: Map-

ping plant functional types from MODIS data using multisource

evidential reasoning, Remote Sens. Environ., 112, 1010–1024,

2008.

Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role

of fire disturbance for global vegetation dynamics: coupling fire

into a Dynamic Global Vegetation Model, Global Ecol. Bio-

geogr., 10, 661–677, 2001.

Ustin, S. L. and Gamon, J. A.: Remote sensing of plant functional

types, New Phytologist, 186, 795–816, 2010.

Verant, S., Laval, K., Polcher, J., and De Castro, M.: Sensitivity of

the continental hydrological cycle to the spatial resolution over

the Iberian Peninsula, J. Hydrometeorol., 5, 267–285, 2004.

Wang, A., Price, D. T., and Arora, V. K.: Estimating changes in

global vegetation cover (1850-2100) for use in climate mod-

els, Global Biogeochem. Cy., 20, doi:10.1029/2005GB002514,

2006.

Whittaker, R. H.: Evolution and measurement of species diversity,

Taxon, 21, 213–251, 1972.

Zobler, L.: A world soil file for global climate modeling, NASA

Technical Memorandum, 32 pp., 1986.

Geosci. Model Dev., 4, 993–1010, 2011 www.geosci-model-dev.net/4/993/2011/

http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.1029/2007GB003097
http://dx.doi.org/10.1029/2007GB002959
http://dx.doi.org/10.1029/2001GB001807
http://dx.doi.org/10.1029/2005GB002514

