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Summary

 

The effects of increased atmospheric CO

 

2

 

 concentrations on vegetative growth and
competitive performance were evaluated, using five meta-analyses. Paying special
attention to functional groups, we analysed responses at three integration levels:
carbon economy parameters, vegetative biomass of isolated plants, and growth in
competition. CO

 

2

 

 effects on seed biomass and plant-to-plant variability were also
studied. Underlying the growth stimulation is an increased unit leaf rate (ULR), espe-
cially for herbaceous dicots. This is mainly caused by an increase in the whole-plant
rate of photosynthesis. The increased ULR is accompanied by a decrease in specific
leaf area. The net result of these and other changes is that relative growth rate is only
marginally stimulated. The biomass enhancement ratio (BER) of individually grown
plants varies substantially across experiments/species, and size variability in the
experimental populations is a vital factor in this. Fast-growing herbaceous C3 species
respond more strongly than slow-growing C3 herbs or C4 plants. CAM species and
woody plants show intermediate responses. When grown in competition, C4
species show lowest responses to elevated CO

 

2

 

 at high nutrient conditions, whereas
at low nutrient levels N

 

2

 

-fixing dicots respond relatively strongly. No systematic
differences were found between slow- and fast-growing species. BER values
obtained for isolated plants cannot be used to estimate BER of the same species
grown in interspecific competition – the CO

 

2

 

 response of monocultures may be a
better predictor.
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Abbreviations

 

BER, Biomass enhancement ratio; FCI, Fraction of daily fixed C that is invested in
growth; LAR, leaf area ratio; LMF, Leaf mass fraction; PS

 

A

 

, daily rate of whole plant
photosynthesis per unit leaf area; SLA, specific leaf area; RCI, relative competition
intensity; RGR, relative growth rate; ULR, unit leaf rate.
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I. Introduction

 

The prospect of global changes in climate has triggered a wide
variety of research in the past 25 years. One of the aspects that
has received ample attention is the sharp rise in the
atmospheric CO

 

2

 

 concentration and the effects thereof on
plant growth and functioning (Ward & Strain, 1999; Körner,
2001; Bazzaz & Catovsky, 2002). The primary and
instantaneous responses of an increase in the CO

 

2

 

 atmosphere
around the plant are an increased rate of photosynthesis and
a decreased rate of transpiration at the leaf level. The increase
in C-fixation is due to repression of photorespiration and
because of an increased substrate supply. The decreased water
loss is due to a partial closure of the stomata (Lambers 

 

et al

 

.,
1998). The effects on physiology and growth of the plant at
the longer term are less clear. For example, the stimulation
of photosynthesis may partially or totally disappear, due to
negative feed-back effects that occur frequently, though not
invariably (Woodward, 2002). The increased growth at
elevated CO

 

2

 

 may result in plants with a larger leaf area,
which will diminish or nullify the reduction in water use
shown at the leaf level (Field 

 

et al

 

., 1995; Samarakoon &
Gifford, 1996). Secondary changes in morphology, allocation
and chemical composition may also affect growth (Poorter

 

et al

 

., 1997). Consequently, the picture emerging from
experiments at the whole plant level is rather diffuse, and this
holds even more if we try to scale up CO

 

2

 

-induced growth
responses from the individual to the stand level (Mooney

 

et al

 

., 1999).
Given the wide range of experiments on the growth of

plants at elevated CO

 

2

 

 published so far there is a need for a
more formal analysis of the accumulated data. Such a meta-
analysis has been carried out for the growth response of agri-
cultural species (Cure & Acock, 1986; Kimball, 1986), wild
grasses (Wand 

 

et al

 

., 1999), CAM species (Drennan & Nobel,
2000) and woody species (Curtis & Wang, 1998; Kerstiens, 2001).
However, we think that it is even more fruitful to bring together
information of all the higher plant groups investigated so far,
in a structured way that enables systematic comparison across
widely different groups of species (Poorter, 1993).

Having said so, two problems arise. On the one hand, there
is a huge amount of information available on a large number
of species (

 

±

 

350) that all seem to respond more or less to
CO

 

2

 

. How can this information be structured? On the other

hand, with 350 species investigated, we still have no clue
about the response of far more than 99% of the total higher
plant species on earth. It is evidently impossible to test all of
them. How then could any systematic insight be obtained in
the response of plants or vegetations in general? A possible
solution to both these problems is the concept of ‘functional
groups’, an approach pioneered by Raunkiaer (1934). The
idea behind this concept is that a number of species that have
‘functional’ traits in common possibly show a relatively similar
response in behaviour to a change in an environmental factor
(Smith 

 

et al

 

., 1997; Lavorel, 2002). In the case of plants, this
could imply that species that have a similar life history (e.g.
annual as compared to perennial), life form (e.g. woody as
compared to herbaceous), the same physiological character-
istics (such as type of photosynthesis or phloem loading) or the
possibility to form symbiotic relationships (with N

 

2

 

-fixing
organism, or with mycorrhizal fungi) would be more similar
in their response to CO

 

2

 

 than species belonging to different
categories. If indeed several functional groups could be dis-
cerned, we would have a handle to design key experiments
and to generalise across species, even those that have not been
investigated yet.

The number of experiments that have described the growth
response of isolated plants to elevated CO

 

2

 

 is substantial
(Körner, 2001). Unfortunately, given the comparative
approach we want to take, most of the information is frag-
mentary. Hardly ever does the number of species tested in
one experiment reach five or more, and even in those cases
where a relatively high number of species was tested (10 or
more: Carlson & Bazzaz, 1980; Morison & Gifford, 1984;
Campbell 

 

et al

 

., 1991; Hunt 

 

et al

 

., 1991, 1993; Poorter,
1993; Mortensen, 1994; Körner 

 

et al

 

., 1995; Roumet 

 

et al

 

., 1996;
Bunce, 1997; Ziska & Bunce, 1997; Atkin 

 

et al

 

., 1999; Bazzaz
& Catovsky, 2002), species were generally taken from one or
two functional groups. As long as this type of comparative
data is not available from a number of screening programs
that comprise a variety of functional groups – and this is
apparently not easily achieved – the only way to test for func-
tional groups is a retrospective quantitative analysis of the liter-
ature. Such a meta-analysis forms the subject of this paper.

Conceptually speaking, plant mass at a given time after the
onset of germination is determined by three factors. The first
is the mass of the seed, where both the size of the embryo and
the reserves will determine the starting capital. The second
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factor is the time required for such a seed to complete germ-
ination and to be transformed into a viable autotrophic seed-
ling: the faster the germination rate, the quicker a seedling can
start to fix carbon and gain biomass. The third is the growth
rate achieved by the vegetative plant over the subsequent
growth period. Each of these factors may contribute to the
growth stimulation by elevated CO

 

2

 

. Our first objective was
therefore to analyse how the growth response to CO

 

2

 

 is
brought about at the level of the whole plant. We do so by
studying CO

 

2

 

 effects on seed mass as well as relative growth
rate. By breaking down the growth rate of a plant into a
number of underlying components, we can test in a top-down
approach to what extent the various components of a plant’s
carbon budget are affected by elevated CO

 

2

 

. The second aim
is to analyze to what extent variation in the biomass response
exists between and within species, for plants grown without
mutual interference. Third, we wanted to know how much of
the variation in response could be explained by categorising
species into a limited number of functional groups.

One of the reasons for studying the growth and perform-
ance of isolated plants is that it is a relatively simple system by
which we can characterise the response of a given species to
elevated CO

 

2

 

. The tacit assumption behind is that an inher-
ent attribute of a plant, for example having a C4 type of
photosynthesis or not, will determine its response not only in
a glasshouse or growth room, but also in competition with
other species in the field. However, such extrapolations
towards a higher integration level do not always hold (Körner,
2001). Our fourth objective was to formally test how useful
the observed functional types, derived from data of isolated
plants, are in predicting the CO

 

2

 

 response of species in a com-
petitive environment.

 

II. Materials and methods

 

We reviewed the literature, concentrating on the effect of
elevated CO

 

2

 

 on seed mass, growth rate and its underlying
parameters, and vegetative plant biomass. For the analysis
of seed mass (section III) we set up a database with 150
observations in 80 experiments. For the growth parameters we
build on Poorter & Nagel (2000), arriving at 180 observations
in 40 experiments. As both seed mass data and growth
analyses are relatively scarce, we were not very restrictive
in the selection of the data and included experiments that
studied plant responses at control levels between 280 and
410 µl l

 

−

 

1

 

 (350 on average) and elevated levels between 500 and
1000 µl l

 

−

 

1

 

 (670 on average). In case of multiple CO

 

2

 

 levels,
we selected those closest to 350 and 700 µl l

 

−

 

1

 

 and in multi-
factorial experiments studying CO

 

2

 

 

 

×

 

 environment interactions
we used that treatment where biomass production was
highest at the control CO

 

2

 

 level. Growth parameters were
derived from isolated plants, but seed mass data were used
from experiments on individuals, monostands as well as mixed
stands.

For the analysis of the growth response to elevated CO

 

2

 

(sections IV to V), we build on a database from previous
reviews (Poorter, 1993, 250 observations; Poorter 

 

et al

 

., 1996,
230 more observations) and added to that the literature of the
last 6 years (340 observations). In this case we were more
restrictive and only included those experiments where plants
had been grown individually, at control CO

 

2

 

 concentrations
between 300 and 400 µl l

 

−

 

1

 

 (350 on average) and at elevated
CO

 

2

 

 levels that were roughly twice higher (between 600 and
800 µl l

 

−

 

1

 

; 690 on average). We focused on plants that were
in the vegetative stage. For a review on the effect of CO

 

2

 

 on
reproductive characteristics, the reader is referred to Ackerly
& Bazzaz (1995) and Jablonski 

 

et al

 

. (2002). In those experiments
where plants were grown under different environmental
conditions, we again selected data from that treatment where
control plants were growing fastest. In this way we applied a
filter, trying to ensure that plants were grown under relatively
favourable conditions. However, in this type of analysis it is
unavoidable that there will still be a considerable range in
experimental conditions and duration of treatments. For an
analysis of interactions with other environmental factors we
refer to Idso & Idso (1994) or Poorter & Pérez-Soba (2001).

For the analysis of the response of plants grown in intra or
interspecific competition (section VI), we build on the data-
base from Navas (1998), arriving at 260 observations in 40
experiments. Again we based the analysis on dry mass data, in
this case from above-ground material only, as below-ground
biomass is often not measured at the species level because
of technical difficulties. Control CO

 

2

 

 concentrations were
between 280 and 400 µl l

 

−

 

1

 

 (350 on average) and elevated
concentrations between 600 and 800 µl l

 

−

 

1

 

 (660 on average).
Plants were sometimes in the vegetative, but more often in the
generative stage. Experiments were carried out mostly in arti-
ficial assemblages, but sometimes in the field. They were
included only if the total above-ground biomass as well as the
biomass of each of the composing species was known. If
experiments were made at a range of nutrient levels, we only
selected the two extreme cases. Apart from these studies along
a nutrient gradient, some experiments were carried out with
crop or weed species under fertile conditions, whereas others
were with wild species under a strongly limiting nutrient sup-
ply. To differentiate between the two, we categorised for each
experiment whether plants were grown at a relatively high or
low nutrient level and analysed the responses separately.

For biomass the most simple and biologically meaningful
way is to quantify the CO

 

2

 

 response as the ratio between
total plant mass of high-CO

 

2

 

 grown plants and that of
plants grown at control levels. We will call this the Biomass
Enhancement Ratio, and use BER as an acronym. For other
parameters we will use ratios as well. As ratios do have a log

 

e

 

-
normal distribution by nature (Sokal & Rohlf, 1995), a log

 

e

 

-
transformation was carried out before any statistical analyses.
Mean values presented are based on back-transformed log

 

e

 

-
based averages.
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III. Factors underlying the growth response

 

1. Seed mass and germination

 

What will be the effect of elevated CO

 

2

 

 on the size of the seeds
produced? With an improved carbohydrate availability of
the mother plant at elevated CO

 

2

 

, one may expect that one
of the constraints on seed mass would be lifted and that seed
size would increase. On the other hand, seed mass 

 

per se

 

 is
generally far less variable than the total number of seeds
produced (Harper, 1977). The effects reported in the literature
are variable, even within a species. Most of the studies have
focused on the crop species 

 

Triticum aestivum

 

 and 

 

Glycine
max

 

. For both species decreases as well as increases in seed
mass have been observed (Fig. 1a), the variation most likely
depending on cultivar and/or environmental conditions. On
average, both 

 

Triticum

 

 and 

 

Glycine

 

 seeds increase significantly
in mass with CO

 

2

 

 concentration, with a larger stimulation for
the latter (2% vs 9%, 

 

P <

 

 0.05).
Will all species be stimulated in seed mass? Not to give

excessive weight to a frequently measured species we averaged
all observations per species before the analysis, under the
assumption that environmental effects are leveled out across
groups of species. The results for a total of 50 species are
shown in Fig. 1(b). In a number of cases, seeds of high CO

 

2

 

plants were found to be smaller, with differences ranging from
almost nil to 25% (e.g. 

 

Bromus rubens

 

, Huxman 

 

et al

 

., 1998).
Others have reported increases in seed mass, up to 45% (e.g.

 

Cassia fasciculata

 

, Farnsworth & Bazzaz, 1995). Averaged over
all herbaceous species, the effect of maternal CO

 

2

 

 on seed
mass was nil, and there were no significant differences
(

 

P >

 

 0.5) between monocots, herbaceous legumes and other
herbaceous dicots. Thus, we conclude that across these func-
tional groups, seed mass will not contribute to a significant
extent to the observed biomass stimulation. In a number of
species, the difference may affect plant size of the next genera-
tion, though. A spectacular example is the seed mass of the
only woody species investigated so far, 

 

Pinus taeda

 

 (Hussain

 

et al

 

., 2001). High CO

 

2

 

 plants produced 90% heavier seeds,
with a much higher lipid concentration. Lipids do have a high
C-concentration and it requires relatively large amounts of
glucose to be synthesised (Penning de Vries 

 

et al

 

., 1974). If
plants are C-limited, one could expect that species with a high
lipid concentration in their seeds would show the largest
increase in seed mass when mother plants were grown at high
CO

 

2

 

. The fact that a species like 

 

Glycine max

 

, which also has
a high lipid concentration, shows a strong response as well
(Fig. 1a), does fit in with this idea. However, a third species with
a high oil concentration in the seeds, 

 

Brassica juncea

 

, is among
the ones with the most negative response (–20%; Tousignant
& Potvin, 1996). Clearly, more systematic experiments in this
field are required before a proper answer can be provided.

Germination 

 

per se

 

 is generally not affected directly by a
higher CO

 

2

 

 concentration (Morse & Bazzaz, 1994; Andalo

 

et al

 

., 1996; Huxman 

 

et al

 

., 1998). Given the overall high
CO

 

2

 

 concentration in the soil, it is questionable whether a
doubling in the atmospheric CO

 

2

 

 concentration would have
any direct effect (Ward & Strain, 1999). However, maternal
effects have been reported, with a much lower germination
rate for seeds from high CO

 

2

 

 parents of two 

 

Ipomoea

 

 species
(Farnsworth & Bazzaz, 1995) up to an increased germination
rate in 

 

Pinus taeda (Hussain et al., 2001). The consequence of
such maternal effects are as yet only scarcely studied (Tousignant
& Potvin, 1996; Bezemer et al., 1998), although they may have
a profound impact on the growth and population dynamics
of different species through changes in size hierarchy (Morse

Fig. 1 (a) Box plots, characterizing the distribution of observed 
effects of elevated CO2 on seed mass of Triticum aestivum (n = 43) 
and Glycine max (n = 20). Plotted is the ratio between individual 
seed mass produced by plants grown at high CO2 and those grown 
at control CO2 levels. Numbers above the boxplots indicate the 
average increase in seed mass. Asterixes below the boxplots show 
whether the response deviates significantly from zero (ratio = 1): 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. The boxplots indicate 
the 5th, 25th, 50th, 75th and 95th percentile of the distribution. 
(b) Distribution graph of the effect of CO2 concentration on seed 
mass. Observations are averaged per species. Number of species per 
category: monocots 21, herbaceous legumes 13, other herbaceous 
species 18, woody species 1. Literature used for the analysis are listed 
in Appendix 1.
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& Bazzaz, 1994) or reproductive behaviour (Bazzaz et al.,
1992). In most growth experiments discussed in this paper,
however, seeds from the same batch were used for both control
and high-CO2 grown plants. Thus, in the analysis of biomass
responses (section V), differences in seed mass or germination
effects will not play a role.

2. RGR, ULR and LAR

To analyse the growth response of plants to a given
environmental factor, the concept of growth analysis can be
used, a top-down approach tightly connected to the carbon
budget of the plant. Growth then is analysed in terms of
‘Relative Growth Rate’ (RGR, the increase in biomass per unit
time and per unit biomass present). This parameter can be
factorised into the ‘Unit Leaf Rate’ (ULR, the increase in
biomass per unit leaf area and per unit time), a factor closely
related to the carbon gain and losses of the plant per unit leaf
area, and the ‘Leaf Area Ratio’ (LAR), which indicates the
amount of leaf area per unit plant mass (Evans, 1972). A
problem is that the effect of CO2 on RGR is relatively small
and often time-dependent, occurring only at the early stage of
plant growth (references in Poorter, 1993; Centritto et al.,
1999). In those experiments where seedlings were pregrown
at control levels of CO2 and then transferred to high CO2, a
transient stimulation of RGR is apparent (Fonseca et al.,
1996; Gibeaut et al., 2001). In experiments where the seeds
are germinated at different CO2 levels, the CO2-induced RGR
stimulation is already partly over by the time of the first harvest
(Wong, 1993; Roumet et al., 1996; Bunce, 1997). This has to
be kept in mind when the distribution of RGR data is
considered. Averaged over a wide range of experiments with C3
species, RGR increases by 8% (Fig. 2a; 130 observations in 50
experiments), but the stimulation does not statistically differ
from zero, due to quite a number of cases where RGR is not
affected at all.

Although changes in RGR are small and only transient in
time, the growth components underlying RGR do shift more
substantially and over a longer time. The largest change is in
ULR, with an average increase of 24% (Fig. 2a; P < 0.001).
The increase in ULR is balanced by a decrease in LAR of on
average 13% (P < 0.001). There are some differences between
groups of species in this respect, but they are generally small
and only marginally significant. The exception is formed by
the herbaceous monocots and dicots: although there is no
difference in RGR stimulation between the two groups, the
dicots were showing a stronger increase in ULR at elevated
CO2 (28% vs 11%, P < 0.001) and a stronger decease in LAR
(−17% vs −7%, P < 0.001).

3. Components of ULR

A simple way to break down ULR is to consider it as
composed of three parameters (Poorter, 2002). The first is the

leaf-area based carbon gain in photosynthesis, not determined
as a momentary rate at light saturation as in many physio-
logical analyses, but under growth conditions and integrated
over the day (PSA). In this way, diurnal variation in light intens-
ity and light distribution are taken into account. Moreover,
different leaves on a plant may be in a different physiolo-
gical stage, which necessitates measurements on whole plants
rather than on one specific leaf. The second parameter is
the fraction of the daily fixed C that is not spent in respiration,
exuded or ‘lost’ in another way, such as volitalization, but
retained in the plant to form part of its ‘structural’ biomass
(FCI, fraction of fixed C incorporated). The third parameter
is the carbon concentration of the plant material ([C]), which
indicates how much C has to be invested in C-skeletons to
build a given unit of biomass. In formula

eqn 1

Fig. 2 Box plots of ratios of (a) the growth parameters relative 
growth rate (RGR; n = 130), unit leaf rate (ULR; n = 130), leaf area 
ratio (LAR; n = 130), specific leaf area (SLA; n = 70) and leaf mass 
fraction (LMF; n = 70), for plants grown at elevated and ambient CO2 
concentration. (b) Ratios of the rate of whole-plant photosynthesis 
per unit leaf area (PSA; n = 35), the fraction of daily fixed C that is 
incorporated in the plant (FCI; n = 29) and the whole-plant carbon 
concentration ([c]; n = 25). Literature used for the analyses of RGR 
and growth components are listed in Appendix 2, for the analyses of 
C budgets in Appendix 3. For more information on boxplots see the 
legend of Fig. 1.

ULR
PS FCI
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Although there is a wide range of information available at
the level of the whole plant in terms of changes in growth, and
even more at the individual leaf level in terms of C-fixation,
we know very little about the whole-plant carbon fluxes and
concentrations that basically link the two. In general, we may
expect the daily rate of photosynthesis to increase with ele-
vated CO2, simply because it happens in most or all indi-
vidual leaves. This indeed is confirmed by measurements in
which the C-gain of whole plants is analyzed (Fig. 2b;
P < 0.001), although the stimulation can be transient when
measurements are made over longer time (Mousseau, 1993;
Roumet et al., 2000). Interestingly, although the dataset is
small (n = 35) and does not adequately cover the various func-
tional groups, herbaceous dicots showed a stronger increase in
photosynthesis than the monocots (31% vs 12%, P < 0.05),
which is in line with the stronger increase in ULR observed
above.

Information on the fraction of daily fixed C that is incor-
porated into the plant’s biomass is very scarce. With the rate
of photosynthesis increased and the rate of respiration hardly
affected by CO2 (Bruhn et al., 2002), one would expect the C-
losses relative to the C-gain to decrease and – assuming exudation
and volatilization to be constant – FCI would go up. This does
indeed occur, although the average increase (6%; Fig. 2b)
does not significantly differ from zero and is small compared
to the average change in whole-plant photosynthesis (28%).

Carbon concentrations of whole plants are seldomly
reported. The C-concentration of leaves generally decreases
somewhat for plants that have a high C-concentration by
nature, such as woody species, and increases somewhat for
plants that inherently have a low C-concentration, such as
fast-growing herbs, but the changes are mostly small and do
not exceed the 3% (Poorter et al., 1992; Poorter et al., 1997).
As changes in the C-concentration of stems and roots are
generally less pronounced (Den Hertog et al., 1993), and
shifts in allocation between leaves, stems and roots are
minimal (Poorter & Nagel, 2000), we expect changes in the
C-concentration of the whole plant to be marginal. This is
confirmed by the few data in the literature, showing an average
increase of 1% only (Fig. 2b; P < 0.05). Thus, as far as informa-
tion is present, it seems that the observed increase in ULR is
mainly due to an increased rate of whole plant photosynthesis
per unit leaf area, whereas changes in FCI or whole plant C
concentration are minor factors (Fig. 2a,b). Similar conclusions
were drawn by Wong (1990) and Evans et al. (2000) in com-
parisons of ULRs with photosynthetic rates measured on
individual leaves.

4. Components of LAR

LAR is the product of the Leaf Mass Fraction (LMF, the
fraction of total plant biomass that is allocated to leaves) and
the Specific Leaf Area (SLA, amount of leaf area per unit
biomass). The change in LMF at elevated CO2 is generally

small (Stulen & Den Hertog, 1993; Poorter & Nagel, 2000;
Fig. 2a), although a CO2-induced shift in allocation towards
the roots may occur occasionally (Stulen & Den Hertog, 1993;
Sigurdsson et al., 2001), though not invariably (Maroco
et al., 2002) when plants are grown at a low nutrient availability.
There was no difference in LMF change when various func-
tional groups were compared.

The change in SLA is much stronger (Fig. 2a) and a
decrease occurs in almost all C3 plants under a wide range of
environmental conditions. SLA depends on differences in leaf
anatomy, and should be reflected in the chemical composition
on a leaf area basis. Although a meta-analysis is lacking, accu-
mulation of nonstructural carbohydrates is likely to be the
main factor for the decrease in SLA (Wong, 1990; Roumet
et al., 1996) resulting in an increase in leaf density (Roumet
et al., 1999). However, additional effects have been reported,
such as an increase in the leaf thickness due to more cell layers
or a larger cell size (Thomas & Harvey, 1983; Mousseau &
Enoch, 1989; Sims et al., 1998; Lin et al., 2001). There is a
substantial difference between the herbaceous monocots and
dicots, with dicots decreasing 19% in SLA at elevated CO2,
and monocots decreasing only 7% (P < 0.001). We have no
idea to what extent this can be a consequence of the observed
larger stimulation of photosynthesis in dicots. Monocots
more often accumulate soluble carbohydrates such as fruc-
tans, whereas most dicots accumulate more starch (Lambers
et al., 1998). If starch accumulation would have less of a feedback
on photosynthesis than the accumulation of soluble sugars,
this could perhaps form an explanation for the differential
decrease in SLA. However, this is at the moment merely a
speculative hypothesis.

5. Growth response along a CO2 gradient

This paper focuses mainly on the effect of a twofold increase
in the atmospheric CO2 concentration, from c. 350 µl l−1−
700 µl l−1. However, CO2 concentrations have covered a
much wider range throughout geological time scales, with
values estimated as high as 6000 µl l−1 during the
Paleozoïcum (500 million years ago) and as low 200 µl l−1

during the late Pleistocene (15 thousand years ago; Berner,
1997). How do growth parameters respond to a wider range
of CO2 levels? One of the most extended growth experiments
is that of Neales & Nicholls (1978) on wheat. As can be seen
in Fig. 3, strongest changes in parameters like ULR and SLA
are in the low concentration range (200–400 µl l−1). Similar
to what happens with whole-plant photosynthesis, a clear
saturation is shown for these growth parameters at higher
CO2 levels. Another point that should be stressed is that
growth analyses generally deal with plants in the vegetative
phase. Responses of plants in the generative phase are not
necessarily similar to those of vegetative plants (Thomas et al.,
1999), a conclusion that probably holds strongest for annual
plant species.
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IV. Variation in biomass enhancement ratio

1. BER distribution

Our literature compilation on the growth response of plants
to elevated CO2 comprised approx. 350 experiments. Some of
these were on one species, others on more, and in a number
of cases the same species was studied in different experiments,
yielding a total of 800 BER observations for approx. 350
species. The overall distribution of the observed BER values is
shown in Fig. 4. Clearly, there is wide variation between
observations, with some results showing a BER higher than
four, implying an over 300% increase in plant mass due to
elevated CO2, and others a BER lower than 0.7, implying a
more than 30% decrease in mass for high-CO2 plants. The
most simple and straightforward explanation would be that
these differences are due to variation in response between
species, with some species showing consistently high BER
values across experiments and others showing low values. We
tested this hypothesis by selecting only those data in the
compilation for which at least three independent observations
per species in different experiments had been made. We
arrived at a total of 495 observations for 70 species, which
were subjected to an analysis of variance with loge-
transformed BER values as the dependent and species as the
independent variable. The factor species explained 31% of the
total sum of squares. If we would consider species as a random

factor, assuming that these 65 were just a sample out of
the total range of species that could be considered, then only
18% of the total variance is due to species. This leaves an
uncomfortable 82% as ‘unexplained’.

What may be the reason for such a high variability inde-
pendent of species? A first possibility is that the biomass sti-
mulation depends on developmental stage. Thus, starting with
equally sized plants at the beginning of the CO2 enrichment,
one would expect BER to increase from one to a certain
higher value, with possibly only small changes (mostly
decreases) thereafter. That may apply to herbs that enter the
generative phase (Thomas et al., 1999) and has also been
observed for tree seedlings (Norby et al., 1995; Hättenschwiler
et al., 1997; Idso, 1999). However, there is as yet insufficient
insight into the nature and reasons for these ontogenetic
trends, especially in perennial plants. In most herbaceous
species it seems that the main part of the growth stimulation
occurs within a relatively short period of 2 wk after the start
of the CO2 treatment. Availability of extra sinks to which a
high-CO2 plant can allocate their extra fixed C may play an
important role (Reekie et al., 1998). We tried to filter out part
of the effect of developmental stage by focusing on vegetative
plants. However, even then BER may change nonpredictably
during the growth period.

A second possibility for the high intraspecific variability in
BER is that the CO2-induced growth stimulation is strongly
dependent on the environmental differences under which
experiments are conducted. We expect controlled experiments,

Fig. 3 Effect of a range of CO2 concentrations on growth parameters 
of Triticum aestivum. Data from Neales & Nicholls (1978).

Fig. 4 The bars show the distribution graph of the observed biomass 
enhancement ratio (BER) data from 350 literature sources (±800 
data points for 350 species). The bold line is the simulated 
distribution over artificial populations with a mean difference equal 
to the median of the observed data (41%). The artificial populations 
are of a low, intermediate or high variability in combination with a 
low (n = 5), intermediate (n = 8) or high (n = 12) number of plants 
harvested. For more information on the simulation see section IV. 
The dotted line is for BER = 1.0. BER values of the various sources are 
available as supplementary material (Table S1).
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which form the main topic of this review, to differ most in the
integrated daily quantum flux and possibly in water supply
(cf. Garnier & Freijsen, 1994). These two factors have, on
average, only moderate effects on BER (see section VI), which
are by far too small to explain the range in BER values of
Fig. 4. Stronger effects are to be expected if nutrients become
limited, in which case we expect BER to be ‘underestimated’,
or in laboratories in high-ozone areas, where BER may be
‘overestimated’ due to a strong positive CO2 × ozone interac-
tion. Especially water and nutrient availability are strongly
dependent on the relative size of plant and pot, whereas an
environmental factor such as O3 concentration is hardly
ever determined. Therefore, there is not an easy way to sta-
tistically control for these environmental differences. Lloyd
& Farquhar (2000) suggested an iterative restricted maximum
likelihood approach to analyse the effect of species and experi-
ment concurrently. Although less sensitive to unbalanced designs
than most statistical tests, such an analysis is only fruitful
when larger scale experiments are compared that have a range
of species in common. This severely restricts the amount of
information that can be used. The approach we will follow is
to minimise the between-experiment effects by encompassing
information from as many experiments as possible. However,
we fully agree with Lloyd & Farquhar (2000) and Gurevitch
et al. (2001) that factorial experiments with a range of species
as well as environmental conditions are needed to further test
our insights at this point.

A third reason for large variability within species may be
that different researchers used different accessions or geno-
types, which vary in their response to elevated CO2. Such
variation has been ascribed for a number of species (Wulff
& Alexander, 1985; Curtis et al., 1996; Schmid et al., 1996;
Klus et al., 2001). In most cases, however, there are no inde-
pendent experiments confirming that a specific genotype that
responds strongly in experiment A is also the one with the
strongest response in experiment B. As long as such informa-
tion is not present, it may be questionable to what extent these
genotypic differences really play a quantitative role. The rea-
son for this will be discussed in the next paragraphs.

2. Plant-to-plant variability

The three causes given above are biological as well as
deterministic by nature, and have been discussed on various
occasions. A fourth reason for variation in BER, which has
hardly received attention, is that individual plants within an
experimental population vary in biomass (within group
variation), sometimes to a large extent. Although all experiments
in the literature are based on a number of replicates to avoid
biased conclusions, plant-to-plant variability per se has hardly
ever been the focus of attention of biologists, with the notable
exception of size inequality in dense, highly competitive stands
(Weiner et al., 1990; Wyszomirski et al., 1999). In the next
three paragraphs we assess the importance of plant-to-plant

variability. To this end we investigated the variation present in
experimental plant populations, the effect of elevated CO2
thereupon, and the consequences for the reliability of the
BER estimate.

One way to characterise plant-to-plant variability is to cal-
culate the standard deviation of the loge-transformed biomass
data (SlnM). In order to obtain an impression about the size of
SlnM in experimental populations used for growth analysis,
Poorter & Garnier (1996) compiled such values for a variety
of published experiments. We extended this compilation with
data from a range of other studies, separating experiments
with herbaceous species from those with tree seedlings. The
distribution graphs of this compilation are shown in Fig. 5(a)
and (b), respectively. In some cases investigators have selected
for homogeneity of their plants before the onset of the experi-
ment, others have taken a random sample from all seedlings
available. The data on SlnM therefore will underestimate the
biological variability of the species, but gives a good indication
about the homogeneity of the plants used in growth experi-
ments. Taken over all species, the median value of SlnM is 0.31,
with 20% of the values below 0.21, and 20% above 0.51.
Variability in populations of herbaceous species (Fig. 5a) is
generally lower than that in populations of tree seedlings
(Fig. 5b; P < 0.001). Possible reasons could be that a number
of experiments on herbaceous species were carried out with
genetically homogeneous crop plants and that in a number of
tree species seeds are difficult to germinate, causing consider-
able variation in germination times and therefore large differ-
ences in plant size.

Having obtained an impression of plant variability in
growth experiments, we turn to the next question to be
answered: does the elevated CO2 treatment affect plant-to-
plant variability? This is a relevant question, not only because
it could alter the population dynamics of various species, but
also because it may affect the strength of the conclusions based
on a given sampling scheme. Increases in population variabil-
ity have been reported, for example, for plants fumigated with
SO2 (Coleman et al., 1990). To test whether this is also the
case for plants grown at elevated CO2, we calculated the SlnM
observed per harvest in a range of CO2-enrichment studies,
with data kindly provided by a number of authors. There-
after we calculated the ratio of the standard deviations in loge-
transformed dry mass of the elevated-CO2 and the control
plants. The distribution of this ratio for 150 harvests on 60
species in 14 experiments is given in Fig. 5(c). The range is
wide, most likely because a proper estimate of population
variance is difficult to achieve with just 5 or 10 plants harv-
ested. The average ratio, however, is 1.01 and does not deviate
significantly from unity. Therefore, we conclude that plant
populations do not become more variable at elevated CO2.
There is no indication of any difference between herbaceous
and woody species in this respect (P > 0.8).

To what extent can plant-to-plant variability affect the out-
come of CO2 experiments? Let us assume an extreme case, i.e.
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the true BER for all 800 observations compiled in Fig. 4 was
actually the same, with a value equal to the median of all
observations (1.41). For most experiments we do not know
the population variability, but we can arrive at an educated
guess. Let us assume that the experimental populations can be
categorised into three groups, with either a low, an intermedi-
ate or a high SlnM, as derived from the 20th, 50th and 80th
percentile of the distribution given in Fig. 5(a) and (b). The
third part of information that has to be known is the number
of plants harvested per treatment. For the 350 experiments
compiled here, a low value is 5 (P20), the median is 8 and a
high value is 12 (P80). Using all this information, we postu-
lated a species with a high CO2 and a control population that
differed in mass by 41%, and with equal variability in plant
mass. We then simulated experiments with three different
population variabilities in plant mass (σlnM = 0.21, 0.31 and
0.51) and, for each variability, three different sample sizes (n = 5,
8 and 12). For each of the nine combinations we computer-
generated 10 000 experiments, and for every experiment we
calculated an average BER. The resulting distribution of
90 000 BER values, which we consider to be representative of
what could be expected from a compilation of all of the actu-
ally observed BER results, is shown as the continuous line in
Fig. 4. Compared to the actually observed distribution, the
simulated distribution is surprisingly similar and no signific-
ant difference between the two could be found with a χ2 test
( df = 17, P > 0.15). Therefore, we have to conclude that vari-
ability in the plant population plays an unfortunate, but large
role in determining the outcome of experiments. Clearly, the
number of plants harvested is often insufficient given the
range in plant mass within an experimental group of plants.
This is especially problematic as variability in BER is the sum
of the variability in both the numerator and denominator of
the BER calculation (cf. Jasienski & Bazzaz, 1999).

3. Consequences for data interpretation

What are the take-home-messages of this analysis? The first
conclusion is that in these type of experiments attention
should be given to a sufficiently homogeneous experimental
population. Clearly, the outcome of single experiments
may vary to a large extent if highly variable populations
are investigated. This is the more critical as the growth
stimulating effect of CO2 is relatively small compared to the
effect of other environmental variables such as nutrient
availability or light intensity, where plant masses may vary
fivefold or more across treatments. Consequently, it requires
more precision to separate the CO2 effects from error
variation than in the case of light or nutrient effects. Second,
credibility for one or another hypothesis explaining inter-
specific variation in growth responses of plants cannot come
from results of one or two specific experiments, because repeat-
ability is not very high. Rather, we think that a wider range
of experiments should be performed before we can conclude

Fig. 5 Distribution graphs of variability in total plant dry mass in 
experimental populations used for the analysis of plant growth, for 
(a) herbs (n = 700) and (b) woody species (n = 350). (c) Distribution 
graph of the ratio in variability of plants grown at elevated CO2 and 
ambient concentrations (n = 80). Variability is expressed as the 
standard deviation of the loge-transformed total dry mass for plants 
at a given harvest. The dotted line indicates where the variabilities are 
equal. Data for (C) are from Poorter et al. (1988), Poorter (1993), 
Roumet et al. (1996), Volin & Reich (1996), Reekie et al. (1998), 
Volin et al. (1998), Atkin et al. (1999), Cornelissen et al. (1999), 
Navas et al. (1999), Schortemeyer et al. (1999), Greer et al. (2000), 
Hoffmann et al. (2000), E. Garnier (unpublished) and M. Schortemeyer 
(unpublished). Data for (a) and (b) are from Poorter & Garnier 
(1996), supplemented by those listed above and by Cornelissen et al. 
(1998), Pattison et al. (1998), Poorter (1999), Wright & Westoby 
(1999), Van Rijn (2001) and R. Villar (unpublished).
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that a (group of ) species behaves differently with respect
to CO2 than another (group of ) species. Such an approach
bears the risk that experiments with different experimental
conditions are compared. As discussed above, it is impos-
sible to quantify these effects for each of the experiments
described in the literature. This may imply that differences
between species are confounded to a certain extent with
growth conditions. However, given the large number of spe-
cies and experiments, the chances that this may drastically
affect the outcome of the analysis seem small. The other side
of the coin is that the wide variety of experimental conditions
allows for more general statements (Poorter, 1993). Thirdly,
no matter what groups of species are compared, or how
similar experimental conditions were, there will always be a
lot of scatter, so the amount of variation explained by any
contrast between groups of species will at best be modest. For
the analysis of BER in the next section of this paper, we choose
to consider variation at the level of species. Therefore, we
averaged all data per species, assuming that most of the
variation at the within-species level was random.

There is one other aspect that deserves attention. The
timescale for the compiled experiments varies from 10 d to
50 months, with a median value of 4, 7 and 16 wk for crop,
wild herbaceous and woody species, respectively. As discussed
in section III, most of the CO2-induced growth stimulation
is generally found at the beginning of the treatment. However,
for most species time-dependent changes have not been invest-
igated and the phenomenon is in general ill-understood. It
can be shown that it is the absolute difference in RGR that
translates into a relative biomass stimulation after a given
period of time. From the BER at the end of the experiment
and the duration of the CO2 fumigation we can back-calculate
the average absolute stimulation in RGR over the whole experi-
mental period, assuming equal seed or seedling size at the
onset of CO2 enrichment (for a mathematical derivation see
Poorter et al., 1996). In the analyses in section V, we decided
to consider only those differences between groups relevant
where both the average BER change and the RGR stimula-
tion show similar direction and statistical significance.

V. Functional groups of species

1. C3, C4 and CAM

In this section we analyze to what extent functional groups of
species differ in their growth response to elevated CO2. The
most obvious categorization that could be envisaged is based
on the type of photosynthesis (Bazzaz & Catovsky, 2002).
The commonest group of species, the C3 species, has a
limiting CO2 concentration at the level of the chloroplast and
therefore can be expected to respond with an increased C-gain
upon a rise in the CO2 concentration around the leaves. Plants
with a C4 type of photosynthesis posses a CO2 concentrating
mechanism that increases the CO2 concentration at the site of

Rubisco to c. 2000 µl l−1 (Sage, 2001). At this concentration
the oxygenating function of Rubisco is repressed, and the
carboxylating function is almost saturated. Purely on that
basis, C4 plants are expected to respond not or at best
marginally to a rise in atmospheric CO2.

Analysis of the BER values complies with these notions. C3
plants show, on average, the strongest response (+45%; 300
species) and C4 plants the smallest (+12%; 40 species;
Fig. 6). Both groups have BER values significantly higher
than one, implying that at least a number of C4 species are
stimulated in their growth as well. Several explanations are
possible for this intriguing response (Ghannoum et al., 2000).
First, photosynthesis may not be completely saturated at cur-
rent CO2 concentrations in some or all C4 species. Second,
CO2-induced decreases in stomatal conductance may reduce
transpiration, thereby conserving soil water that can be
deployed for extra photosynthesis later in time. Thirdly, the
decrease in transpiration could increase leaf temperature. As
C4 photosynthesis is strongly dependent on temperature, this
could be a likely explanation as well. A fourth alternative that
has been mentioned is that cotyledons of C4 species may be
C3 like, or that young developing leaves of C4 species are
leaky and therefore may increase photosynthesis at elevated
CO2 (Dai et al., 1995). However, this last option is not con-
sidered likely (Ghannoum et al., 2000). The increase in daily
photosynthesis required to explain the improved growth is in
the range of 2% only (Poorter, 1993), a value that may easily
be reached via any of these alternatives.

CAM species are also stimulated, with an average response
in between that of C3 and C4 species (23%; P < 0.001). One
of the physiological reasons for the positive growth response
is that a number of these species are CAM-facultative, they
can switch to a C3 type of photosynthesis when water is
available. Others show direct CO2 fixation by Rubisco early in

Fig. 6 Distribution of biomass enhancement ratio (BER) values for 
different categories of species (C3 herbs: n = 144, woody C3 species: 
n = 160, C4 species: n = 41; CAM species: n = 9). Graphs show 
boxplots. For more information on boxplots see the legend of Fig. 1.
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the morning or late in the afternoon. Under these circum-
stances an increased C-fixation is to be expected. However,
CO2 fixation by PEP-carboxylase during the night is also
stimulated by elevated CO2 (Li et al., 2002). This is an ill-
understood phenomenon, as it is generally thought that this
enzyme is saturated at current CO2 levels (Drennan & Nobel,
2000). Unfortunately the total number of CAM species meas-
ured is very low (nine), so any generalization for this group of
species is premature. One interesting test would be to com-
pare the response of species that are CAM facultative and
those that are obligatory CAM in their CO2 fixation. A point
of attention is that in quite some cases CO2 treatment did not
start with seeds or recently germinated seedlings, but with
larger plants or cuttings. Calculating a BER value on the basis
of total biomass may then underestimate the real growth
response. It would require a time-course of the growth stimula-
tion to analyse whether the time-dependency of the stimulation,
as observed for C3 species, also occurs in this group of plants.

Testing with a one-way ANOVA we found the differences
between plants of the photosynthetic groups highly signi-
ficant (P < 0.001). However, again the proportion of the sum
of squares explained by the model is low, being 10% only.
Notwithstanding this variation, the absolute differences
between the functional groups of species are quite consistent
and do hardly differ from earlier analyses, based on 1/3 or
2/3 of the now available data (Poorter, 1993; Poorter et al.,
1996). We checked the effect of data base size by randomly
dividing the 800 observations into three groups, recalculating
mean responses of C3, C4 and CAM species for each of the
groups. Although small differences between the three data sets
were present, they did not affect the main conclusion to any
extent. Therefore, we conclude that the sample size of this
database is sufficient for robust conclusions with regard to the
investigated C3 and C4 species.

2. Within C4 species

There are indications that not all C4 species respond to the
same extent. Ziska & Bunce (1997), for example, found
Amaranthus retroflexus and five other C4 weed species to
respond more strongly than Zea mays and some other C4 crop
species. Differences in BER between Amaranthus retroflexus
and Zea mays have been quite systematic, indicating a species–
specific response (Poorter et al., 1996). These species belong
to different C4-subtypes, which vary in leaf morphology as
well as in the enzymes used for decarboxylation of the C4
product formed. The NAD-ME type is considered to have
vascular bundle sheath cells that are the most leaky for CO2,
and therefore may respond more to an increase in CO2.
LeCain & Morgan (1998), however, found NAD-ME species
to have lower BER values than NADP-ME species and a
similar trend was observed by Wand et al. (2001). Ziska &
Bunce (1997) could not relate differences in BER to the
subtype. Averaged over all observations available, there was no
difference between species of the two groups (Table 1). There
are only few data for C4 species of the PCK subtype, so we did
not include them in the tests, but contrary to the other
subtypes the species investigated so far showed a negative
growth response. A firm conclusion awaits more evidence.

Alternatively, a difference between Amaranthus and Zea
might be caused by the very different genetic background,
with one species belonging to the dicots, the other to the
monocots. The number of dicots investigated is small and
although they seem to respond more than monocots, the dif-
ference is not significant. Simply analyzing C4-subtype and
lineage (monocots vs dicots) separately may ignore the fact
that these factors could be confounded to a certain extent.
This would be especially true if, by chance, the investigated
monocots were almost all from the NADP-ME subtype and

 

Class

Simple contrast P 

BER

∆RGR 
(mg g−1 
day−1) n

BER ∆RGR

sc mr ba sc mr ba

Monocot 1.11 3.0 37 ns ns ns ns ns ns
Dicot 1.23 5.9 4

NAD-ME 1.10 2.6 10 ns ns ns ns ns ns
NADP-ME 1.18 4.8 23

PCK 0.90 −2.6 4

Also given are the number of species for each category. Significance levels are given for three 
types of analyses. The column ‘sc’ indicates the result of a two-sample t-test for each simple 
contrast. The column ‘mr’ gives the significance when all attributes are simultaneously 
analysed in a multiple regression, using dummy variables (0 and 1) for the various groups. 
The last column (‘ba’) gives the results if the simple contrasts were carried out on the data 
before all observations for a species were aggregated (cf. section IV). In the latter case n is 
much higher. Average values were rather similar for the 3 analyses. Significance levels are: 
*, P < 0.05; **, P < 0.01; ***, P < 0.001; + , 0.05 < P < 0.10; ns, nonsignificant, P > 0.10.

Table 1 Average values for the biomass 
enhancement ratio (BER) and the relative 
growth rate (RGR) stimulation to CO2 of C4 
plants, as dependent on lineage (monocots/
dicots) and C4 subtype (NAD-ME, NADP-ME 
and PCK)
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the dicots from the NAD-ME subtype, or vice versa. Therefore
we analysed the BER and RGR response of all NAD-ME and
NADP-ME species with a multiple regression, in which we
entered C4-subtype and lineage as dummy variables. As long
as two traits are not completely correlated, such a regression
can separate the effect of both factors. Finally, we also tested
the significance of the difference between the groups without
aggregating data per species. Table 1 shows the result of these
analyses: there is no systematic effect of subtype or lineage in
the compiled data set, independently of the way we tested the
data and whether the growth stimulation was expressed as
BER value or as increase in RGR. For the time being, with
so few data on PCK species, we conclude that any systematic
difference between C4 species has to be explained by other
factors than subtype or lineage. Wand et al. (2001) suggested
that C4 species with a large growth potential responded more
than slower-growing species. This is a factor worth investigating,
although it seems at variance with the meta-analysis of Wand
et al. (1999). They found wild C4 species to respond more than
what is generally found for weedy or crop C4 species, where
we would presume these last two groups to be faster-growing.

3. Within C3 herbs

Plants within the group of C3 species share the same type of
photosynthesis, but will that imply that they all behave the
same in response to elevated CO2? We considered three
different contrasts: the one between monocots with dicots,
the possibility to fix atmospheric nitrogen in one symbiotic
relationship or another, and the effect of inherent differences
in growth rate. Again we carried out a multiple regression with
these factors as dummy variables to exclude to some extent the
fact that these factors are not distributed randomly over our
database. Table 2 shows that there was a significant increase
in the RGR stimulation of those plants that are capable of
symbiotic N2 fixation. However, as the actual N2-fixation
strongly depends on nitrate availability in the root envir-
onment (Lambers et al., 1998), it is not known to what extent
these species really were relying on atmospherically fixed N.
Moreover, there was no significant difference in BER. There

was a tendency for monocots to respond more strongly than
dicots, but again the statistical significance strongly depended
on the way the data were treated, and whether the stimulation
was expressed as BER difference or RGR increase. Therefore,
we conclude for the moment that monocots and dicots show
similar growth responses to elevated CO2.

The largest and most consistent difference was the one
between inherently fast- and slow-growing species. No matter
how the data were analysed, fast-growing species showed a
much greater response than slow-growing species, the differ-
ence being of the same magnitude as that for C3 and C4
plants in general. A simple explanation is that fast-growing
species operate with a higher LAR than slow-growing species
(Poorter & Van der Werf, 1998). If elevated CO2 stimulates
photosynthesis and also ULR to the same extent in slow- and
fast-growing plants, then the proportional increase in RGR is
the same for species of both groups, but the absolute increase
in RGR is larger for the fast-growing species. And as it is the
absolute increase in RGR that determines the relative response
after a given period of time, this could explain the results.
However, other differences between the species could play a
role as well. Source–sink interaction is an important factor
in determining the growth response, with the highest BER
values observed for species with large sinks (Reekie et al., 1998).
We categorised all crop species as being fast-growing. They
generally have growth rates that come close to those of the
inherently fast-growing wild species. It may well be that such
species are better able to lay down new meristems and invest the
extra-fixed C in structural biomass than slow-growing species.

There have been other efforts in the literature to classify
groups of species with contrasting characteristics. Indeter-
minate as opposed to determinate growth has been mentioned
as a factor that may increase the growth response to CO2
(Oechel & Strain, 1985; Ziska & Bunce, 2000), again because
it will be easier to deploy extra-accumulated sugars. Mycor-
rhizal species may easily metabolise sugars in the fungal net-
work, with possible beneficial effects (Díaz et al., 1993), but
in another experiment a nonmycorrhizal species like Carex
flacca was responding better than all other species (Leadley &
Körner, 1996). Another contrast that has been studied is

 

 

Class

Simple contrast P

BER

∆RGR 
(mg g−1 
day−1) n

BER ∆RGR

sc mr ba sc mr ba

Monocot 1.49 11.4 56 ns ** ns ns * *
Dicot 1.42 11.2 87

N2-fixing 1.50 14.5 23 ns ns * + * ***
others 1.44 10.6 120

Slow-growing 1.25 5.8 41 *** *** *** *** *** ***
Fast-growing 1.59 15.1 63

Table 2 Average values for the biomass 
enhancement ratio (BER) and the relative 
growth rate (RGR) stimulation to CO2 of 
herbaceous C3 species as dependent on 
lineage (monocots/dicots), the potential to fix 
N2 symbiontically and the potential growth 
rate of the species. In the specific case of 
slow-, intermediate and fast-growing species 
we used 0, 0.5 and 1 as dummy variables. 
Only the estimated values for slow- and fast-
growing species are given. For more 
information see the legend of Table 1
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between plants that load their sugars differently into the
phloem. These differences between symplastic and apoplastic
phloem loaders are correlated with life form and ecological
niche (Van Bel, 1999). Körner et al. (1995) investigated pos-
sible differences in starch accumulation between the groups,
but were unable to find any. Differences in growth response
have not been studied.

4. Within woody C3 species

In terms of number of species investigated, more work has
been done on woody species than on herbaceous ones. With
regard to the BER, no difference at all could be found between
these two groups of species (Fig. 6). However, most experiments
with woody species last longer than those for herbaceous
species, implying that the RGR stimulation is much smaller
in the case of woody species. It is obvious that most of the
work on woody species is focused on young tree seedlings,
with a median duration of CO2 enrichment of 16 wk only.
Therefore, it is difficult to forecast longer-term responses of
larger trees on this basis. Longer-term enrichment studies on
a few species indicate that an average stimulation of 30–50%
is achieved in the field as well as in open-top chambers (Curtis
& Wang, 1998; Idso, 1999). This is not different from the
average stimulation for younger trees (Fig. 6).

In this analysis we considered possible functional groups on
the basis of three contrasts: evergreen vs deciduous species,
N2-fixing plants compared to those without the possibility of
N2-fixation, and Gymnosperms vs Angiosperms. Only the
last group showed a significant difference, with Angiosperm
seedlings showing a somewhat stronger response than Gymno-
sperms (Table 3). This is in agreement with what was found by
Ceulemans & Mousseau (1994), but Curtis & Wang (1998)
did not find significant differences, and Saxe et al. (1998)
even claimed the opposite. Another point of uncertainty is
that evergreen species are generally slower-growing than
deciduous species. Therefore, we had expected to see similar
differences as for fast- and slow-growing herbaceous species.

Another attempt for classification has been made by
Kerstiens (2001). In a meta-analysis of a more specific data set

of woody species, he found BER to be higher for shade-
tolerant species than for intolerant ones, especially at high
light. This was partially confirmed in an experiment included
in Bazzaz & Catovsky (2002) where coniferous seedlings
complied with these expectations, but not the deciduous
species. On the contrary, Winter & Lovelock (1999) found
the shade-intolerant pioneer species to show larger responses
than the shade-tolerant climax species. Combined with the
fact that most experiments cover such a limited part of the life
cycle of these plants, we have to conclude that classification of
woody species into functional groups is still complicated.

5. Fast-growing versus slow-growing

In the above analysis of the woody species, we did not classify
these species with respect to their growth rate, as we felt that
we did not have a good overview over this parameter. For
herbaceous C3 plants we were able to categorise species as
slow-, intermediate and fast-growing. These categories are to
some extent arbitrary, and attention has been drawn to the
fact that these differences between fast- and slow-growing
species may not show up in each experiment (Lloyd &
Farquhar, 2000). Apart from the variability discussed in
section IV, such ‘inconsistencies’ may also be due to mis-
classification of the species, or to specific conditions used in
a particular experiment. We therefore extended the analysis,
by selecting those experiments for which RGR of these spe-
cies was specifically measured. Different experiments have
different time-frames, and RGR is not always measured from
the start of the CO2 enrichment. Therefore, we derived the
increase in RGR due to elevated CO2 from the difference in
the BER values and the duration of the CO2 enrichment, as
discussed in section IV. If the absolute increase in RGR is
plotted against the measured growth rate of control plants, a
strongly positive correlation is found: the higher the RGR at
350 µl l−1 CO2, the stronger is the absolute RGR response
(Fig. 7; r2 = 0.52; P < 0.001).

The relationship shown in Fig. 7 comprises both her-
baceous and woody species. The good fit may partly be
fortuitous: by considering the absolute increase in RGR we

 

Class

Simple contrast P 

BER

∆RGR 
(mg g−1 
day−1) n

BER ∆RGR 

sc mr ba sc mr ba

Evergreen 1.51 4.5 83 ns + ns ns ns ns
Deciduous 1.44 5.1 75

N2-fixing 1.49 5.3 26 ns ns ns ns ns **
others 1.49 4.7 133

Gymnosperms 1.36 2.6 30 + * * *** * ***
Angiopserms 1.51 5.3 129

Table 3 Average values for the biomass 
enhancement ratio (BER) and the relative 
growth rate (RGR) stimulation to CO2 of 
woody C3 species as dependent on lineage 
(Gymnosperms/Angiosperms), the potential 
to fix N2 symbiontically and leaf phenology 
(evergreen/deciduous). For more information 
see the legend of Table 1
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standardise time in the sense that the average growth stimula-
tion per day over the whole experimental period is calculated.
As most of the response is in the beginning of the growth
period, and as experiments with tree seedlings are generally
lasting for a longer time than those with herbaceous
plants, the correlation may in part be due to the fact that
tree seedlings grow more slowly than herbaceous plants, and
are measured over a much longer time span. The positive
relationship, however, also holds when herbaceous and
woody species are considered separately, with some indication
that woody species respond a bit stronger at a given RGR
than herbaceous species (P < 0.05). An alternative test is to
analyse the relationship within experiments, thereby mini-
mizing the possibility that slow-growing species were experi-
encing less favourable conditions than the fast-growing
species in the compilation. In almost all experiments where
a range of species with different growth rates is compared
(either tree seedlings or herbaceous plants), the faster-growing
species respond more strongly than slow-growing species.
In a number of cases the response is positive, but statistically
above the 0.05 level (Campbell et al., 1991; Roumet et al.,
1996; Cornelissen et al., 1999), whereas in others the
response is significant (Poorter, 1993; Bunce, 1997; Atkin
et al., 1999; Winter & Lovelock, 1999). For 20 out of the
24 experiments that included species comparisons and
determined RGR values, slopes of the regression lines were
positive, and the average slope (0.088, very similar to the
overall slope of 0.095) was significantly higher than zero
(P < 0.001). Therefore, we consider the broad picture emerg-
ing from the literature confirmed by most individual papers,
and we conclude that under favourable conditions high-

RGR species will respond more strongly to elevated CO2 than
low-RGR species. The mean difference in BER is of similar
magnitude as the one observed between C3 and C4 species.
The fact that fast-growing species respond more strongly to
elevated CO2 has a clear parallel in the growth responses
observed at different light or nutrient availabilities. Also in
those cases the inherently fast-growing species will respond
strongest.

VI. The response in a more natural environment

1. Limiting conditions

One of the goals of the quantitative analysis presented in
section V is to find a classification that might be helpful as a
basis for prediction of changes in natural vegetations. Will C3
species expand relative to C4 species, and will fast-growing
species thrive at the cost of slow-growing ones? There are a
number of complications to which we briefly would like to
draw the attention. First, the analysis in section V is carried
out with species that were grown under more or less ‘optimal’
conditions. This will allow most plants to show their maximal
response to CO2, without environmental constraints or stresses.
In a natural environment conditions will generally be less
favourable. Poorter & Pérez-Soba (2001) reviewed the CO2
response of isolated plants when grown under a variety of
stresses. Table 4 gives the average BER of C3 species in the
close-to-optimal situation as well as in the case that a given
environmental factor causes biomass to be reduced by 50% at
control levels of CO2. For most of these factors (irradiance,
water, salinity, UV-B) changes in BER are small. Interactions
are more substantial in ozone-stressed plants, for which BER
is strongly promoted, and for cold- or nutrient stressed plants,
where the BER is clearly lower than for plants grown at close-
to-optimal conditions. In most natural environments nutrient
availability will be low, so purely on that basis we expect the
response under those conditions to be small.

Fig. 7 The absolute increase in relative growth rate (RGR) due to an 
elevated CO2 concentration plotted against the RGR at control 
conditions (n = 179, r2 = 0.52). Open circles pertain to herbaceous 
plants, closed circles to woody species. In situations where RGR was 
not calculated over the exact period that CO2 was applied, the 
increase in RGR was calculated from the different BER values, 
following the formula given in Poorter et al. (1996). Literature used 
for the analyses are listed in Appendix 4.

Table 4 Average biomass enhancement ratio (BER) of 
environmentally stressed C3 plants as compared to those of relatively 
unstressed plants. For each environmental factor it was calculated 
how the BER would be if the stress factor reduced growth of the 
350 µl l−1 plants by 50% when compared with the ‘optimal’ 
conditions. After Fig. 6 of Poorter & Pérez-Soba (2001).
 

Environmental stress factor BER

None 1.47

Low Nutrients 1.25
Low Temperature 1.27
High UV-B 1.32
High Salinity 1.47
Low Water availability 1.51
Low Irradiance 1.52
High Ozone 2.30
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2. Competition versus isolated plants

The second factor that makes a difference between most
laboratory experiments and the field is that plants in the lab
often grow without any mutual interference at the leaf or root
level. This implies that an extra investment in leaves or roots
can immediately pay off in the form of extra carbon and
nutrient capture, which will, in the absence of sink limitation,
result in an extra stimulation in growth. The situation is
different when plants are grown together. At low density, total
biomass of a monoculture will increase linearly with density,
but as crowding becomes stronger the biomass of the stand
saturates to a maximum level, with only very limited space for
each individual. Under crowded conditions, extra leaf area
will not necessarily lead to extra carbon gain. Since both the
threshold density and the slope vary among species, the
simplest comparison is the biomass of isolated plants with
those in crowded monocultures. Under those conditions,
woody and herbaceous species are generally responding less to
elevated CO2 than individually grown plants (Du Cloux
et al., 1987; Wayne & Bazzaz, 1995; Retuerto et al., 1996;
Navas et al., 1999). Taken over a range of experiments, no
correlation was found between the response of a species grown
in isolation and in monoculture (Fig. 8a, r2 = 0.06).

The next level of complexity comes in when mixed stands
are analysed. The response to elevated CO2 of a particular spe-
cies will then not only depend on its own physiological and
morphological characteristics, but is also determined by the
secondary interactions that arise with the other species that
are competing for the same resources (Firbank & Watkinson,
1990). Therefore, the correlation between the BER of a given
species grown in isolation and in competition with other spe-
cies can be expected to be even lower as the one between iso-
lated plants and monocultures, and this happens to be the case
(Fig. 8b, r2 = 0.00). The most unpredictable step appears to
be the transition from isolated plants to monocultures. The
second step, from monostands to mixed stands, shows a much
better correlation (Fig. 8c, r2 = 0.33), confirming a previous
study by Navas et al. (1999) on artificial herbaceous com-
munities. Therefore, we conclude that any prediction of species
responses in a vegetation would be better off with growth
analyses at the stand level than at the level of the individual.

3. Functional groups

Alternatively, we could use published competition experi-
ments, to test whether specific groups of plants profit more
than others. A good example is shown in Fig. 9, where results
of Winter & Lovelock (1999) and Lovelock et al. (1998) are
combined. They grew isolated seedlings of nine tropical tree
species in open top chambers at ambient and elevated CO2,
and found a stronger response for the fast-growing pioneer
species as compared to the slow-growing climax species. This
is in agreement with the conclusions of section V. However,

when almost the same set of plant species was grown in
competition, BER values for all species ranged around 1, with
no difference between species that responded strongly or
weakly in isolation. Another example of a very poor correla-
tion between the prediction for isolated plants and those

Fig. 8 (a) Biomass enhancement ratio (BER) of plants grown in a 
monoculture plotted against the BER of isolated plants (r = −0.25, 
n = 27, P > 0.2). (b) BER of plants grown in a mixed culture of plants 
plotted against the BER of isolated plants (r = 0.04, n = 33, P > 0.8). 
(c) BER of plants grown in a mixture of plants plotted against the BER 
of plants in monoculture (r = 0.58, n = 50, P < 0.001). The dotted 
line indicates a 1:1 relationship. Literature used for the analyses are 
listed in Appendix 5. Three species that represented less than 5% of 
the total biomass of the mixture at control levels of CO2 were excluded 
from the analysis. Their effect on the analysis was negligible.



Tansley review

www.newphytologist.com © New Phytologist (2003) 157: 175–198

Review190

in competition are experiments in a calcareous grassland
vegetation. The species that showed the strongest growth
response, both in the field as in the lab was Carex flacca
(Leadley & Körner, 1996; Stöcklin & Körner, 1999), a species
with a very low potential growth rate (Van der Werf et al., 1993).

Is it possible to discriminate between groups of species that
form ‘winners’ and ‘losers’ in competitive situations? An
extended review is given by Reynolds (1996). Similarly as for
isolated plants we analysed a number of competition experi-
ments retrospectively for differences in response between
functional groups of species. To this end, we used the BER of
the whole artificial or natural vegetation as a calibration point.
For each species of the mixture we calculated the BER of
that species, and divided it by the BER value of the whole
vegetation. If this ratio is higher than 1.0 the species is profit-
ing disproportionately and is designated as a ‘winner’. If the
ratio is lower than 1.0 the plant would lose out compared to
the whole vegetation. On the one hand, it may be naive to test
for such a general response for a given group of species, as
competition will strongly depend on the competing species

that are present, as well as the specific environmental condi-
tions. On the other hand, small differences between species
that are hardly of relevance for plants grown in isolation can
be of crucial importance in a competitive situation and may
magnify differences in response between species. We felt it
appropriate to formally test for these winners and losers
anyway. We restricted our analysis to competition experiments
carried out with herbs, as most of the work in this field has
concentrated on this group, but excluded a-priori those species
from the analysis that represented less than 2% of the total
biomass of the vegetation, as the behaviour of these plants
may be erratic if only a few individuals are present. Finally, given
the strong difference in response of nutrient-rich and nutrient-
stressed plants (Table 4), we classified experiments as carried
out under either high or low nutrient conditions. A classical
problem in this case is that the observations on different species
within a competition experiment are definitely not independ-
ent of each other. A very conservative solution is to use only
one species per experiment. This would have resulted in a serious
loss of information, an aspect we considered more problematic
than statistical independence (Gurevitch et al., 2001).

The results are shown in Table 5. As in section V, we ana-
lysed the differences both as simple contrasts and in a multiple
regression. For experiments with high nutrient levels, the only
significant difference found was between C3 and C4 species,
with C4 species being the losers at elevated CO2. However,
the number of observations for C4 species is rather low (< 15).
The difference remains significant in the multiple regression
analysis and is in line with the difference we have seen
between C3 and C4 species at the individual plant level
(Fig. 6). By contrast with the observations at the individual
plant level, fast- and slow-growing species respond exactly
similar to elevated CO2 under competition. Again, the
number of species in one of the categories is low, but as it is
in accordance with the idea that there is little scope for fast-
growing plants in a vegetation to profit from the extra invest-
ments they made, we have as yet no reason to doubt these
conclusions. No differences were found between N2-fixing species
and other dicots, or between monocots and dicots in general.

Fig. 9 Biomass enhancement ratio (BER) values of seven tropical 
plant species grown in isolation (Winter & Lovelock, 1999) and in a 
mixed community (Lovelock et al., 1998). The dotted line indicates 
a 1:1 relationship.

 

 

Class

High nutrients Low nutrients 

WinRatio n

P

WinRatio n

P 

 sc mr sc mr

C3 1.04 74 ** *** 0.94 72 ns ns
C4 0.78 13 1.05 4

Fast-growing 1.00 71 ns ns 0.93 29 ns ns
Slow-growing 0.97 16 0.96 44

Monocots 0.95 41 ns ns 0.86 29 + ns
Dicots 1.04 46 1.00 47

N2-fixing species 0.96 12 ns ns 1.19 16 ** **
others 1.00 75 0.88 60

Table 5 Average values for the biomass 
enhancement ratio (BER) value of herbaceous 
plants grown in a mixed stand divided by the 
BER of the vegetation as a whole. Data are 
from a range of experiments, listed in 
Appendix 5. The averages and the number of 
species on which the average are based, are 
for simple contrasts of plants of different 
categories. For more information see the 
legend of Table 1
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For competition at low nutrient levels, the situation is dif-
ferent. Here no differences between C3 and C4 species are
observed, although we stress again that the number of C4 spe-
cies investigated is low. The fact that C4 species are not negat-
ively affected under these circumstances might well be due to
the fact that at a low nutrient level a large CO2 response of C3
species is precluded (Table 4). The exception to this rule is the
group of species capable of symbiotic N2 fixation, they are
clearly the winners under these conditions. There is some
indication of a difference between dicots and monocots, but
closer analysis showed that the response only came from the
nitrogen-fixing dicots. Decreases in grasses and increases in
dicots, mostly due to an enhanced biomass of legumes, were
found in most field studies (Schäppi, 1996; Clark et al., 1997,
Navas et al. 1997; Lüscher et al., 1998; Warwick et al., 1998;
Reich et al., 2001). The increase in leguminous species is par-
ticularly evident under conditions of low N and high P avail-
ability (Stöcklin & Körner, 1999; Körner, 2001).

Competition per se can be thought of as consisting of two
components: the competitive effect, which is the ability of a
plant to suppress neighbours, and the competitive response,
the ability of a plant to tolerate its neighbours (Goldberg,
1990). An estimate of the first component is the dominance
of a species in a community. In some field studies, not so
much the dominant but some subordinate species were found
to be highly responsive to CO2 (Leadley & Körner, 1996;
Clark et al., 1997, Navas et al. 1997; Berntson et al., 1998;
Stöcklin & Körner, 1999). It has therefore been suggested that
elevated CO2 may reduce the overall size difference between
dominant and subordinate plants (Catovsky & Bazzaz, 2002).
Does that imply that we can consider subordinate species as
a special ‘response group’, whose inherently low competitive
effect is compensated for by a high responsiveness to CO2? As
mentioned above, just by the nature of the fact that a species
forms a minority in a vegetation, it may show larger propor-
tional fluctuations than dominant species. It could well be
that large proportional increases in a species strongly draw the
attention of the researchers. Considered over all competition
experiments compiled, we tested whether subordinate species
are more often winners than dominant species, calculating the
percentage of the total stand biomass taken up by a given spe-
cies as an estimate for dominance. Using this parameter as the
independent variable and the winner scale as the depend-
ent variable, we did not find any indication of a difference
between subordinate and dominant species (Fig. 10a; r2 = 0.00,
P > 0.4), although the former show larger variability in their
response to CO2 than the latter.

The second factor that may play a role in the response to
CO2 is the reaction of a species to competition from neigh-
bouring vegetation. It can be estimated by the Relative Com-
petition Intensity (RCI; Wilson & Keddy, 1986; Keddy et al.,
1998), which is defined as the absolute decrease in the bio-
mass of species because of competition, normalised against
the biomass of isolated individuals. An RCI value of zero

means that competition has no effect on plant performance,
whereas an RCI value of one corresponds to complete com-
petitive exclusion. Catovsky & Bazzaz (2002) suggested that
tree species with a high response to elevated CO2 were those
that suffered less from neighbouring plants when grown in
competition. However, tested for herbaceous plants, we were
not able to find a correlation between our winner scale and
RCI (Fig. 10b; r2 = 0.07, P > 0.1).

In conclusion, there is no scope for using the response of
isolated plants as a predictor of changes in the vegetation. Fur-
thermore, there is no relationship between the competitive
ability of a species and its responsiveness to CO2. As far as dif-
ferences can be generalised over a larger group of experiments,
C3 species may win from C4 species in vegetations with a
high nutrient availability, and nitrogen-fixing dicots may
profit at low nutrient availability.

Fig. 10 Winning and loosing species in the response of mixed 
communities to elevated CO2. The dependent variable is the ratio of 
the biomass enhancement ratio (BER) value of a species, growing 
in a mixed community, and the BER of the whole community. 
Independent variables are (a) the percentage of the biomass of a 
given species at control CO2 levels, indicating the dominance of a 
species (n = 204, r = 0.05, P > 0.4) and (b) the Relative Competition 
Intensity (RCI), indicating to what extent the biomass of a species is 
suppressed by the growth of the neighbouring species (n = 37, 
r = 0.26, P > 0.1). Dotted lines indicate the nonsignificant linear 
regressions.
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VII. An outlook

In this paper we have covered only part of the data that deal
with the effect of elevated CO2 levels. There has been a strong
research effort at both the physiological level (photosynthesis,
respiration, chemical composition) as well as at the
community level (Open Top Chambers or Free Air CO2
Enrichment in various natural communities and agricultural
settings), which has led to an impressive accumulation of
publications. Playing the devil’s advocate, what do we know
more now than, say, 15–20 years ago? At that time it was clear
that C3 species responded to elevated CO2, whereas C4
species did not (Patterson & Flint, 1980). It had been found
that the CO2 response of growth parameters was quickly
saturating beyond 450 µl l−1 (Neales & Nicholls, 1978) and
that the growth stimulation was time-dependent (Wulff
& Strain, 1982). Moreover, it was known that starch could
accumulate to high levels (Cave et al., 1981), that the N-
concentration in the leaves would go down (Wong, 1979),
and that photosynthetic acclimation could occur (Clough
et al., 1981). It was also known that leguminous species would
increase nitrogen fixation, not so much per nodule mass, but
because plants were larger, and that elevated CO2 increased
the amount of biomass produced per unit water transpired
(Carlson & Bazzaz, 1980). Even the first experiment with an
intact, natural vegetation was carried out during that time,
showing that tundra vegetation did not respond to elevated
CO2 (Billings et al., 1984).

Obviously, these early observations are now supported by
a wealth of additional experiments, which have shown that
the phenomena observed in those early days are more gener-
ally valid. Moreover, we now know that some C4 plants may
also show a growth stimulation and the possible courses
thereof (Poorter, 1993; Ghannoum et al., 2000) and we are
unraveling the molecular mechanisms that may control the
amount of Rubisco (Paul & Foyer, 2001) and nitrate reduc-
tase (Fonseca et al., 1997) when sugars accumulate. We have
gained insight into the possibly strong effect at the ecosystem
level that is exerted by the increased soil moisture level due to
a decreased transpiration (Mooney et al., 1999) including
effects on the nitrogen cycle (Hungate et al., 1999). With the
application of the free-air carbon dioxide enrichment, we
are now able to study intact crops and natural vegetations
(Huxman & Smith, 2001), as well as young developing forests
(Hamilton et al., 2002). However, at the same time there is a
range of issues that are not solved at all. What exactly is sink
limitation and why has an increase in C-fixation due to an
increased CO2 concentration so little effect on the growth of
a plant compared to a quantitatively similar increase in photo-
synthesis due to extra light? What hinders a plant to deploy
the extra fixed C and why is it accumulated in the leaves? How
exactly is maintenance and growth respiration affected by
CO2 and how can we quantitatively summarise the carbon
budget of various plants? How do the chemical composition

and the anatomy of stems and roots change with CO2 enrich-
ment, and what are actually the changes in the leaf except for
the increase in starch and decrease in organic N? How valu-
able are experiments with plants in pots, and why may those
experiments differ so much from those in hydroponics? Is the
overwhelming variation in response to, for example, CO2 ×
nutrient interactions just a matter of variability, or are there
systematic differences between species? What exactly makes
the growth responses of isolated plants so different from those
in monocultures? What are the maternal effects on seed qual-
ity, size, germination and subsequent growth? Are there really
systematic differences between genotypes and how will this
affect plant populations? How will mature forests respond to
elevated CO2?

Undoubtedly, this list can be extended with many more rel-
evant questions, where the research community still has not
been able to come up with more or less clear answers, notwith-
standing a huge investment in manpower and finances. In a
time that molecular biologists make impressive advances in
understanding gene regulation, we are still quarreling over
very basic questions as whether plants at low nutrient availa-
bility respond more to CO2 or less (Poorter, 1998; Lloyd &
Farquhar, 2000). In a review by Bazzaz & Catovsky (2002)
the overall message is that CO2 effects on almost all levels
investigated are highly variable and this is partly echoed in the
current paper. How is it possible that our view is so diffuse?
Is that only because plant responses are really so variable and
so heavily dependent on external conditions? We wonder
whether that is the only reason. It seems that we eco-
(physio)logists are dividing our energy over too many species,
grown under too many experimental conditions. Will we
gain any extra insight if a new experiment is set up that will
determine the rate of photosynthesis and biomass accumula-
tion of yet another C3 species? Will we ever find out what the
CO2 × temperature interaction is if one experiment is carried
out with small pots and infrequent watering, whereas another
is using hydroponics at a much lower light level? It does not
seem very likely. We are clearly lacking model organisms like
Drosophila and Arabidopsis, which have facilitated major
breakthroughs in population biology and plant molecular
biology. In this field, one model species would not be enough,
but what if we could focus on, for example, six herbaceous
wild C3 species (grasses, leguminous dicots, other dicots, both
an annual and a perennial from each group), six C3 crop spe-
cies (grasses and dicots), six woody species (deciduous, ever-
green, N2 fixing) and two C4 species? We could also profit
from systematic experiments, where the same protocols are
used in different laboratories. Although not easy to agree on,
such a concerted effort would provide a good opportunity to
make substantial achievements and arrive at much stronger
generalisations than we are able to make now. Moreover, such
species could form a focus point to subsequently compare
their response with other representatives from the functional
group they belong to.
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V. Conclusions

The growth response to elevated CO2 of isolated plants is
mainly determined by the increased rate of photosynthesis
per unit leaf area and the decreased SLA. Variation in the Bio-
mass Enhancement Ratio is large and a disturbing factor in
comparisons across experiments. There were differences between
groups of species, with C4 species responding less than average,
and fast-growing C3 species responding above average.
However, such functional groups based on data for isolated
plants are only poor predictors for the response of species
grown in competition. One avenue to arrive at a more accurate
prediction of variation in response between species is to grow
plants in dense monocultures rather than in isolation. Finally,
it is our conviction that the research field would profit from a
more structured approach with a set of preselected species.
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