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Summary

 

1.

 

Plant communities in natural ecosystems are changing and species are being lost due to anthro-
pogenic impacts including global warming and increasing nitrogen (N) deposition. We removed
dominant species, combinations of  species and entire functional types from Alaskan tussock
tundra, in the presence and absence of fertilization, to examine the effects of non-random species
loss on plant interactions and ecosystem functioning.

 

2.

 

After 6 years, growth of remaining species had compensated for biomass loss due to removal in
all treatments except the combined removal of moss, 

 

Betula nana

 

 and 

 

Ledum palustre

 

 (MBL), which
removed the most biomass. Total vascular plant production returned to control levels in all removal
treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to
control levels in all unfertilized removal treatments, except MBL.

 

3.

 

Although biomass compensation occurred, the species that provided most of the compensating
biomass in any given treatment were not from the same functional type (growth form) as the
removed species. This provides empirical evidence that functional types based on effect traits
are not the same as functional types based on response to perturbation. Calculations based on
redistributing N from the removed species to the remaining species suggested that dominant species
from other functional types contributed most of the compensatory biomass.

 

4.

 

Fertilization did not increase total plant community biomass, because increases in graminoid
and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass.
Fertilization greatly increased inorganic soil nutrient availability.

 

5.

 

In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected
based on their performance in the fertilized intact community, while evergreen shrubs, mosses and
lichens all grew less than expected. Deciduous shrubs performed better than graminoids when

 

B. nana

 

 was present, but not when it had been removed.

 

6.

 

Synthesis

 

. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability
in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids.
The current relative abundance of these dominant growth forms may serve as a predictor for future
vegetation composition.

 

Key-words:

 

arctic tundra, biodiversity, biomass compensation, nitrogen, plant functional types,
productivity, species interactions, species removal, soil nutrient availability

 

Journal of Ecology

 

 (2007) doi: 10.1111/j.1365-2745.2007.0@@@@.x

 

Introduction

 

Plant species differ in traits that affect carbon (C) and nitrogen
(N) cycling, including litter quality, resource use strategy and
feedbacks to disturbance regimes (Hobbie 1992; Craine 

 

et al

 

.
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2002; Chapin 2003; Ehrenfeld 2003). Thus, changes in plant
abundance and diversity caused by anthropogenic activities
can affect ecosystem function. Anthropogenic activities are
changing plant community composition at an unprecedented
scale and rate, both through direct effects on climate and
element cycling, and by mediating the introduction and
extinction of species (Vitousek 

 

et al

 

. 1997; Sala 

 

et al

 

. 2000;
Chapin 2003). Rapid climate change, especially at high
latitudes (McBean 

 

et al

 

. 2005), and the global increase in the
fixation and deposition of N, which often limits productivity
of  terrestrial ecosystems, are of  particular importance to
natural ecosystems (Vitousek 

 

et al

 

. 1997; Galloway 

 

et al

 

. 2004).
Climate warming will further increase nutrient availability
where low temperatures limit decomposition (Nadelhoffer

 

et al

 

. 1992; Giblin 

 

et al

 

. 1994). Understanding how changes in
plant species composition driven by these factors will affect
ecosystem functioning is thus a high priority. Effects of
changing species composition on ecosystem functioning will
depend on both the traits of species that decline or disappear
and the traits of species that replace them (Díaz 

 

et al

 

. 2003;
Suding 

 

et al

 

. 2006).
Removal experiments offer a method to assess the effects of

changing species composition on plant interactions and
ecosystem functioning, especially in ecosystems dominated
by long-lived, perennial species (Díaz 

 

et al

 

. 2003). There is
now considerable literature on the effects of experimental
plant species removals in arctic and alpine systems, though
few experiments have been maintained over the long-term
(but see Aksenova 

 

et al

 

. 1998). These experiments have some-
times been referred to as neighbour removal experiments, but
because they might be confused with experiments involving
non-specific removal of  the nearest neighbours to target
individuals, we will refer to them here simply as removal
experiments. Predominantly positive responses of remaining
plant biomass or cover to removal have been reported (del
Moral 1983; Herben 

 

et al

 

. 1997; Theodose & Bowman 1997;
Aksenova 

 

et al

 

. 1998; Gerdol 

 

et al

 

. 2000; Gerdol 

 

et al

 

. 2002).
Negative responses have also been observed for different
species in the same experiment, or under different environmental
conditions (Shevtsova 

 

et al

 

. 1995; Shevtsova 

 

et al

 

. 1997; Akse-
nova 

 

et al

 

. 1998; Wipf 

 

et al

 

. 2006). Some removal experiments in
arctic tundra have reported few plant responses, either positive
or negative (Jonasson 1992; Hobbie 

 

et al

 

. 1999; Bret-Harte

 

et al

 

. 2004). Facilitation should be more common in stressful
or low productivity environments, and competition more pre-
valent in high productivity environments (Bertness & Callaway
1994; Brooker & Callaghan 1998). This hypothesis is supported
by removal experiments and observational studies along alpine
gradients (Choler 

 

et al

 

. 2001; Callaway 

 

et al

 

. 2002; Totland

 

et al

 

. 2004). While it is not surprising that positive, negative,
and neutral interactions should all be seen among members
of the plant community, the trajectory of ecosystem response
following species loss and the long-term effects on ecosystem
functioning will depend on the characteristics of the remaining
plant species that respond most positively to the loss.

Complete biomass compensation is considered to have
occurred if  the growth response of the remaining plant species

is sufficient to bring total plant biomass to pre-removal levels.
Compensation may be similarly defined in terms of variables
such as net primary production or N content of the vegetation.
Biomass compensation by the remaining plants depends on
reproductive output, recruitment, and vegetative growth. The
last factor is especially important in the Arctic where the vast
majority of plants are long-lived, clonal perennials.

Since 1997, we have been investigating how species traits
and diversity affect ecosystem processing of C and N in arctic
tussock tundra at Toolik Lake, Alaska, by means of a field
experiment removing different combinations of species and
entire plant functional types, with or without fertilization. We
wished to understand (i) to what extent plant interactions
affect the trajectory of community and ecosystem response to
an environmental perturbation (fertilization), and (ii) the
extent to which ecosystem capacity to respond to perturbation
depends on the characteristics of individual species vs. those
of plant functional types.

After considering plant traits that affect rates of nutrient
cycling and C storage, such as stature, litter decomposability
and thermal insulation, Chapin 

 

et al

 

. (1996) concluded that
species in a given physiognomic growth form (deciduous
shrubs, evergreen shrubs, graminoids, forbs, mosses and
lichens) are similar in their effects on ecosystem processes in
tussock tundra, so that growth forms may be regarded as
functional types. We designed our experiment based on this
classification. In this study, we report the medium-term
results (after 6 years) on biomass and N content of the
remaining plant community following removal of the single
dominant species from different functional types (evergreen
shrubs, deciduous shrubs), all members of a single functional
type (mosses), or members of three functional types (evergreen
shrubs, deciduous shrubs, mosses). We did not manipulate
graminoids because the dominant, 

 

Eriophorum vaginatum

 

, is
a tussock-forming sedge upon which many other species
grow. Removing tussocks would have created a large disturbance
and changed the microtopography and drainage.

In the short-term (after 2 years), we found that the remaining
plants did not grow much in response to species or functional
type loss, although growth was increased by fertilization (Bret-
Harte 

 

et al

 

. 2004). As a consequence of low compensatory growth,
soil nutrient availability was greatly elevated by the removal
treatments (Bret-Harte 

 

et al

 

. 2004). These results suggested
the following hypotheses. (i) Complete biomass compensation
would occur eventually, because production in tussock-tundra
is N-limited (Shaver & Chapin 1980, 1986; Chapin 

 

et al

 

. 1995;
Shaver 

 

et al

 

. 2001) and removal greatly enhanced short-term
nutrient availability. (ii) Biomass compensation would be due
mostly to growth of remaining plants from the same func-
tional type as the species removed, because species within a
functional type use resources most similarly and should
therefore demonstrate the strongest interspecific competition
(Symstad 2003). (iii) Competitive interactions among plants
should be most pronounced under fertilization, because alle-
viation of nutrient limitation may lead to light limitation.

We report here on the distribution of plant biomass and
plant tissue N after 6 years of removal and fertilization.
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Methods

 

S ITE

 

 

 

DESCRIPTION

 

 

 

AND

 

 

 

EXPERIMENTAL

 

 

 

TREATMENTS

 

The experiment was carried out in moist, acidic tussock tundra
(Bliss & Matveyeva 1992) near Toolik Lake at the Arctic Long Term
Ecological Research (LTER) site in the northern foothills of the
Brooks Range, Alaska (68

 

°

 

38

 

′

 

 N, 149

 

°

 

34

 

′

 

 W, elevation 760 m). This
vegetation contains approximately equal biomasses of graminoids
(primarily 

 

E. vaginatum

 

 and 

 

Carex bigelowii

 

), deciduous shrubs
(

 

Betula nana

 

, with some 

 

Vaccinium uliginosum

 

 and 

 

Salix pulchra

 

),
evergreen shrubs (mainly 

 

L. palustre

 

 ssp. 

 

decumbens

 

 and 

 

V. vitis-idaea

 

),
and mosses (

 

Hylocomium splendens

 

, 

 

Aulacomnium turgidum

 

,

 

 Dicranum

 

spp

 

. Sphagnum

 

 spp., etc.) (Shaver & Chapin 1991). Nomenclature
follows Hultén (1968).

In 1997, we established six replicate blocks of 2 

 

×

 

 3 m plots separated
from one another by buffer strips (1 or 2 m wide), in relatively uniform
tussock tundra on a gentle (5%) north-facing slope, approximately
100 m south of the LTER experimental plots (Bret-Harte

 

 et al

 

.
2001, Bret-Harte

 

 et al

 

. 2002), as described in Bret-Harte 

 

et al

 

. (2004).
To avoid trampling, the plots were accessed from elevated boardwalks
constructed in the buffer zones. From four randomly chosen plots
within each block, one of the following species or combinations of
species were removed, by methods described by Bret-Harte 

 

et al

 

.
(2004): 

 

B. nana

 

 (treatment B: dominant deciduous shrub); 

 

L. palustre

 

(L: dominant evergreen shrub); all moss species (M; dominant
non-vascular plants); or 

 

B. nana

 

,

 

 L. palustre

 

, and all mosses together
(MBL). An additional four plots were randomly assigned to receive
the same species removal treatments specified above, plus N and
P fertilizers (treatment code followed by F). From two additional
plots in each block no plants were removed, but the ground and
vegetation were subjected annually to a mild physical disturbance
simulating effects of removal. One of these plots (F) also received
fertilization, while the other (C: control) did not. The remaining
plots were assigned to other removal treatments (Bret-Harte 

 

et al

 

.
2004) that were not sampled in the 2003 harvest reported here, due
to logistical constraints. This included an undisturbed control
treatment that was not harvested in 2003 because previous measure-
ments showed no significant differences between disturbed and
undisturbed controls (Bret-Harte 

 

et al

 

. 2004). Removal treatments
were maintained by annually removing, in early June, any regrowth
of target species. The removed biomass was dried for 72 h at 65 

 

°

 

C
and weighed (Fig. 1).

Each year in early June, 10 g N m

 

–2

 

 year

 

–1

 

 (as granular NH

 

4

 

NO

 

3

 

)
and 5 g P m

 

–2

 

 year

 

–1

 

 (as commercial granular superphosphate) was
applied to the fertilized treatments, using the same fertilization rate
and method as in previous work (e.g. Shaver & Chapin 1980;
Chapin 

 

et al

 

. 1995; Bret-Harte 

 

et al

 

. 2001; Bret-Harte 

 

et al

 

. 2004).
These rates exceed the natural inputs of nutrients (nearly four times
the annual N requirement and nearly 20 times the annual P require-
ment of the vascular plants; Shaver & Chapin 1991). Our intent was
not to simulate a particular scenario of N deposition under climate
change, but rather to see the effects of altered species composition
in an ecosystem relieved of nutrient limitation.

 

ENVIRONMENTAL

 

 

 

MONITORING

 

Starting in 1997, soil temperature was measured 5 cm below the
moss or soil surface in inter-tussock areas in three plots from each
treatment harvested here, using copper–constantan thermocouples
(after Bret-Harte 

 

et al

 

. 2004). Thaw depth measurements were made

at four locations in each plot in mid-August of 1997, 1999 and 2002,
and in early September 2003 by pushing a probe from the moss
surface to the bottom of the thawed soil in inter-tussock areas.
Meteorological measurements made continuously by the Arctic
LTER (Bret-Harte 

 

et al

 

. 2001) 100 m from our plots, over the period
of this experiment, are available at <http://ecosystems.mbl.edu/arc/
home.htm>.

 

B IOMASS

 

 

 

HARVESTS

 

 

 

OF

 

 

 

REMAINING

 

 

 

SPECIES

 

In late July 2003, we harvested the biomass of all plant species
within 20 

 

×

 

 20 cm quadrats located randomly within each plot, by
the method of Shaver & Chapin (1991). We harvested three quadrats
per plot from three of the six replicate blocks, but (due to time con-
straints) only two quadrats per plot from the others, except that the
third quadrat was harvested from C and F plots from one additional
block. The rhizome-containing soil layer was harvested by cutting
around each quadrat boundary with a serrated bread knife. All
above-ground live vascular plant biomass, and all live rhizomes and
below-ground stems within the quadrat boundaries, were separated
by individual species. Current-year’s growth from meristems
located within the quadrat was included in the sample even if that
growth extended outside the quadrat. New growth from meristems
located outside, but that extended into the quadrat, was not
included in the sample. From older stems that crossed the boundary,
the portion within the quadrat boundaries was included.

As described by Shaver & Chapin (1991), biomass produced in
the current year by each vascular plant was separated into leaves,
new above-ground stems, and inflorescences with their peduncles,
except that new growth from rhizomes was not separated but
included with the previous years’ growth. Older biomass was
separated into below-ground stems and rhizomes, above-ground
stems, and (for evergreens) old leaves. Below-ground and above-
ground old stems were separated at the position of the first adventitious
roots. All graminoid and forb leaves, including both blade and
sheath, were considered new biomass. Vascular plant litter and
attached dead biomass were saved, but not separated by species.
These biomass harvest methods are consistent with previous and

Fig. 1. Total cumulative biomass removed from fertilized and
unfertilized removal treatments between 1997 and 2003. Removal
treatment abbreviation: B = removal of  Betula nana, L = removal
of Ledum palustre, M = removal of all mosses, MBL = combined
removal of B. nana, L. palustre, and all mosses. Error bars indicate
1 SE among blocks (n = 6).

http://ecosystems.mbl.edu/arc/home.htm
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ongoing LTER studies at the site and thus allow direct comparisons
(Shaver & Chapin 1991; Chapin 

 

et al

 

. 1995; Shaver 

 

et al

 

. 2001).
Lichens and mosses (green portions only) were retained but not

separated into species or new and old growth. Green moss biomass
has been estimated to consist of approximately 20% new growth in
those species where old and new growth can be distinguished, but
they are not the majority of moss species present in tussock tundra
(Chapin 

 

et al

 

. 1995). All plant samples were dried at 60 

 

°

 

C for 72 h
and weighed.

We calculated above-ground net primary productivity (NPP) for
vascular plants as the total of the current-year’s primary growth
(new growth samples mentioned above), plus stem secondary
growth for the three largest shrub species (

 

S. pulchra

 

,

 

 B. nana

 

, and
L. palustre). Secondary growth was calculated from old stem biomass
and the relative secondary growth rates of stems in fertilized and
unfertilized plots, as determined in a previous study of the adjacent
LTER plots (Bret-Harte et al. 2002). As we did not have reliable
measures of their growth, NPP was not calculated for non-vascular
plants.

NITROGEN CONTENT ANALYSES

We pooled material of each tissue type and species from all quadrats
from a given plot. Pooled samples were ground in a Wiley mill with
a #40 screen and analysed for N content by a Fisons Instruments
elemental autoanalyser (Los Angeles, CA).

SOIL INORGANIC NITROGEN AVAILABIL ITY

We measured the  and  captured by mixed-bed ion
exchange resins buried in the soil, to compare the relative availability
of inorganic N in the different treatments (Giblin et al. 1991), by the
method previously described (Bret-Harte et al. 2004), except that
ions were extracted from the resins using KCl rather than NaCl/
HCl. Three resin bags per plot (9 g FW resins each) were inserted
about 3–5 cm below the surface in inter-tussock areas on 18–19 June
2003, and removed on 29 August 2003. Resin bags were washed free
of soil using distilled water, then extracted in 100 mL 2 m KCl
overnight. Extracts were frozen until analysis for  and 
using an Astoria Pacific (Astoria, OR) colorimetric autoanalyser.

STATISTICAL ANALYSES

Biomass and production for each growth form were analysed by
anova (GLM with block, removal treatment, fertilization, and a
removal × fertilization interaction term; jmp Statistical Software).
All data were tested for homogeneity of variance prior to analysis
using Levene, Bartlett, O’Brien and Brown-Forsythe tests (JMP 2003).
If two or more of the tests did not indicate homogeneity of variance,
data were transformed with the algorithm y = 1n (x + 1) (Zar 1999).
In some cases, due to high variability in the fertilized removal plots,
data were inhomogeneous after transformation, and no other trans-
formations (arcsine square root or  resulted in homo-
geneity. These data were ranked, and anova (same model as above)
was conducted on the ranks (Zar 1999).

N contents of biomass and vascular plant production were calculated
by multiplying the biomass of each tissue type of each species by the
appropriate %N (from the pooled sample) for any given species
tissue, and summing over all the species and tissues for each growth
form in each quadrat. N content data were analysed using the
statistical models given above.

Many species occurred so rarely that their biomass data could not
be analysed separately, due in part to species turnover between
fertilized and unfertilized treatments. Biomass was variable even for
common species, because of the heterogeneity of vegetation at the
scale of a 20 × 20 cm quadrat, and the statistical power to detect
differences was low for the number of quadrats harvested. Post-
experiment power analyses are not useful for interpreting non-
significant results (Hoenig & Heisey 2001). Accordingly, we present
statistical tests only for growth forms. All species present were
included within the summed data for their growth form.

As an alternative approach to try to understand the response of
remaining species, we calculated the expected biomass of species and
growth forms within each treatment assuming that the remaining
species took up N made available by removal in proportion to their
N content in the intact community. We assumed that total N in
above-ground biomass of the intact community was conserved in
each removal treatment, and that there were no changes in N con-
centrations of plant tissues, or in allocation to different tissues
within a species following removal. The N in the removed biomass
was assigned to the remaining species in proportion to their N
contents in the C treatment (for unfertilized removal treatments), or
the F treatment (for fertilized removal treatments). Then we calculated
expected biomass based on the new N mass of each species following
the N redistribution (See Appendix S1 in Supplementary Material
for details of the calculation). Because there were no changes to
within-plant allocation, the assignment of N (and expected biomass)
was basically proportional to the biomass of each remaining
species in the control treatments. The difference between expected
and observed biomass was expressed as a percentage of observed
biomass.

Results

BIOMASS REMOVED

The total cumulative amount of biomass removed between
1997 and 2003 differed among treatments (Fig. 1). Removing
the combination of all mosses, B. nana and L. palustre (MBL
and MBLF) took out the most biomass, while removing B.
nana alone (B and BF) took out the least, only 9.4% as much
(Fig. 1). A large amount of moss was removed, in part
because it was not practical to separate green and attached
brown tissue in the field. Attached brown tissue was not
included in our estimate of moss biomass in the harvest, in
order to make it comparable to prior LTER harvests (e.g.
Shaver & Chapin 1991), but was clearly greater than green
moss biomass. Approximately 79–92% (depending on treat-
ment) of the removed biomass was taken away in the first
three seasons of the experiment (see Fig. S1). Regrowth by
target vascular plants decreased rapidly as the experiment
proceeded, but mosses re-colonized at a low level throughout
the experiment (Fig. S1).

REMAINING PLANT BIOMASS

Total live biomass of remaining plants varied from 562 to
1335 g m–2 among the different removal and fertilization
treatments (Fig. 2a). Evergreen shrubs had the most biomass
of any growth form in control plots, but this was only slightly

NH4
+ NO3

−

NH4
+ NO3

−

y x    .= + 0 5
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greater than that of deciduous shrubs or graminoids
(Fig. 2a). Despite the visual prominence of E. vaginatum,
graminoids had only slightly more biomass than green moss
or lichens, and forbs were rare (Fig. 2a).

There was a significant effect of  removal on total com-
munity biomass (Table 1). However, this was entirely because
the two MBL removal treatments had less total biomass than
controls (Fig. 2a, Table 1); the MBL treatment removed the

Fig. 2. Biomass, production and N content of remaining plants by growth form (mosses, lichens, forbs, evergreen shrubs, deciduous shrubs and
graminoids) in 2003, after 6 years of experimental removal and fertilization. (a) Biomass excluding roots, (b) above-ground net primary
production of vascular plants, (c) mass of N in living biomass, (d) mass of N in above-ground net primary production of vascular plants.
Treatment abbreviations: C = control (no removal, unfertilized), F = fertilized control (no removal), other abbreviations as in legend to Fig. 1.
An F following a removal treatment abbreviation indicates that the treatment was fertilized. Error bars indicate 1 SE for the total community
biomass, vascular plant production and N mass in production and biomass (all growth forms combined) among blocks (n = 6).

Table 1.  Results of analysis of variance on live biomass of remaining plants by growth form and on accumulated litter, all treatments included
in the analysis.  ***P < 0.001,  **P < 0.01,  *P < 0.05,  †P < 0.1, ns non-significant (P > 0.1)

Growth form

Factor

Block Removal (R) Fertilization (Ft) R × Ft

Ndf Ddf F Ndf Ddf F Post hoc Ndf Ddf F Ndf Ddf F

Deciduous shrubs‡ 5 140 0.986 ns 4 140 34.401*** L > C; B,MBL < C 1 140 5.056* (↑; F > C) 4 140 1.696 ns
Evergreen shrubs‡ 5 140 0.485 ns 4 140 14.724*** L,MBL < C,B,M 1 140 37.465*** (↓; F < C) 4 140 1.007 ns
Graminoids‡ 5 140 0.947 ns 4 140 1.780 ns 1 140 8.531**↑ 4 140 0.584 ns
Forbs§ 5 140 0.318 ns 4 140 0.470 ns 1 140 0.035 ns 4 140 0.371 ns
Mosses§ 5 140 1.748 ns 4 140 14.380*** M,MBL < C 1 140 217.05***↓ 4 140 1.873 ns
Lichens§ 5 140 0.475 ns 4 140 0.924 ns 1 140 195.68***↓ 4 140 1.665 ns
Total live biomass‡ 5 140 0.549 ns 4 140 12.447*** MBL < C 1 140 0.634 ns 4 140 2.133†
Total litter§ 5 140 0.631 ns 4 140 2.063† 1 140 20.811***↑ 4 140 0.018 ns

§Data were log-transformed to achieve homogeneity of variance.
‡Data were rank-transformed to achieve homogeneity of variance.
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most biomass. Total plant biomass did not differ significantly
among the other removal treatments and controls, despite the
cumulative removal of large amounts of biomass over the
6 years of the experiment (Fig. 1).

Fertilization did not significantly change total community
biomass (Table 1), because some growth forms and species
benefited at the expense of others (Fig. 2a). Under fertilization,
deciduous shrubs and graminoids increased in treatments
from which they were not removed, while evergreen shrubs,
mosses and lichens all declined (Fig. 2a). Non-vascular
plants virtually disappeared from most of  the fertilized
treatments.

Among the different growth forms, biomass of forbs and
lichens showed no significant response to removal (Table 1).
Green moss biomass was reduced by moss removal, and was
not increased by any other treatment. Removal of either L.
palustre or B. nana, the dominant species in their respective
growth forms, caused significant reductions in their growth
form biomass that were not completely compensated by the
growth of other species within their growth forms (Fig. 2a,
Table 1). However, some removal treatments increased the
biomass of  other growth forms. Removal of  L. palustre
significantly increased the biomass of deciduous shrubs
(Table 1). Graminoid biomass was greatest under MBL
removal, followed by B. nana removal, L. palustre removal,
moss removal, and finally the control, even though the differ-
ences were not significant. Thus, graminoid biomass became
greatest where deciduous shrub biomass was least, and least
where all other components of the community were present.

VASCULAR PLANT PRODUCTION

Removal did not significantly affect total above-ground
vascular plant production, indicating that complete com-
pensation in vascular plant production had occurred by 2003
(Fig. 2b, Table 2). In contrast, total above-ground vascular
plant production was greatly increased by fertilization
(Fig. 2b, Table 2).

As in the case of biomass, removal of the dominant shrubs
B. nana or L. palustre significantly decreased production
by their respective growth forms. Thus, other members of the

same growth form did not compensate for these removals
(Fig. 2b, Table 2). In addition, there was a marginally
significant effect of removal to increase graminoid production,
because graminoid production was significantly greater
under MBL removal than in controls. Removal did not affect
forb production. Fertilization strongly promoted graminoid
and deciduous shrub production, while evergreen shrub
production declined (Fig. 2b, Table 2). However, there was a
significant interaction between removal and fertilization for
deciduous shrubs and evergreen shrubs. This occurred
because fertilization promoted deciduous shrub production
more when B. nana was present than when it was removed,
and decreased evergreen shrub production more when L.
palustre was removed than when it was present (Table 2).

NITROGEN CONTENT IN PLANT BIOMASS

Removal did not affect the N concentration of  any plant
tissues, but there was a redistribution of N among species and
growth forms in the plant community under both fertilization
and removal, due to changes in plant biomass. Only the two
MBL removal treatments had significantly lower total N in
live biomass than controls. Ledum palustre removal promoted
N accumulation in deciduous shrubs (Fig. 2c, Table 3).

In contrast, fertilization increased N concentrations in the
tissues of all plants. The total live biomass N pool was
increased by fertilization (Fig. 2c, Table 3). Under fertiliza-
tion, N accumulated in deciduous shrubs and graminoids, but
decreased in evergreen shrubs, mosses and lichens (Fig. 2c,
Table 3).

NITROGEN CONTENT IN VASCULAR PLANT 
PRODUCTION

As expected, removal did not affect the amount of N in total
vascular plant production, because N concentration in plant
tissues did not change, and because there was complete
compensation in total vascular plant production. Removal
effects on the amount of N in production of different growth
forms were similar to those seen for biomass production
(Tables 2, 4).

Table 2. Results of analysis of variance on above-ground net primary production of vascular plants, all treatments included in the analysis.
***P < 0.001,  **P < 0.01,  *P < 0.05,  †P < 0.1, ns non-significant (P > 0.1)

Growth form

Factor

Block Removal (R) Fertilization (Ft) R × Ft

Ndf Ddf F Ndf Ddf F Post hoc Ndf Ddf F Ndf Ddf F

Deciduous shrubs‡ 5 140 2.152† 4 140 32.331*** MBL,B < C,L,M 1 140 20.752*** (↑; F > C) 4 140 3.390*
Evergreen shrubs§ 5 140 1.136 ns 4 140 21.505*** MBL,L < B,L,M 1 140 57.631*** (↓; F < C) 4 140 6.377***
Graminoids‡ 5 140 0.684 ns 4 140 2.352† C < MBL 1 140 13.494***↑ 4 140 0.916 ns
Forbs§ 5 140 0.391 ns 4 140 0.472 ns 1 140 0.278 ns 4 140 0.467 ns
Total production§ 5 140 0.870 ns 4 140 2.481 ns 1 140 33.189***↑ 4 140 1.291 ns

§Data were log-transformed to achieve homogeneity of variance.
‡Data were rank-transformed to achieve homogeneity of variance.
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Fertilization significantly increased the amount of
N contained in total vascular plant production (Fig. 2d,
Table 4). Fertilization strongly increased the amount of N in
production by graminoids and deciduous shrubs, and
marginally by forbs (Fig. 2d, Table 4). The amount of N in
production by fertilized evergreen shrubs decreased signifi-
cantly despite increased N concentrations in evergreen
shrub tissues, because of large reductions in evergreen shrub
biomass and production in all fertilized treatments (Fig 2d,
Table 4).

SPECIES COMPOSIT ION

Most of the vascular growth forms included a single dominant
species whose biomass accounted for much of the response of
its growth form to the different treatments (Fig. 3). Most of
the biomass response of deciduous shrubs was due to the
dominant species, B. nana, in all treatments where it had not
been removed (Fig. 3a). Ledum palustre, while not as dominant
as B. nana, is the most abundant evergreen shrub and com-
prised more than half  of the evergreen shrub biomass where it

had not been removed (Fig. 3b). Ledum palustre declined
under fertilization, but the subordinate evergreen V. vitis-idaea
declined more. The dominant graminoid, E. vaginatum
contributed much of the increased graminoid biomass in all
fertilized treatments (Fig. 3c). However, Calamagrostis
lapponica, a grass that was rare in control plots, responded
strongly to fertilization, comprising between 12.1% and
28.5% of graminoid biomass in fertilized removal treatments
(Fig. 3c). Forb biomass was largely comprised of  Bistorta
plumosa, except for abundant Stellaria edwardsii in one
fertilized plot (Fig. 3d). We mistakenly identified B. plumosa
as B. bistortoides in our previous paper (Bret-Harte et al.
2004).

LITTER ACCUMULATION AND N CONTENT

In contrast to total community biomass, fertilization greatly
enhanced the accumulation of above-ground litter (Fig. 4a,
Table 1). There was a marginally significant fertilization by
removal interaction because litter accumulation increased
in some fertilized removal treatments more than others

Table 3. Results of analysis of variance on the total N content of live plant biomass by growth form, all treatments included in the analysis.
***P < 0.001,  **P < 0.01,  *P < 0.05,  †P < 0.1, ns non-significant (P > 0.1)

Growth form

Factor

Block Removal (R) Fertilization (Ft) R × Ft

Ndf Ddf F Ndf Ddf F Post hoc Ndf Ddf F Ndf Ddf F

Deciduous shrubs‡ 5 140 1.327 ns 4 140 32.383*** L > C, B,MBL < C,M 1 140 23.822*** (↑; F > C) 4 140 2.040†
Evergreen shrubs¶ 5 140 0.726 ns 4 140 15.560*** L,MBL < C,M,B 1 140 15.085*** (↓; F < C) 4 140 2.243†
Graminoids‡ 5 140 0.550 ns 4 140 1.543 ns 1 140 34.871**↑ 4 140 0.838 ns
Forbs¶ 5 140 0.985 ns 4 140 1.039 ns 1 140 3.385†↑ 4 140 0.479 ns
Mosses‡§ 5 84 0.701 ns 2 84 0.290 ns 1 84 70.364***↓ 2 84 0.368 ns
Lichens‡ 5 140 1.062 ns 4 140 0.629 ns 1 140 154.35***↓ 4 140 1.542 ns
Total live biomass‡ 5 140 0.743 ns 4 140 7.128*** MBL < C,M,B,L 1 140 34.480***↑ 4 140 0.711 ns
Total litter¶ 5 140 0.995 ns 4 140 2.028† 1 140 82.309***↑ 4 140 0.138 ns

¶Data were log-transformed to achieve homogeneity of variance.
‡Data were rank-transformed to achieve homogeneity of variance.
§Homogeneity of variance could not be achieved while including the M, MBL removal treatments, because values in those treatments were so close to 
zero; these treatments were clearly less than the others.

Table 4. Results of analysis of variance on the N content of above-ground net primary production of vascular plants. ***P < 0.001,  **P < 0.01,
*P < 0.05,  †P < 0.1, ns non-significant (P > 0.1)

Growth form

Factor

Block Removal (R) Fertilization (Ft) R × Ft

Ndf Ddf F Ndf Ddf F Post hoc Ndf Ddf F Ndf Ddf F

Deciduous shrubs‡ 5 140 2.012† 4 140 27.038*** MBL,B < C,L,M 1 140 34.547*** (↑; F > C) 4 140 2.611*
Evergreen shrubs§ 5 140 1.136 ns 4 140 21.505*** MBL,L < B,L,M 1 140 57.631*** (↓; F < C) 4 140 6.377***
Graminoids‡ 5 140 0.652 ns 4 140 2.335† C < MBL 1 140 39.840***↑ 4 140 1.278 ns
Forbs§ 5 140 1.036 ns 4 140 1.227 ns 1 140 3.538†↑ 4 140 1.071 ns
Total production§ 5 140 0.882 ns 4 140 1.422 ns 1 140 93.853***↑ 4 140 0.384 ns

§Data were log-transformed to achieve homogeneity of variance.
‡Data were rank-transformed to achieve homogeneity of variance.
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(Table 1). The most litter accumulated in fertilized removal
treatments with the highest graminoid biomass (Fig. 4a), but
post hoc tests were not significant.

The amount of N in litter was greatly increased by fertili-
zation (Fig. 4b, Table 3). Litter N was nearly half  of the N in
total live biomass in some fertilized removal treatments.
There was a trend toward higher litter N with removal
(P = 0.088), again because graminoid-dominated removal
treatments accumulated more litter than others (Table 3).

NITROGEN AVAILABIL ITY IN SOIL, THAW DEPTH AND 
SOIL TEMPERATURE

Availability of inorganic N in soil (both  and ), as
measured by accumulation on ion exchange resins, was very
low in unfertilized control plots (Fig. 4c,d). Removal did not
affect available , which varied little. Removal signifi-
cantly increased available  in soil (Fig. 4d, Table 5),
because MBL plots had higher  availability than control

plots. Although there was an order of magnitude difference in
available  between the unfertilized removal treatments,

 levels had been 2–3 orders of  magnitude higher in
unfertilized M and MBL plots earlier in the experiment
(Bret-Harte et al. 2004). Inorganic soil nutrient availability
had returned to more normal levels by 2003. Fertilization
significantly increased availability of both  and  by
2–3 orders of magnitude (Fig. 4c,d, Table 5).

When measured in August 2003, removal caused a marginally
significant increase in depth of thaw, an integrated measure of
soil temperature over the growing season, because thaw depth
in both MBL treatments was an average of 2.4 cm (5.2%)
greater than in controls (see Fig. S2, Table 5). In contrast,
fertilization more significantly reduced depth of thaw, by an
average of 8.5% across removal treatments (Fig. S2, Table 5).
Despite this, neither fertilization nor removal significantly
affected the sum of thawing degree-days at 5 cm depth (data
not shown), perhaps due to high variance among the sensors
in different plots.

NH4
+ NO3

−

Fig. 3. Biomass of the most common remaining vascular plant species within each growth form. Non-vascular plants were not separated to
species. (a) Deciduous shrubs, (b) evergreen shrubs, (c) graminoids, (d) forbs. Abbreviations for removal treatments as in legend to Fig. 2. Full
species names are as follows. Deciduous shrubs: Betula nana, Rubus chamaemorus, Salix pulchra, Vaccinium uliginosum, ‘other deciduous’
included Arctostaphylos alpina and Salix phlebophylla. Evergreen shrubs: Ledum palustre, V. vitis-idaea, Empetrum nigrum, ‘other evergreen’
included Cassiope tetragona and Andromeda polifolia. Graminoid: Eriophorum vaginatum, Calamagrostis lapponica, Carex bigelowii, ‘other
graminoid’ included Hierochloe alpina, Poa arctica, Luzula confusa, Luzula arctica and Eriophorum angustifolium. Forbs: Bistorta plumosa,
Pedicularis lapponica, Stellaria edwardsii, no other forbs were encountered. Error bars indicate 1 SE for the entire growth form (n = 6 blocks).
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COMPARISON OF OBSERVED AND EXPECTED BIOMASS

We compared plant biomass observed in our unfertilized
removal plots with the biomass expected if  the N contained
in the biomass of the removed species were redistributed to
the remaining plants. This is a reasonable null hypothesis,
because removal did not change tissue N concentrations of
remaining species, and N limits growth in unfertilized tussock
tundra (Shaver & Chapin 1980, 1986; Chapin et al. 1995;

Shaver et al. 2001). Expected values of total live plant biomass
agreed reasonably well with observed values. Deviations from
expectation ranged from 6% to 15% of observed values in the
different unfertilized removal treatments (Table 6). Observed
biomass of deciduous shrubs, graminoids, and evergreen
shrubs was a little greater than expected biomass in all
unfertilized removal treatments, while observed biomass of
mosses and lichens was slightly less than expected. The
observed values for the different growth forms never deviated

Fig. 4. Above-ground litter (both loose and attached to living biomass) accumulated in removal treatments, and soil inorganic N availability
in removal treatments, as measured by accumulation on ion exchange resins. (a) Mass of litter, (b) mass of N in litter, (c) the mass of N as ,
(d) the mass of N as . Note the logarithmic scale on the y-axis in panels (c) and (d). Abbreviations for removal treatments as in legend to
Fig. 1. Error bars indicate 1 SE among blocks (n = 6).

NH4
+

NO3
−

Table 5. Results of analysis of variance on inorganic N availability in soil and on depth of thaw.  ***P < 0.001,  **P < 0.01,  *P < 0.05,  †P < 0.1,
ns non-significant (P > 0.1)

Variable

Factor

Block Removal (R) Fertilization (Ft) R × Ft

Ndf Ddf F Ndf Ddf F Post hoc Ndf Ddf F Ndf Ddf F

 – N§ 5 161 0.605 ns 4 161 0.299 ns 1 161 1090.67*** (↑; F > C) 4 161 1.082 ns
 – N§ 5 162 0.116 ns 4 162 6.651*** MBL > C,B,L,M 1 162 831.492*** (↑; F > C) 4 162 3.301 *

Thaw depth 5 249 2.970* 4 249 2.356† C < MBL 1 249 21.112***↓ 4 249 0.546 ns

§Data were log-transformed to achieve homogeneity of variance.
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from expected values by > 13%. The greatest difference
between observed and expected values occurred in the
unfertilized MBL treatment.

We also compared observed and expected biomass of
plants in our fertilized removal plots. Observed biomass in the
fertilized removal treatments was substantially greater than
expected biomass. The deviations ranged from 24% to 38% of
observed values, indicating that some remaining plants were
able to grow much more than expected from their perform-
ance in the fertilized intact community (Table 6). Among the
different growth forms, the observed biomass of evergreen
shrubs, lichens, and mosses was similar to, or slightly less
than, expected in all fertilized removal treatments. In
contrast, observed biomass of graminoids and deciduous
shrubs was greater than expected, but the magnitude of the
difference depended on whether B. nana had been removed.
Graminoids had more biomass in fertilized treatments
without B. nana than where it was present. For deciduous
shrubs, this pattern was reversed.

Discussion

COMPENSATORY GROWTH IN RESPONSE TO REMOVAL

After 6 years of treatment, complete biomass compensation
by remaining plant species had occurred in response to
removal in all treatments except for MBL, which removed the
most biomass. Biomass compensation is indicated by the
absence of significant differences in total biomass between
removal treatments and controls, and because inorganic
nutrient availability returned to control levels in all unfertilized
removal plots except for MBL. Removal had caused high
levels of inorganic soil nutrient availability in unfertilized
plots 2 years into the experiment (Bret-Harte et al. 2004); the
much lower levels after 6 years suggest that growth of
remaining species by this time was sufficient to use soil
nutrients made available by the continued removal of target
species. Total vascular plant production was not significantly
different across any removal treatments, also suggesting

that total plant growth in removal plots had recovered to
control levels.

Relatively rapid biomass compensation in response to
removal has been observed in alpine removal experiments
(Suding et al. 2006). Some previous arctic removal experiments,
including ours, demonstrated incomplete compensation in
the short-to-medium term (Jonasson 1992; Bret-Harte et al.
2004), but Hobbie et al. (1999) inferred biomass compensa-
tion in response to removal of a single species after 4 years.
Biomass in the MBL treatment will probably compensate
eventually, since its vascular production is now equal to that
of controls.

Contrary to our initial expectation that species in the same
functional type as a removed species should respond most
positively to its removal, the responding species that contributed
most of the compensating biomass were from different
growth forms. Removal of the dominant evergreen resulted in
significantly more deciduous shrub biomass when B. nana
was present. Removal of the dominant deciduous shrub was
mostly compensated for by growth of graminoids, especially
under fertilization. These results may have occurred because
the remaining species in a given growth form (either deciduous
shrubs or evergreen shrubs) were subordinate species that
could not respond enough to offset the large response by
dominant members of greater biomass in other growth forms.
Our calculations based on N redistribution suggest that, as a
whole, remaining plants in the different growth forms took up
the N released by the removals in proportion to their biomass.
While individual species differed in their N uptake capacity and
growth performance, the released N was largely taken up and
new biomass was produced by the remaining dominant species.

Original conceptual models of  plant functional types
suggested that species within a functional type, being more
similar to each other in terms of nutrient use and allocation
strategy, would be better at replacing each other than species
from other functional types (Smith et al. 1997). However, our
results do not support this hypothesis. It has been recognized
recently that the traits that control plant response to perturbation
often do not overlap completely with the traits that control

Table 6. Deviation of observed biomass from expected biomass, as a percent of observed biomass

Removal
Treatment

Unfertilized Fertilized

B L M MBL BF LF MF MBLF

Growth Form:
Deciduous shrubs 0.7 5.4 0.5 10.7 4.0 24.6 26.0 9.6
Evergreen shrubs 5.8 2.1 3.4 12.9 –0.4 4.6 1.0 –3.0
Graminoids 7.4 4.7 2.0 –0.7 20.3 7.3 8.4 32.0
Forbs –0.4 –0.1 0.1 –0.3 –0.4 0.3 0.01 4.7
Mosses 0.5 –0.7 0.05 0.003
Lichens –0.3 –5.6 1.3 –7.8 0.8 0.02 –0.2 4.6
Total community: 13.7 5.8 7.4 15.0 24.3 36.8 35.2 37.6

A positive number indicates that the observed biomass was greater than expected; a negative number indicates that observed biomass was less 
than expected. Expected biomass was calculated assuming that N contained in a removed species or functional type was distributed to the 
remaining species in proportion to their N content and biomass in the intact community. Unfertilized removal treatments were compared with 
the unfertilized intact community (C), while fertilized removal treatments were compared with the fertilized intact community (F).
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plant effects on ecosystem processes (Diaz & Cabido 2001;
Lavorel & Garnier 2002), because the capacity to respond
to disturbance is often determined by reproductive or
life history characteristics that do not affect biogeochemical
cycling (Symstad 2003). The characterization of growth
forms as functional types in our ecosystem is largely based on
effect traits (Chapin et al. 1996). Where more dominant
members exist within a functional type, they will likely be able
to acquire more resources than their subordinates, either
because they share a suite of traits permitting rapid resource
acquisition, or because of their large existing biomass and
extensive root systems (Díaz et al. 2004; Wright et al. 2004).
Dominant and subordinate species in a given ecosystem may
be similar in their contribution to a specific ecosystem
function, but respond to environmental changes differently
(Walker et al. 1999). Dominant alpine tundra species
responded positively to the removal of subordinates, while
subordinates responded negatively to the removal of dominants
(Aksenova et al. 1998). Our results suggest that functional
type designations based on effect traits may not be useful in
predicting plant effects on ecosystem processes under
changing community composition. Knowledge of the relative
dominance of  different plant species may be necessary for
better predictions of plant response to species loss.

The physical disturbance caused by moss removal may
have affected the availability of organic N for plant uptake,
since attached brown moss contributes to the soil organic
layer. Arctic plants rely on organic N transferred through
mycorrhizal symbionts for a high proportion of their N
uptake (Hobbie & Hobbie 2006), and species differ in their
mycorrhizal associations and preferences for different forms
of N (McKane et al. 2002). If  different N forms were no
longer available in the same ratios due to moss removal, this
may have changed competitive relationships among the
remaining vascular plant species. However, even when moss
was not removed, compensation was due to species in growth
forms other than the one removed.

The long-term outcome of species removal remains
unknown. Over a longer term, successional processes may
alter initial responses, but transient or subordinate species
that respond to a disturbance differently than dominant
species may still affect ecosystem functioning indirectly by
influencing the recruitment of the dominants (Grime 1998;
Symstad 2003). Thus, long-term responses to environmental
change are frequently not the same as short-term responses
(Shaver et al. 2000). Successful reproduction by seed is
infrequent in our ecosystem, and our results were largely due
to species that were already abundant and which likely spread
vegetatively. Testing the theoretical concept of ecological
‘redundancy’ within plant functional types (Mooney 1997)
would require our experiment to run until successional
processes set in motion by the removal were complete, which
could be a long time in tussock tundra where individual
shrubs and tussocks can be well over 100 years old (Bret-Harte,
unpubl. data; Mark et al. 1985). However, our results remain
relevant to the rapid anthropogenically induced changes to
climate and N cycling that are presently occurring.

FERTIL IZATION AND REMOVAL

We found no increase in overall community biomass with
fertilization after 6 years, despite large increases in vascular
plant production. This contrasts with our earlier results
(Bret-Harte et al. 2004), but is similar to a previous fertiliza-
tion experiment in tussock tundra (Chapin et al. 1995). At
this intermediate time, increases in the biomass of deciduous
shrubs and graminoids under fertilization balanced losses in
the biomass of evergreen shrubs and non-vascular plants.
Species turnover and plant community reorganization were
occurring under fertilization. As a result, the cycling of C and
N through plant tissue was faster, but the total biomass pool
remained approximately the same size.

The decline of evergreen shrub species, mosses and lichens
in all the fertilized removal treatments may have been caused,
at least in part, by light limitation. Light limitation due to
increased vascular plant abundance and associated litter
under climate warming is an important factor in the recent
decline of Arctic lichen biomass (Cornelissen et al. 2001b).
Fertilization increased litter accumulation in our experiment,
especially where B. nana had been removed and graminoids
were particularly abundant (Fig. 4a). This litter buried many
low-statured evergreen species, such as V. vitis-idaea.
However, evergreen shrubs in a range of ecosystems generally
tend to decline under fertilization, as the competitive advantage
conferred on ericoid mychorrhizal species (e.g. evergreen
shrubs) by their ability to obtain nutrients from recalcitrant
organic matter is lost in high nutrient environments (Read
1996; Cornelissen et al. 2001a). Our experiment demonstrated
no changes in ericoid mycorrhizal colonization after 4 years
of fertilization (Urcelay et al. 2003).

Our N redistribution calculations suggest that deciduous
shrubs and graminoids are both good competitors under
fertilization, but that B. nana is the superior competitor when
it is present. Betula nana increasingly dominates fertilized
tussock tundra in long-term experiments (Chapin et al. 1995;
Bret-Harte et al. 2001; Shaver et al. 2001; Mack et al. 2004).
Betula nana and certain graminoid species likely share some
common response traits other than dominance, because they
are good competitors under fertilization. For instance, both
B. nana and E. vaginatum respond rapidly to fertilization by
generating additional meristems that facilitate rapid new
growth and may help control productivity response to favourable
conditions across biomes (Bret-Harte et al. 2001; Knapp &
Smith 2001; Bret-Harte et al. 2002).

IMPLICATIONS FOR ECOSYSTEM C AND N CYCLING

The consequences of  a species loss for ecosystem function-
ing may depend as much on the compensatory response of
remaining species as it does on the direct effect of the species
that is lost (Suding et al. 2006). In our experiment, biomass
compensation led to communities with different relative
abundances of plants, especially under fertilization. As seen
previously, removal did not change leaf nutrient status (Fetcher
1985; Gerdol et al. 2002), but did lead to a redistribution of N



724 M. S. Bret-Harte et al.

© 2008 The Authors. Journal compilation © 2008 British Ecological Society, Journal of Ecology, 96, 713–726

among different community members. The shift from
evergreen shrubs toward deciduous shrubs and graminoids
producing more decomposable litter (Hobbie 1996; Cornelissen
et al. 2007) should increase C and N cycling rates in these
treatments and may result in lower soil C storage. As climate
warms in cold biomes, changes in species composition and
direct effects of temperature are expected to have a larger
effect on decomposition than changes in species litter quality
(Cornelissen et al. 2007).

Changes in species composition interact with direct effects
of fertilization on plant growth and ecosystem C and N
cycling. Fertilization increased the N concentration in leaves
of all species in our experiment, as seen previously (e.g. Shaver
& Chapin 1980; Karlsson 1985). This should positively feed
back to decomposition through litter with a higher N content,
although after 6 years, litter had accumulated much faster
than it decomposed. Dominance by deciduous shrubs in
fertilized tussock tundra over the longer term is associated
with a substantial loss of soil C due to enhanced decomposition
(Mack et al. 2004).

Climate warming is expected to increase soil nutrient
availability where low temperature limits decomposition
(Chapin 1983; Giblin et al. 1991; Nadelhoffer et al. 1992;
Harte et al. 1995). Many natural ecosystems are also
now impacted by deposition of anthropogenically-fixed N
(Vitousek et al. 1997). Biodiversity loss due to N deposition
has already been seen in temperate ecosystems (Stevens et al.
2004), and N deposition is expected to continue increasing
over the next 50 years (Galloway et al. 2004). Analysis of
N-addition experiments across a range of North American
ecosystems suggests that cold regions with soils of low cation
exchange capacity, including much of  the Arctic, may be
particularly vulnerable to species loss with N deposition
(Clark et al. 2007).

Our experiment suggests that, at least on a decadal time
scale, arctic tundra ecosystems in a more fertile and warmer
future may be dominated either by deciduous shrubs or by
graminoids. Which growth form dominates will likely depend
on its current local abundance and the prevailing disturbance
regime. Herbivory is one important factor controlling
transitions between dominance by grasses and shrubs in
savannas (Folke et al. 2004). Widespread deciduous shrub
expansion has recently been observed in both arctic and
alpine ecosystems (Sturm et al. 2001; Tape et al. 2006;
Cannone et al. 2007). Deciduous shrubs, often dominated by
B. nana, are common in moist acidic tundra on mesic slopes of
older landscapes (Walker et al. 1994; Walker et al. 1995).
However, vast areas of non-acidic tundra have much lower
relative abundance of  deciduous shrubs, with only rare
occurrences of B. nana (Walker et al. 1994; Walker et al. 1995;
Hobbie et al. 2005). Notably, fertilization has led to dominance
by either deciduous shrubs or graminoids in different
experiments in the European and North American Arctic
(reviewed by Dormann & Woodin 2002; van Wijk et al. 2003).
Moreover, once graminoids have become dominant due to
fertilization, recovery appears to be very slow (Brancaleoni &
Gerdol 2006). Pollen records suggest that both herb-graminoid

tundra (or steppe) and shrub tundra dominated by B. nana or
Betula glandulosa have been widespread and stable vegetation
types at different times between 18 000 and 6000 years ago in
northern Alaska (Anderson & Brubaker 1994). Our results
suggest that present plant distributions may lead to two different
stable-states, graminoid-dominated steppe and shrub tundra,
as climate warming continues in the Arctic.
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