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Plant functional types and traits as biodiversity
indicators for tropical forests: two biogeographically
separated case studies including birds, mammals
and termites
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Abstract Multi-taxon surveys were conducted in species-rich, lowland palaeotropical

and neotropical forested landscapes in Sumatra, Indonesia and Mato Grosso, Brazil.

Gradient-directed transects (gradsects) were sampled across a range of forested land use

mosaics, using a uniform protocol to simultaneously record vegetation (vascular plant
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species, plant functional types (PFTs) and vegetation structure), vertebrates (birds, mam-

mals) and invertebrates (termites), in addition to measuring site and soil properties,

including carbon stocks. At both sites similar correlations were detected between major

components of structure (mean canopy height, woody basal area and litter depth) and the

diversities of plant species and PFTs. A plant species to PFT ratio [spp.:PFTs] was the best

overall predictor of animal diversity, especially termite species richness in Sumatra. To a

notable extent vegetation structure also correlated with animal diversity. These surrogates

demonstrate generic links between habitat structural elements, carbon stocks and biodi-

versity. They may also offer practical low-cost indicators for rapid assessment in tropical

forest landscapes.

Keywords Biodiversity indicators � Tropical forest � Plant functional types � Habitat

characterization � Rapid biodiversity assessment � Fauna

Introduction

Tropical forests contain much of the world’s terrestrial biodiversity and significant carbon

stocks (Bunker et al. 2005). Particular interest centres on assessing the biodiversity value

of modified and disturbed forest ecosystems and the ability of such systems to buffer

biodiversity losses expected with the degradation or conversion of more pristine habitats

(Wright and Muller-Landau 2006; Chazdon et al. 2009). A complete inventory of
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organisms is not feasible (Lawton et al. 1998), but conservation management can benefit

from the identification of any surrogate that broadly predicts overall biodiversity by

reflecting the major determinants of taxonomic variety and species richness (Meijaard and

Sheil 2012). One approach is to find and use easily assessed indicators (partial measures or

estimator surrogates, sensu Sarkar and Margules 2002). However, selection of such indi-

cators remains predominantly intuitive rather than evidence-based (Howard et al. 1997;

Lawton et al. 1998; Watt 1998; Noss 1999; Dudley et al. 2005; Kessler et al. 2011; Le et al.

2012) and there remains the challenge of distinguishing change that can be attributed to

external anthropogenic factors from underlying natural processes (Magurran et al. 2010).

Candidate indicators such as landscape metrics, remotely-sensed variables, multi-species

indices and formulated measures of ecosystem complexity or genetic diversity have found

wide application but are of limited practicality in forests (UNEP-CBD 1996; Kapos et al.

2001; Delbaere 2002; European Academies’ Science Advisory Council (ESAC) 2004;

Gregory et al. 2005; Duraiappah and Naeem 2005). Thus forest biodiversity surveys still

maintain a taxonomic focus even though the costs of obtaining sufficient sampling can be

high and the utility of any one species, or another single taxon, as a predictor of others

remains uncertain (Lawton et al. 1998; Watt et al. 1998; Dufrêne and Legendre 1997;

UNEP/CBD 2003; Gregory et al. 2005, but see also Schulze et al. 2004). Further, at large

spatial scales where within-region diversity is large, higher level taxa (up to family level)

must often be used (Villaseñor et al. 2005), but even this is only justifiable where extensive

species data are already available (Sarkar et al. 2005). Such difficulties in forests contrast

with intensively sampled, relatively species-poor, temperate agricultural lands where
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single surrogate species may be indentified (e.g. MacNally and Fleishman 2004; Sauberer

et al. 2004) or where easily determined land use parameters such as the extent of adjacent

semi-natural habitats, or the incidence of fertilizer use, predict broad species richness

(Billeter et al. 2008).

While simple, cost-effective indicators are required (UNEP-CBD 1996; Duraiappah and

Naeem 2005), an evidence-based procedure for their evaluation remains elusive. To address

this problem, and mindful that validation requires reference baselines based on comprehensive

species inventories (Delbaere 2002; UNEP/CBD 2003), we hypothesize that the best indicators

for forest or forest-derived ecosystems will be those fundamental characteristics of the plant

community that are clearly linked to ecosystem performance. For this reason, both taxonomic

and adaptive (functional) plant characteristics were used to sample gradient-based forested

landscape mosaics in well-characterized sites in Sumatra, Indonesia and Mato Grosso, Brazil.

This approach treats taxonomic and functional characteristics as complementary elements of

biodiversity (Folke et al. 1996; Duckworth et al. 2000; Loreau et al.2001; Kleyer 2002; Gillison

2000, 2006), and proposes that such a typology may be better suited than taxa alone for

ecological comparison (Folke et al. 1996; Gillison 2013). The work described in the present

paper examines pristine and modified forest systems, testing the hypothesis that vegetation

structure and traits are predictive of plant and animal species diversity and abundance, and

demonstrates that plant functional type (PFT) diversity, mean canopy height, woody basal area

and litter depth have potential as indicators of biological diversity. We also show that the ratio

spp.:PFTs might predict animal species richness. A preliminary study of plant functional traits

and termite occurrence in Sumatra sites (only) was published by Gillison et al. (2003). It is

argued that forest biodiversity is best addressed within the context of landscape dynamics where

ecosystem performance is driven by the interconnectivity of biota across forest and non-forest

components of landscape mosaics, i.e. given that the future of much tropical forest is to become

multiple land use sites in which some pristine stands remain as reservoirs, the design of the

mosaic and the choice of the land uses will determine the extent to which the whole landscape

can retain its biota. The present study shows that the indicators we have detected at local

regional scale also apply across widely separated biogeographic zones.

Methods

Study areas

The Sumatran study area of 3,095 km2 was located in Jambi Province, Central Sumatra

(102�000–102�220E, 1�000–1�400S; 30–240 m elevation; 23–33 �C mean annual air tempera-

ture, 55–94 % RH, mean annual precipitation 2,000–3,000 mm, Köppen Af). The Brazilian

study included the Cotriguaçu, Juruena and Castanheira municipalities in the northwest Mato

Grosso covering 11,350 km2 (9�4401800–10�5704500S, 58�1002800–10�5700100W; 80–300 m

elevation; 17–34.5 �C mean annual air temperature; 25.4–97.5 % RH, mean annual precipi-

tation 2,000–2,200 mm, Köppen Aw), with a more pronounced dry season than Jambi (Fig. S1

and Tables S2 and S3, Online Resources). The seasonal, continental climate and geomor-

phology of Mato Grosso, with lowland and upland landforms and widespread cattle grazing,
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differ from the less seasonal and more homogeneous, lowland terrain of island Sumatra with its

more intensive land use and higher human population density.

Sources of background information

The work described arises from two large scale projects supported by (amongst others) The

World Bank, UNDP, UNEP and the Global Environmental Facility (GEF).The Sumatran

study was conducted as part of the Forest Ecosystem Management research program at the

Center for International Forestry Research (CIFOR, www.cifor.org), Bogor, Indonesia in

collaboration the Alternatives to Slash and Burn program (ASB), implemented by the

World Agroforestry Centre (www.worldagroforestry.org). ASB was established in 1992 to

halt destructive forms of shifting cultivation and promote sustainable land management at

tropical forest margins (Palm et al. 2005; Sanchez et al. 2005). In Brazil, Promoting

Biodiversity Conservation and Sustainable Use in the Frontier Forest of Northwestern

Mato Grosso was established in 2000 to reconcile socioeconomic development with bio-

diversity conservation in an integrated landscape containing intact primary forest, corridors

of secondary regrowth, forest plantations and intensive agrisilvipasture (Global Environ-

mental Facility 2000). The Mato Grosso sites are included in the project benchmarks,

where work is supported by Mato Grosso State Foundation for the Environment, Mato

Grosso State Corporation for Rural Technical Assistance and Extension (www.

empaer.mt.gov.br), Brazilian Corporation for Agricultural and Livestock Research

(www.embrapa.br/english), and World Agroforestry Centre. Brazilian sites are listed by

PN number (Pró-Natura, www.pronatura.org).

Gradsects

Both regions were sampled using gradient-directed transects (‘‘gradsects’’, sensu Gillison

and Brewer 1985). In this approach, sampling locations (sites for 40 9 5 m and other

transects) are identified within a gradient which represents the sequence of natural and

human-modified environments, stratified at nested scales from landscape to plot level

(Gillison and Brewer 1985; Wessels et al. 1998; Knollová et al. 2005; Parker et al. 2011).

While gradsects approximate ‘‘disturbance gradients’’ in previous usage (e.g. Eggleton

et al. 1995; Lawton et al. 1998), in the present study they also opportunistically comprise a

series of sites defined variously and hierarchically by climate, land cover, drainage, esti-

mated land use intensity and geological and soil substrata (see Appendix S1, Online

Resources). To identify a suitable set of sampling locations, we used aerial and ground

traverses, supplemented by satellite imagery, aerial photographs and topographical, veg-

etational, geological and soil maps. Efforts were made to cover the full range and com-

binations of all the major environmental, management and historical factors.

In Sumatra, perceived land use intensity gradients ranged from relatively intact humid

lowland forest, unlogged as well as logged, through other wooded sites such as softwood

and rubber plantations to secondary growth ‘Belukar’, domestic food gardens and degraded

grassland (Gillison 2000). In Mato Grosso, gradients encompassed relatively intact and

logged humid lowland forest on deep soil and upland primary forest on exposed granites,

savanna-like woodland on seasonally flooded sandstone pavement, dense ‘Campinarana’

secondary vegetation on forest margins, teak plantations, ‘Capoéira’ secondary forest and

degraded cattle pastures (Gillison 2005; Tables S2, S3, Online Resources). At each sam-

pling site in both regions a 40 9 5 m (200 m2) transect (the base transect) served as a focal

point for intensive sampling of soils, vegetation and fauna (Anderson and Ingram 1993;
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Swift and Bignell 2001). Transects were located away from habitat boundaries to minimize

edge effects. In Mato Grosso 32 transects were documented for vegetation and soils with

representative transect subsets sampled for fauna (16 for mammals, birds and reptiles; 11

for termites). In Sumatra 16 transects were documented for vegetation, with representative

transect subsets for fauna (15 for birds and mammals, seven for termites). To reduce

problems associated with site disturbance by observers, survey work was undertaken in the

order vegetation, birds, mammals, carbon stocks, soil (for analysis), termites (from soil and

litter). Soils and vegetation were sampled within the base transect; birds, mammals and

termites (Sumatra study) adjacent to this transect within the same land use (see below, and

Swift and Bignell 2001). Individual plots were selected jointly by vegetation and fauna

teams following an initial reconnaissance and site selection for vegetation survey. In each

region, search effort and timing were consistent at all transects.

Vegetation

In each base transect we recorded all vascular plant species, including epiphytes where possible.

Voucher collections for each species were subsequently identified by botanical staff at the

Herbarium Bogoriense in Indonesia and in Brazil at the Botany Department, Instituto de

Biociências, Universidade Federal de Mato Grosso, Cuiabá. Unidentified species were allo-

cated unique morpho-species names. Plant functional types (PFTs) and vegetation structure

were assessed using a standardized protocol and a generic set of 36 readily observable plant

functional elements (PFEs) (Gillison 2002, Table S1, Online Resources). Each unique com-

bination of PFEs defines a specific PFT that can be expressed using a formal grammar: thus a

plant with the PFEs mesophyll leaf size class, lateral leaf inclination, dorsiventral photosyn-

thetic surface connected to a phanerophytic life form would constitute the PFT me-la-do-ph. A

multivariate distance measure (a self-standardizing Gower metric) is used to quantify diver-

gence amongst PFTs and also amongst PFT assemblages (Gillison and Carpenter 1997; Gillison

2002). For each sample, PFT richness can be expressed either as the number of species recorded

per PFT (species weighted) or as the total number of PFTs recorded independently of species

(unique). Similarly, PFEs can be measured summatively either by unique PFTs (PFT–weighted

PFEs), or species for each sample plot. We used public domain VegClass� software (Gillison

2002) to compile and tabulate data. In the field each 40 9 5 m transect comprised eight

contiguous, 5 9 5 m quadrats from which the data were analysed, again using VegClass�, to

construct species:area and PFT:area curves as a measure of local sampling efficiency (Gillison

2006; Tables S4, S5, S20, Online Resources). Vegetation structure comprised mean canopy

height and projective cover, percent basal area for all woody plants using a Bitterlich method,

Domin scale cover for woody plants and bryophytes, and mean furcation index (Gillison 2002,

2006). In addition, VegClass� was used to generate a plant functional complexity (PFC) index

(Appendix S1, Online Resources). The PFC value is estimated as the total length of a minimum

spanning tree distance passing through all PFT combinations (Gillison and Carpenter 1997;

Gillison 2000). The PFC index provides a comparative measure of PFT variability, for example

where two or more plots have the same PFT richness but differ in composition.

Vertebrate fauna

Ornithologists (two persons per site visit) identified birds by calls, referenced to standard

audio discs, during 90 min observations at dawn and dusk. Capture by mist netting was also

undertaken during daylight hours. Small mammals were sampled in baited traps, larger

mammals by direct observations (similar to those for birds) and from fresh droppings.

1914 Biodivers Conserv (2013) 22:1909–1930

123



Observations were made within an approximate 200 m radius of each base transect (Tables

S8–S10, Online Resources). Full details of methods and critiques are given in Gillison (2000).

Invertebrate fauna (termites)

Methods used to assess termites differed somewhat between the two regions, although the

area sampled (200 m2) was the same in both cases. In Sumatra, termites were extracted

from mounds, plant litter and soil along a 100 m line transect of 2 m width adjacent to the

vegetation transect, with one person-hour of sampling effort for each 5 m of the transect

(Swift and Bignell 2001; Jones et al. 2003). In Mato Grosso, termites were sampled

intensively mainly aboveground by two people for 2 h inside the vegetation transects (base

transects). Termite diversity was recorded as counts of species per transect and termite

abundance as the number of encounters with all species per transect, including repeat

encounters within a species (Appendix S1, Tables S11, S12, Online Resources). Full

details are given in Jones et al. (2003) and Gillison et al. (2003).

Soil

Soil and vegetation samples were co-located for all sites in each region. Soils were sampled

within the base transect and subjected to routine laboratory analyses for a standard suite of

parameters including texture, bulk density, pH, conductivity, C, N, P, S, exchangeable

cations (Na, K, Ca, Mg), other mineral elements (Al, Mn, B, Zn, Cu, Fe) (Appendix S1,

Tables S15–S18, Online Resources; see also Gillison 2000). Because most important soil

information associated with plant and animal distribution is contained in the surface hori-

zons, we report correlative analyses between soil data from 0 to 10 cm depth, and biota.

Data analysis

We examined whether simple measures of vegetation structure, and structural and func-

tional trait diversity were meaningfully correlated with plant and animal species richness.

The purpose was to identify straightforward and promising relationships that apply to

diverse tropical communities, rather than single examples where one biological feature

predicts another. PFT data were analysed in two forms: PFT counts per transect weighted by

the number of species occurring in each PFT, and PFT counts recorded without reference to

species (unique PFTs). In addition to whole PFTs, we disaggregated both PFT forms into

their component elements (PFEs) to permit correlation of individual functional traits with

individual species, species diversity and soil properties including carbon. Plants, birds,

mammals and termites were assessed at individual species level and as assemblages. To find

easily applicable indicators we focused on univariate linear relationships, as non-linear and

multivariate relationships are more difficult to calibrate and apply, although we do not

exclude the possibility that they occur (see Appendix S3, Online Resources). In a few cases

we have reported quadratic univariate relationships that appear striking. Pearson product-

moment analysis was used to generate a linear correlation matrix for all recorded variables

for both regions separately and combined. Correlation was tabulated as the coefficient r and

tested for significance via the Fisher-z transformation using Minitab 14.2 (Gillison 2005).

Linear regression between pairs of variables was also carried out by the ordinary least

squares method (1,307 regressions). In a few selected cases these are illustrated (Figs. 1,

2), with the equation of the fitted line and the adjusted coefficient of determination, RSq. In

Biodivers Conserv (2013) 22:1909–1930 1915

123



160 cases of significant and 14 close-to-significant regression slopes, pairs of variables are

tabulated with the t statistic (i.e. the slope of the line divided by its standard error) and its

associated significance (Tables S21, S22, Online Resources).

Empirical false discovery rates (Soriç 1989) were estimated for the entire set of reported

regressions by the method of Brewer and Hayes (2011) and are summarized in Table S23

(and see Appendix S3, both in Online Resources). Multiple regressions were not under-

taken, as for practical purposes the aim was to test for single indicators. Because the study

is exploratory in nature but also focuses on finding relationships that hold in both (Asian)

Palaeotropical and Neotropical landscapes, the specific probability values associated with

each statistical relationship being characterized are given—this reduces the need for

additional assumptions and allows the results to be transparent and available for future

meta-analyses (see Stewart-Oaten 1995 for a more detailed justification of such approa-

ches). Significant correlations are those with a probability value of 0.0025 or less, rather

than of 0.05, so as to reflect the false discovery rate associated with these sequential tests.

The theory leading to this adjustment is fully set out by Brewer and Hayes (2011) and

discussed in the context of our analyses in Appendix S3 and the footnotes to Tables S21

and S22, all in Online Resources. However, some correlations resulting in

0.05 [ P [ 0.0025 are nevertheless reported and discussed. To reduce confusion in these

cases, where appropriate a note added in parenthesis restates the statistical inference. The

possibility of unimodal responses was examined by visual scan, but not otherwise tested.

Results

Biodiversity summary

In 32 transects in Mato Grosso 542 plant species (1,241 records) and 369 unique (869

species-weighted) PFTs were recorded. In 16 representative subsets of these transects we

documented 73 species of vertebrate fauna (17 mammals, 56 birds) and 64 termite species

in 11 transect subsets. In Sumatra 16 transects yielded 562 plant species (980 records) and

216 unique (459 species-weighted) PFTs, together with 194 species of vertebrate fauna (31

mammals, 163 birds) in 15 representative transect subsets and 53 termite species in seven

representative transect subsets (Tables S4–S12, Online Resources).

Predictors

Plant species richness (number of species in a transect) was best predicted by unique PFT

richness, then vegetation structure, cover-abundance of bryophytes, mean canopy height

and woody basal area (Table 1). In both regions local plant species richness was also

Fig. 1 Variations in correlative responses between animal taxonomic richness and plant-based indicators
illustrated by birds and termites. The differences reflect regional ecosystem characteristics. In Brazil
a savanna-like sites are low in litter but rich in specialist plants that support bird life. In Sumatra b low litter
accumulation is associated with species-poor, highly modified land-use types such as degraded Imperata
grassland, Cassava (Manihot) food gardens and rubber plantations. The termite response to litter depth c,
d is linear in the relatively homogeneous lowland plains of Sumatra and curvilinear in the more
environmentally heterogeneous Mato Grosso. A similar response by termites to the plant spp.:PFTs ratio e,
f also indicates a common trend in termite diversity response to vegetation disturbance. PFT plant functional
type. Sumatran results adapted from Gillison (2000)

c
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Fig. 1 continued
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correlated with 16 unique PFT-weighted PFEs (Table 2). Of these, 8 were strong

(P \ 0.0001) and consistent between the two regions and seven close to significant

(P \ 0.015) though with some variation between Brazil and Sumatra. Some features of

vegetation structure, including PFT and plant species diversity, the ratio of plant species

diversity to PFT diversity (spp.:PFTs), plant litter depth, mean canopy height, woody basal

area, canopy cover, percentage of woody plants and cover-abundance of bryophytes also

predicted animal species richness, though somewhat less strongly, with the exception of

woody basal area in Sumatra, which was strongly correlated with termite species richness

(P = 0.001). Termite abundance (i.e. encounters per transect) was linked with litter depth

in both regions (P & 0.016, though interpreted as not significant following correction for

false discovery rates) but less strongly with plant species diversity (P & 0.042). Fig-

ure 1a–d illustrates differing regional trend lines for bird species richness against litter

depth (a, b) and termite species richness, also against litter depth (c, d). Divergent

responses between plant litter depth and bird and termite species diversities, respectively,

may reflect regional differences in habitat structure, vegetation type and biogeography. The

Sumatran sites that are modified agroforests or plantations have no natural savanna or

parkland nearby, and hence probably a reduced pool of organisms from which to occupy

new niches created in the process. In Brazil, increased species turnover would be expected

at forest margins (and hence high b-diversity over the gradsect as a whole). Many unique

PFT-weighted PFEs were significantly correlated with faunal diversity, but species-

weighted PFEs were more efficient predictors overall (Table 2; Fig. 1e, f, main text;

Tables S13, S14, Online Resources).

Combining Brazilian and Sumatran data increased the number of significant generic

predictors and the statistical significance of correlations between plant-based variables and

species diversity in faunal groups (Tables 3, 4). Correlations of richness between faunal

groups also improved substantially when Brazilian and Sumatran data were combined: bird

and mammal species diversity (r = 0.676, P = 0.0001, highly significant), mammal and

termite species diversity (r = 0.550, P & 0.027, though not significant following cor-

rection for false discovery rates) and mammal species diversity and termite abundance

(r = 0.710, P & 0.002, significant) [data not tabulated].

Plant species diversity was closely correlated with PFE diversity (Table 3). Although

more than one species can occur within a single PFT and vice versa, species richness and

PFT richness usually tend to be highly correlated. That their statistical relationship can and

does vary with environment is indicated by a significant difference in regression slopes

between the two regions (Fig. 2). Variation in within-sample diversity along land use

intensity gradients therefore appears to be distinct between Brazil and Sumatra (see

Appendix S3, Online Resources).

Replicable patterns

Regionally distinguishable relationships were found between some soil textural properties

and biota (Tables S15, S16; Online Resources). Mato Grosso soil properties were weakly

correlated with plant and animal species diversities whereas Sumatran soil properties were

strongly correlated with plant species diversity and mammals, and to a lesser degree birds

and termites (Tables S17, S18, Online Resources). However, no single soil variable was

significantly correlated with fauna in either region, and only one (Al saturation) with

plants. In contrast, plant adaptive features represented by PFEs (functional traits) exhibited

significant and consistent cross-regional responses to soil properties and in both regions
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Fig. 2 The relationship between vascular plant species richness and plant functional type (PFT) diversity in
Brazilian and Sumatran sites. Significant differences in the patterns of scatter for Sumatra (triangles) and
Brazil (circles) reflect regional coefficients in species to PFT ratios along land use intensity gradients. While
the original ordinary least squares regressions are presented here for illustrative purposes, for comparative
analysis the regressions are required to pass through the origin. The Satterthwaite approximation (see
Appendix S3, Online Resources) was used to test for a significant difference between the two resulting
regression slopes. Assuming extreme heteroskedasticity, the significance level was P \ 0.01. A more
conservative heteroskedastic model, also passing through the origin, would have resulted in a higher level of
statistical significance. PFT plant functional type. Adapted from Gillison (2013)

Table 1 Correlative values (Pearson product-moment correlation) between taxonomic target groups and
candidate plant-based indicators (vegetation structure) common to both Brazil and Sumatra, showing sep-
arate regional data

Target group Indicator Brazil Sumatra

r P r P

Plant species Unique PFT diversity 0.956 0.0001 0.900 0.0001

Bryophytes 0.642 0.0001 0.716 0.002

Woody plants \2 m tall 0.688 0.0001 0.614 0.011

Mean canopy height 0.558 0.001 0.894 0.0001

Basal area all woody plants 0.499 0.004 0.925 0.0001

Litter depth 0.359 0.043 0.674 0.004

Bird species Litter depth -0.695 0.003 0.619 0.032

Mammal species Basal area of woody plants 0.613 0.012 0.617 0.014

Mean canopy height 0.597 0.015 0.615 0.015

Termite species Litter depth 0.710 0.014 0.847 0.016

Basal area all woody plants 0.614 0.045 0.955 0.001

Termite abundance Litter depth 0.769 0.016 0.907 0.005

Plant species diversity 0.620 0.042 0.847 0.016

Excluding PFEs (see Table 2). Sample sizes are, respectively, the number of sites sampled for each target
group, listed in ‘‘Methods’’ section

PFT plant functional type; PFE plant functional element
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species-weighted PFEs were correlated with pH, CEC, H, K, P and texture (% sand, silt,

clay). PFEs which were components of unique PFTs exhibited highly significant correla-

tions with soil bulk density, and % sand, silt, clay, as well as CEC and organic carbon (e.g.

Table S19, Online Resources).

Biodiversity indicators and carbon sequestration

For logistical reasons carbon estimates were recorded only for the Sumatran baseline

where both total and aboveground carbon correlated strongly with vegetation structure,

Table 2 Correlative values (Pearson product-moment correlation) between taxonomic target groups and
candidate plant functional element (PFE) traits common to both Brazil and Sumatra, showing separate
regional data

Target group Indicator Brazil Sumatra

r P r P

Plant species Dorsiventral ls. (do)b 0.958 0.0001 0.900 0.0001

Mesophyll (me)b 0.818 0.0001 0.837 0.0001

Phanerophyte (ph)b 0.816 0.0001 0.954 0.0001

Lateral incl. ls.(la)b 0.789 0.0001 0.921 0.0001

Platyphyll (pl)b 0.721 0.0001 0.840 0.0001

Green p/s stem (ct)b 0.687 0.0001 0.908 0.0001

Composite incl. ls. (co)b 0.507 0.003 0.838 0.0001

Succulent (su)b 0.488 0.005 0.826 0.0001

Rosulate ls.(ro)b 0.463 0.008 0.833 0.0001

Lianoid life form (li)b 0.822 0.0001 0.744 0.001

Graminoid (pv)b 0.578 0.001 0.734 0.001

Notophyll (no)b 0.815 0.0001 0.712 0.002

Epiphyte (ep)b 0.465 0.007 0.707 0.002

Adventitious roots (ad)b 0.722 0.0001 0.593 0.015

Microphyll (mi)b 0.399 0.024 0.503 0.047

Hemicryptophyte (hc)b 0.668 0.0001 0.500 0.048

Mammal species Succulent leaves (su)a 0.491 0.053 0.784 0.001

Filicoid leaves (fi)a 0.625 0.010 0.569 0.027

Filicoid leaves (fi)b 0.621 0.010 0.564 0.029

Lateral incl. leaves (la)b 0.517 0.040 0.898 0.0001

Adventitious roots (ad)b 0.616 0.011 0.537 0.039

Termite species Lateral incl. leaves (la)a 0.669 0.024 0.838 0.019

Termite abundance Lateral incl. leaves (la)a 0.721 0.012 0.839 0.018

Lateral incl. leaves (la)b 0.606 0.048 0.763 0.046

Dorsiventral leaves (do)a 0.623 0.040 0.839 0.018

Mesophyll size leaves (me)a 0.735 0.010 0.765 0.045

Sample sizes are, respectively, the number of sites sampled for each target group (see ‘‘Methods’’ section)
a Species-weighted PFTs
b Unique PFT-weighted
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plant species and PFT diversity and the spp.:PFTs ratio (Table S19, Online Resources). A

significant statistical relationship between plant species composition and either total or

aboveground carbon was not detected. However, a borderline correlation between PFC and

aboveground carbon (r = 0.603, P & 0.013) and total carbon (r = 0.640, P & 0.008)

suggests logging and forest conversion affect PFTs and carbon stocks in parallel, but

differentially, as carbon stocks are dominated by the largest trees. Termite species diversity

and abundance were linked with aboveground carbon (termite diversity r = 0.890,

P & 0.007; termite abundance r = 0.898, P & 0.006) and total carbon (diversity

r = 0.789, P & 0.035; abundance r = 0.802, P & 0.030).

Discussion

The results provide evidence that the use of readily observable plant functional mor-

phologies and vegetation structure is a practical basis for comparative ecological studies of

complex terrestrial environments, both within and between regions. The different strengths

of relationships may reflect both complex multi-causality and differences in effective

sampling effort relative to inherent variability of the parameters assessed.

The gradsect approach proved to be efficient in sampling major axes of environmental

variability. Many biodiversity surveys either employ unstructured sampling or else ran-

domized or purely systematic (usually grid-based) approaches. While these may satisfy

statistical sampling theory, they are inefficient and costly to apply in complex habitats, or

depending on the size of the window employed are inconsistent with the spatial scale and

patch dimensions of tropical landscapes (Huising et al. 2008). Where the aim is to detect

maximum diversity or richness among species and functional groups, habitat variation is

more efficiently sampled through gradient-based, non-random approaches, for which

theory and practice are now well established (Gillison and Brewer 1985; Wessels et al.

1998; Jones and Eggleton 2000; Gillison 2002; Knollová et al. 2005; Parker et al. 2011).

The areas sampled in our study, both in Sumatra and Brazil included definitive areas of

several hectares of intermediate disturbance, notably ‘Jungle Rubber’ in Sumatra, and

‘Capoeira’ in Brazil. The questions that arise are whether increases in alpha diversity in

these cases should be consistent with the intermediate disturbance hypothesis, and whether

the relatively small samples represented by a 40 9 5 m transect would be able to disen-

tangle plant structural traits representative of forest community types from those occurring

in their gap succession. The sampling approach using 40 9 5 m transects showed high

peaks of alpha diversity consistent with that hypothesis and with other studies in Indo-

Malesia using the same methodology to address ridge lines, soil catenary sequences,

riparian strips and forest margins (Gillison and Liswanti 2004; Gillison et al. 2004). This

level of detection is frequently beyond the capacity of sampling strategies employing larger

plot sizes (e.g. 50 9 10 m and above). The relatively small plot size (40 9 5 m) facilitates

intensive recording of taxa and functional types and at the same time is logistically suited

to additional sampling along environmental gradients and to reduction in observer fatigue.

Gillison (2013) has shown the plant functional approach (VegClass system) used here is

highly sensitive not only to disturbance and modification but also to variation within

‘primary’ forest due to soil nutrient status (cf. Condit et al. 2013). The extent to which

faunal groups might respond to such variations within the baseline transect is unknown,

though given the relationship between vascular plants and faunal groups detected in the

gradsects, some effects due to host plant specificity (for instance on herbivorous insects)

might be expected. However, the present study focuses on modified forest landscapes
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where biota are responding to multiple changes along disturbance gradients and differing

patterns of modification (forest and non-forest). The study was not intended to examine

how location and scale related influences—for example proximity to primary forests, size

of habitat, and landscape connectivity—might be detected and understood.

Human-induced habitat modification has a major impact on biodiversity in both study

areas (Sumatra and Mato Grosso). Although the literature is rich in methods for assessing

disturbance and related land use intensity (Watt et al. 1998), unambiguous, quantitative

units remain elusive (Jackson et al. 2012). The present study showed that subjectively

determined land use intensity and disturbance gradients correspond closely with changes

in plant species and PFT diversities. Pristine lowland forests supported more PFTs but

also more plant species per PFT than secondary or more heavily disrupted forests, thus

indicating higher levels of niche complementarity at the scale of our sample-units. As

more ecological niches become available for different PFTs with increasing disturbance

(here indicated mainly by changes in vegetation structure and aboveground carbon), this

Table 3 Correlative values (Pearson product-moment correlation) between taxonomic target groups and
candidate plant-based indicators (vegetation structure) common to both Brazil and Sumatra, showing
combined data

Target group Indicator Brazil ? Sumatra

R P

Plant species Unique PFT diversity 0.829 0.0001

PFC 0.703 0.0001

Basal area all woody plants 0.565 0.0001

Mean canopy height 0.558 0.0001

Woody plants \2 m tall cov/abd 0.533 0.0001

Bryophyte cover/abundance 0.509 0.0001

Litter depth (cm) 0.455 0.001

Bird species Spp.:PFTs 0.682 0.0001

Plant species 0.565 0.002

Mammal species Plant species 0.681 0.0001

Spp.:PFTs 0.598 0.0001

Basal area of woody plants 0.479 0.006

Mean canopy height 0.475 0.007

Unique PFT diversity 0.470 0.008

Termite species Spp.:PFTs 0.847 0.0001

Plant species 0.785 0.0001

Litter depth 0.669 0.002

Furcation index woody plants -0.551 0.018

Basal area all woody plants 0.541 0.021

Unique PFT diversity 0.519 0.027

Termite abundance Spp.:PFTs 0.922 0.0001

Plant species 0.791 0.0001

Total fauna species Spp.:PFTs 0.816 0.0001

Plant species 0.727 0.002

Excluding PFEs (see Table 4). Sample sizes are, respectively, the sum of sites sampled for each target group
(see ‘‘Methods’’ section and Table 1A)
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Table 4 Correlative values (Pearson product-moment correlation) between taxonomic target groups and
candidate unique PFT-weighted PFE indicators common to both Brazil and Sumatra, showing combined
data

Target group Indicator Brazil ? Sumatra

r P

Plant species Phanerophyte (ph) 0.885 0.0001

Dorsiventral (do) 0.833 0.0001

Lateral incl. (la) 0.804 0.0001

Mesophyll (me) 0.784 0.0001

Notophyll (no) 0.751 0.0001

Photosynthetic stem (ct) 0.719 0.0001

Rosulate (ro) 0.716 0.0001

Lianoid (li) 0.709 0.0001

Succulent (su) 0.634 0.0001

Adventitious (ad) 0.588 0.0001

Graminoid (pv) 0.571 0.0001

Hemicryptophyte (hc) 0.555 0.0001

Filicoid (fi) 0.536 0.0001

Platyphyll (pl) 0.475 0.001

Epiphytic (ep) 0.458 0.001

Composite incl. (co) 0.441 0.002

Microphyll (mi) 0.425 0.003

Macrophyll (ma) 0.291 0.045

Bird species Rosulate (ro) 0.480 0.010

Chamaephyte (ch) -0.475 0.011

Phanerophyte (ph) 0.414 0.029

Lateral incl (la) 0.378 0.047

Mammal species Lateral incl. (la) 0.707 0.0001

Phanerophyte (ph) 0.599 0.0001

Filicoid (fi) 0.591 0.0001

Succulent (su) 0.589 0.0001

Notophyll (no) 0.575 0.001

Mesophyll (me) 0.537 0.002

Hemicryptophyte (hc) 0.524 0.002

Dorsiventral (do) 0.471 0.008

Adventitious 0.458 0.010

Rosulate (ro) 0.457 0.010

Lianoid (li) 0.438 0.014

Graminoid (pv) 0.433 0.015

Epiphytic (ep) 0.430 0.016

Pendulous incl. (pe) -0.375 0.038

Termite species Phanerophyte (ph) 0.739 0.001

Lateral incl. (la) 0.632 0.005

Mesophyll (me) 0.594 0.009

Notophyll (no) 0.593 0.009
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ratio decreases until in freshly opened agricultural land or in extreme (e.g. degraded)

conditions, the ratio approaches unity (Gillison 2002). In the present study, when

regional data were combined, the spp.:PFTs ratio became the strongest overall predictor

of faunal species diversity thus suggesting a generally consistent response to disturbance

across all biota, though with some exceptions at intermediate disturbance levels (cf. Watt

et al. 1998; Sheil and Burslem 2003), for example termite diversity in Brazil. Habitat

disturbance (measured here as loss of phytomass—see Appendices S1 and S2, Online

Resources) corresponded closely with decreasing spp.:PFTs ratio, supporting the use of

the latter as an effective indicator of biodiversity where disturbance is a major driver of

ecosystem performance.

Combining regional data resulted in an almost two-fold increase in the overall number

of significant or near-significant generic indicators and a three-fold increase in numbers of

indicators significant at the P B 0.0001 level, supporting the conclusion that such indi-

cators may be applied with relative confidence in similar lowland tropical forested regions

and with minimum effort. Unlike the traits used in our study, logistically demanding

measurements of many functional traits, e.g. leaf mass per area, seed mass and seed output

(Westoby et al. 2002; Cornelissen et al. 2003; Wright et al. 2004) are impractical for rapid

survey in complex tropical forests. The results also suggest that readily-observable traits

common to all terrestrial vegetation allow comparison where environments may be similar

but where species differ (Gillison and Carpenter 1997). Further, it is shown that the

construction of PFTs from PFEs facilitates complementary assessment of diversity in both

species and functional types. Where limited sampling restricts statistical analyses, these

may be improved by disaggregating PFTs into their generic PFE components. In our

studies (Tables 2, 4) PFEs provided a supplementary subset of statistically significant

biodiversity surrogates across a wide range of land cover types and spatial scales. Along

Table 4 continued

Target group Indicator Brazil ? Sumatra

r P

Leptophyll (le) -0.583 0.011

Dorsiventral (do) 0.527 0.025

Rosulate (ro) 0.525 0.025

Lianoid (li) 0.494 0.037

Termite abundance Phanerophyte (ph) 0.692 0.001

Mesophyll (me) 0.597 0.009

Notophyll (no) 0.552 0.018

Lateral incl. (la) 0.477 0.045

All fauna speciesa Phanerophyte (ph) 0.646 0.009

Mesophyll (me) 0.604 0.017

Lateral incl. (la) 0.565 0.028

Filicoid (fi) 0.539 0.038

Sample sizes are, respectively, the sum of sites sampled for each target group (see ‘‘Methods’’ section). For
other correlations with PFEs, see Table S14
a Species diversity of all joint occurrences of birds, mammals and termites per transect
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the broader-scale environmental gradients in Mato Grosso, transects in structurally simple,

savanna-related vegetation on an upland sandstone plateau (nutrient-poor, shallow soils)

were richer in fauna than most structurally complex, lowland forest transects on deep, more

fertile, well drained soils. Although the inclusion of the savanna-related outliers improved

the sample range of species habitat, the coupling of species data from very different biomes

may have reduced the effectiveness of simple univariate analyses. By comparison the

smaller scale, but less physically heterogenous and more biodiverse Sumatran baseline

produced more statistically robust biodiversity indicators.

Landscapes at tropical forest margins usually include a mosaic of habitats with and

without trees where many so-called ‘forest’ biota range well beyond forest boundaries

(Sanchez et al. 2005). Yet biodiversity-related surveys in tropical forest biomes typically

rely on tree-based assessment (Dallmeier and Comiskey 1996). The omission of non-tree

components of vegetation and non-forest habitat can exclude information critical for

effective conservation planning and management. The present study provides scientific

support for a logistically cost-effective assessment of forest biodiversity that includes all

vascular plants. Although empirical evidence for plant response to soil variables such as

Al3? is difficult to establish because of variations in nutrient-cycling pathways, correla-

tions between vegetation structure, plant functional features and soil physical properties (%

silt and sand) are readily interpretable, as these are soil parameters not influenced by

vegetation (Table S15, Online Resources). As increasing silt content generally improves

the supply of plant-available water during drier periods, a favourable soil texture may

support higher plant productivity. Soil physical conditions, including litter depth, can be

linked with faunal habitat. Plant litter is a food and habitat resource with important

structural properties (measured here by depth) for termites and other invertebrate biota.

Although litter depth frequently exhibits seasonal variation around its mean value (litter

fall divided by mean residence time; Hairiah et al. 2006), relative differences along

gradsects were consistent across all sites in both countries, as indeed elsewhere (see

Fig. S2, Appendix S2, Online Resources).

A linkage between aboveground carbon, total organic carbon (standing vegetation, dead

wood, litter and soil combined) and diversity in tree plant and termite species in Sumatra

(Table S19, Online resources) suggests these variables should be examined further as

candidate generic indicators. In both regions variations in soil texture and soil physical

features such as bulk density exert important indirect effects on faunal diversity through

their influence on plant growth and therefore on faunal habitats for which plants are the

keystone providers. The same plant-based indicators can be used in other lowland forest

types (Fig. S2, Appendix S2, Online Resources) although faunal baseline data are needed

for proper evaluation. The lack of evidence for species-based indicators of other species

reported here is consistent with findings in African tropical forests (Lawton et al. 1998).

Where plant species identification is problematic, plant functional traits can be used as

independent biodiversity surrogates. However, surrogacy is improved when functional trait

and species data are combined. For this reason we suggest that the inclusion of adaptive

PFTs and their component PFEs should be used to complement rather than replace species-

based biodiversity assessment. The characterization of photosynthetic tissue, organs and

life form in the PFEs together with vegetation structure (mean canopy height, percent

canopy cover, basal area) contrasts with the more traditional and functionally restrictive

(Raunkiaerean) plant life-forms and indicates greater potential for remote-sensing appli-

cations and monitoring forest condition at varying scales of spatial resolution (Asner et al.

2005). The emergence of the spp.:PFTs ratio as one of the more robust biodiversity
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surrogates, in addition to its potential use as an indicator in disturbed habitats, is a novel

finding requiring further investigation.

Variable patterns of land use and differing management scales suggest that any single

indicator, even the species diversity of a target taxon, will be of limited value to policy-makers

and managers where multiple indicators are required, for example in the selection and

gazetting of forest reserves (van Teeffelen et al. 2006). Alternatively, offering a set of simple

indicators for efficient biodiversity assessment (cf. Hill and Hamer 2004) may be helpful for

conservation decisions where comparative analyses of ecosystems are frustrated by incom-

patibilities in both scale and the biophysical environment. In cases such as the central Amazon

basin, uncertainties surround the correct identification of many plant species (Gomes et al.

2013). Such challenges prevent stakeholders, who are otherwise willing, from investing in

practical conservation evaluations and management (Meijaard and Sheil 2012). The present

study shows that, based on a detailed analysis of the relationship between plant taxa and plant

functional and structural types there is a scientifically defensible alternative when there are

difficulties in identifying plant or other taxa. One of the central issues defining the utility of

biodiversity indicators is their application across different biogeographic scales. Here we

have shown that the indicators we detected at local regional scale also apply across widely

separate biogeographic zones. Recent data also demonstrate that at global scale the plant

functional and structural types used in the present study exhibit close relationships with

climate, thus lending weight to their potential application across biomes (Gillison 2013).
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