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Plant growth-promoting 
activity and quorum quenching-
mediated biocontrol of bacterial 
phytopathogens by Pseudomonas 
segetis strain P6
Miguel Rodríguez1, Marta Torres1,2,3, Lydia Blanco1, Victoria Béjar1,2, Inmaculada Sampedro1* 

& Inmaculada Llamas1,2*

Given the major threat of phytopathogenic bacteria to food production and ecosystem stability 

worldwide, novel alternatives to conventional chemicals-based agricultural practices are needed to 

combat these bacteria. The objective of this study is to evaluate the ability of Pseudomonas segetis 

strain P6, which was isolated from the Salicornia europaea rhizosphere, to act as a potential biocontrol 

agent given its plant growth-promoting (PGP) and quorum quenching (QQ) activities. Seed biopriming 

and in vivo assays of tomato plants inoculated with strain P6 resulted in an increase in seedling height 
and weight. We detected QQ activity, involving enzymatic degradation of signal molecules in quorum 

sensing communication systems, against a broad range of N-acylhomoserine lactones (AHLs). HPLC-

MRM data and phylogenetic analysis indicated that the QQ enzyme was an acylase. The QQ activity of 

strain P6 reduced soft rot symptoms caused by Dickeya solani, Pectobacterium atrosepticum and  

P. carotovorum on potato and carrot. In vivo assays showed that the PGP and QQ activities of strain P6 
protect tomato plants against Pseudomonas syringae pv. tomato, indicating that strain P6 could have 
biotechnological applications. To our knowledge, this is the first report to show PGP and QQ activities in 
an indigenous Pseudomonas strain from Salicornia plants.

Plant bacterial pathogens cause diseases in a wide range of crops worldwide and considerable economic losses 
in agriculture1,2. Antibiotics and chemical pesticides have been used for many decades to combat plant bacterial 
infections3,4. However, stricter legislation has been introduced in recent years regarding the use of chemical-based 
treatments which have caused serious problems such as reduced productivity due to resistance to treatment, soil 
salinization and environmental pollution5. As a consequence, alternative strategies to combat plant diseases and 
to promote plant growth are required in order to replace current procedures with more sustainable eco-friendly 
approaches6.

Currently, one of the most promising tools used in the agricultural industry is the use of formulations con-
taining plant growth-promoting bacteria (PGPB), also known as plant growth-promoting rhizobacteria (PGPR). 
�ese are bene�cial microorganisms that act as biofertilizers and can �ght plant pathogens7,8. �ey counteract 
pathogens through physical displacement, siderophore production, as well as the synthesis of antibiotics, bacte-
riocins and hydrolytic enzymes which inhibit pathogen growth8,9. �ey also boost plant resistance to infections, 
which is also called induced systemic resistance (ISR)10, through mechanisms such as callose deposition11. PGPB, 
which promote processes such as plant growth and stress tolerance, and can �ght phytopathogens, are considered 
to be an e�ective, sustainable and environmentally-friendly alternative to be used in agriculture8,12. Although 
several members of the genus Pseudomonas have been identi�ed as PGPB, only a few have been isolated from 
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saline environments13. Given that soil salinization is an upcoming problem in agriculture due to climate change, 
salt-tolerant PGPB appear to be a suitable approach to deal with the problem of productivity14,15.

Another promising agricultural strategy is the interference of quorum sensing (QS) systems in plant path-
ogens. QS is an intercellular communication system in which bacterial gene expression, coupled with bacterial 
cell concentration, is mediated by the di�usion of speci�c signal molecules such as N-acylhomoserine lactones 
(AHLs)16. �is system regulates the expression of di�erent phenotpyes, many of which have been shown to con-
tribute to bacterial pathogenesis in a number of economically-important agriculture pathogens17. For instance, 
QS controls numerous phenotypes in Pectobacterium carotovorum18, P. atrosepticum19,20, Pseudomonas syringae21, 
Dickeya solani22, Ralstonia solanacearum23, Erwinia amylovora24 and Agrobacterium tumefaciens25. �e interrup-
tion of QS is therefore an interesting strategy for combating bacterial infections in agriculture26. One of the best 
known QS-interrupting strategies is quorum quenching (QQ) which involves the enzymatic degradation of AHL 
signal molecules27. AHLs can be degraded or modi�ed by di�erent types of enzymes, including lactonases, acy-
lases and oxidorreductases28. �is strategy has already been reported to reduce the virulence of several plant 
bacterial pathogens producing promising results29–31. Rather than inhibiting growth or killing the pathogen, as 
occurs with antibiotics, QS attenuates virulence and reduces infection26,32,33 without a�ecting bacterial pathogen 
growth29,34. Given that it does not a�ect essential bacterial genes32 nor leads to the development of resistances, 
this strategy is though to be more e�ective at long-term than antibiotics35,36, but more studies need to be done 
to validate such claim. Nevertheless, although some authors have reported the development of resistances to 
QS interference, they have suggested that these mechanisms would be less prone to spread resistances to other 
bacteria37,38. Interestingly, although many QQ bacteria have been isolated from marine environments39, few are 
indigenous plant isolates and, additionally, their impact on plant growth parameters remains unknown.

�e main objective of our study was to analyze the potential of Pseudomonas segetis strain P6, a novel strain 
isolated from Salicornia plants, as a biocontrol agent against plant pathogenic bacteria.

Results
Characterization of strain P6. In order to characterize strain P6, isolated from the rhizosphere of the 
halophyte plant Salicornia europaea, several morphological, physiological and biochemical studies were con-
ducted. Strain P6 is a motile, Gram-negative, halotolerant rod that is capable of growing in a wide range of salt 
concentrations [0–7.5% (w/v) NaCl] and according to the Microtox test and the bacterial virulence test using 
Artemia salina, does not show toxicity. It is also able to produce siderophores, as well as enzymes such as lipases, 
acid and alkaline phosphatases, DNAse, lecithinase and ACC deaminase. With the objective of genetically identi-
fying strain P6, a 1362-bp-fragment of its 16S rRNA gene was sequenced. �e analysis showed that strain P6 had 
99.93% sequence similarity to Pseudomonas segetis FR1439T.

Plant growth-promoting activity. Using biopriming assays, tomato seeds inoculated with P. segetis P6 
showed signi�cant increases (P < 0.01), of 191.8% and 207.0%, in total seedling length and the vigour index, 
respectively, as compared to the control. �e germination rate di�erence (4.5%) with the negative control was not 
signi�cant (Table S1). In the case of tomato plants inoculated with strain P6 (Fig. S1), aerial and root dry weight 
increased sharply (P < 0.01) by 19.28% and 21.54%, respectively. Shoot and root length did not increase signi�-
cantly (they showed modi�cations of by 7.98% and 13.54%, respectively, P ≤ 0.08).

Characterization of the AHL degradation activity of P. segetis strain P6. �e QQ activity of strain 
P6 was evaluated using a wide range of synthetic AHLs. �e results indicate that strain P6 totally degraded all the 
AHLs tested except for 3-O-C6-HSL, which was only partially degraded (Fig. S2).

To determine whether the QQ activity of strain P6 was caused by a lactonase-type enzyme, overnight culture 
supernatants were acidi�ed to pH 2 following incubation with C10-HSL, and the remaining AHLs were detected 
using HPLC-MRM. AHL extracts from cultures grown under similar conditions, but at pH 7, were also analyzed. 
�e results indicate that AHL degradation in the acidi�ed and neutral reactions was ~99.6% and 98.4%, respec-
tively (Fig. S3). Initial AHL concentration was not restored at pH 2, indicating that the QQ activity of strain P6 
could not be caused by a lactonase enzyme. �e quanti�cation of remaining C10-HSL by HPLC-MRM (Fig. 1) 

Figure 1. Determination of remaining C10-HSL by HPLC-MRM a�er 24 h of incubation with P. segetis P6. 
Tryptic soy broth (TSB) was used as a negative control. Initial AHL concentration was 10 µM.
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showed a degradation of 98.7%. Decanoic acid and L-Homoserine lactone, the resulting metabolites of an acylase 
enzyme degradation were not detected.

In order to identify the enzyme responsible for the QQ activity of P6, we carried out a search for possible genes 
encoding QQ activity in the genome of P. segetis FR1439T, which identi�ed the penicillin acylase WP_089360949. 
Based on its sequence, speci�c primers were designed and a ~2500 bp fragment was ampli�ed from strain P6, 
ligated in the pGEM-T vector and transformed into Escherichia coli DH5α. �e DNA construction was sequenced 
and the deduced protein sequence con�rmed its high homology with other QQ acylase enzymes. To demonstrate 
the acylase activity, the DNA fragment was also cloned in pGEX-4T-2 vector and expressed in E. coli DH5α 
con�rming its AHL-degrading activity on C12-HSL (Fig. S4). A neighbour-joining tree was constructed and 
phylogenetic analyses showed that the penicillin acylase of P. segetis P6 clusters with other penicillin acylases 
(Fig. S5).

Interference of bacterial phytopatogen QS systems and impact on associated phenotypes 
by P. segetis strain P6. AHL degradation assays were �rstly performed against crude extracts from the 
bacterial phytopathogens Dickeya solani, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum and 
Pseudomonas syringae pv. tomato. �e results obtained indicate that strain P6 fully degraded the AHLs of the 
phytopathogens (Figs. 2 and S6). �us, co-cultures were carried out to determine whether P. segetis P6 was able 
to reduce the production of virulence factors controlled by QS in plant bacterial pathogens. An antagonist exper-
iment was �rst performed to determine whether strain P6 interfered with the growth of the plant pathogens D. 
solani, P. atrosepticum, P. carotovorum subsp. carotovorum and P. syringae pv. tomato. �e results showed that 
strain P6 did not have any inhibitory e�ect on the growth of the pathogens tested (data not shown). �us, each of 
the four pathogens was grown in a co-culture with strain P6 in a ratio of 1:100, which was maintained throughout 
the experiment. �e count of each strain was similar to the initial concentration 107–108 CFU mL−1. A�er 24 h 
of incubation, the AHLs were extracted from the co-cultures. As shown in Fig. 2, the molecules produced by P. 
atrosepticum, P. carotovorum subp. carotovorum and D. solani in the co-cultures activated in less extension the 
biosensor, while no AHLs were detected in the co-cultures with P. syringae pv. tomato DC3000 (Fig. S6).

Under similar conditions, we used the co-cultures and di�erent phenotypic tests to analyze the e�ect of AHL 
degradation on the QS-regulated functions of the plant pathogens. Swimming motility and proteolytic activ-
ity (caseinase and gelatinase) in D. solani were found to be inhibited in the presence of strain P6 (Table S2). 
Similarly, no caseinase activity was detected in the P. atrosepticum-strain P6 co-culture while alkaline phos-
phatase decreased and swimming motility showed a moderate reduction and an altered pattern (data not shown). 
Meanwhile, in P. carotovorum subsp. carotovorum and P. syringae pv. tomato, no phenotypes were a�ected under 
our test conditions. Nevertheless, as strain P6 produces DNAse and amylase, their interfere by QQ could not be 
evaluated in the phenotypes of the pathogens (Table S2).

Figure 2. Virulence assay in potato tuber and carrot slices. (a) Detection of AHLs in the cultures and 
co-cultures of P. segetis P6 and the pathogens Dickeya solani (1), Pectobacterium atrosepticum (2) and P. 
carotovorum subsp. carotovorum (3) using the biosensor Agrobacterium tumefaciens NTL4. (b) Virulence and 
maceration of cultures and co-cultures of strain P6 and the di�erent pathogens on the surface of potato and 
carrot slices a�er 2 days of incubation. Sterile water was used as a negative control.
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To assess the possible impact of QQ on the virulence and maceration capacity of the phytopathogens tested, 
we conducted assays of potato and carrot slices. Co-cultures of D. solani and P. atrosepticum with P. segetis P6 were 
inoculated on the surface of the potato slices. In both cases, the co-culture with strain P6 reduced the capacity 
of the pathogens to cause so� rot (0% maceration), while a maceration zone of 36.6 ± 2.6% and 65.6 ± 5.9% was 
observed in the D. solani and P. atrosepticum monocultures, respectively (Fig. 2). Carrot slices inoculated with 
the P. carotovorum subsp. carotovorum-strain P6 co-culture showed no so� rot symptoms (0% maceration) as 
compared to the 88.4 ± 5.0% maceration produced by P. carotovorum subsp. carotovorum in the mono-culture. 
No assay of the strain P6 mono-culture showed so� rot symptoms.

Plant growth-promoting and QQ activities of strain P6 against Pseudomonas syringae pv. 
tomato. In vivo assays of tomato plants were conducted to evaluate the impact of P. segetis strain P6’s plant 
growth-promoting and QQ activities on the virulence of P. syringae pv. tomato. As shown by the number of 
leaves a�ected, tomato plants treated with the P. syringae pv. tomato-strain P6 co-culture were less damaged than 
those infected with the pathogen alone (Fig. 3). Tomato plants treated with the co-culture showed a signi�cative 
increase of 51.0% in healthy leaves as compared to plants inoculated with P. syringae pv. tomato. Signi�cative 
di�erences were recorded with respect to the number of dead and necrotitc/chlorotic leaves which fell by 29.8% 
and 32.3%, respectively, as compared to those treated with the pathogen alone. Co-culture-treated plants showed 
a small number of chlorotic leaves due to a less harmfull form of the pathogen, which was not observed in plants 
treated with the pathogen alone. Negative control- and strain P6-treated plants showed some dead leaves associ-
ated with natural senescence.

Following treatment, the plants were harvested in order to assess the impact of the di�erent treatments on 
plant growth (Table 1). Total dry weight increased signi�cantly by 84.6% (P < 0.01) for plants treated with strain 
P6 alone. No signi�cant di�erences in total dry weight between plants treated with P. syringae pv. tomato in the 
presence and absence of strain P6 were observed. However, shoot dry weight increased sign�cantly by 160.6% 
(P < 0.05) in co-culture-treated plants as compared to those inoculated with P. syringae pv. tomato alone. No 
signi�cant di�erences in root dry weight were detected in plants inoculated with the pathogen alone or the 
co-cultures.

In order to evaluate the impact of P. syringae pv. tomato on photosynthetic plant tissue, chlorophill a and b 
and total chlorophill content were determined using Arnon and Lichtenthaler’s equations. �e results obtained 
for plants treated with strain P6 showed higher levels of total chlorophyll with respect to the other treatments 
(Table 2). Total chlorophyll levels in the co-culture-treated plants were very similar to those of negative controls 
and slightly higher than those in the plants infected with the pathogen alone. However, the di�erences observed 
with the aid of spectrophotometry were not statistically signi�cant, which is probably due to the low resolution 

Figure 3. Infection assay in tomato plants treated with cultures and co-cultures of Pseudomonas syringae pv. 
tomato and P. segetis P6. (a) Total percentage of healthy, dead, necrotic and chlorotic leaves a�er each treatment. 
(b) Infection symptoms on leaves a�er treatment.

Negative control P. segetis P6
P. syringae pv. 
tomato

P. syringae pv. tomato - 
P. segetis P6

Root dry weight (mg) 6.38 ± 0.55a 13.78 ± 5.53b 4.15 ± 0.46a 4.76 ± 1.47a

Shoot dry weight (mg) 11.82 ± 1.77a 19.82 ± 6.49b 3.25 ± 0.64c 8.47 ± 1.60a

Total dry weight (mg) 18.20 ± 1.79a 33.60 ± 11.86b 7.40 ± 0.69c 13.23 ± 3.00c

Table 1. Dry weight of tomato plants a�er treatment with Pseudomonas syringae pv. tomato and P. segetis P6. 
Data are expressed as mean values and standard deviation. Values within a line followed by di�erent letters 
indicate signi�cant di�erence (P ≤ 0.05).
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of this method of determination. Fluorescence microscopy (Fig. 4) revealed di�erences between treatments with 
regard to chlorophyll content, as well as chloroplast abundance and integrity. Leaves treated with P. segetis P6 
showed larger amounts of chlorophyll as compared to the other treatments. Di�erences were observed between 
plants treated with the P. syringae pv. tomato monoculture and those treated with the strain P6 co-culture. Lower 
chlorophyll and chloroplast concentrations surrounding cell walls were observerd in plants treated with the path-
ogen alone. Using DIC microscopy, P. syringae pv. tomato-treated leaves showed an altered tissue structure, with 
the appearance of some clear spots which were absent in the other leaves (Fig. 4).

Callose deposition was analysed in fresh shoots to evaluate the stimulation of defense mechanisms. �e results 
obtained (Fig. 4) revealed callose deposition in leaves treated with strain P6, while no deposition was observed in 
negative control leaves. Leaves treated with the pathogen-strain P6 co-culture also showed callose deposits, with 
strong deposition surrounding the stomatal guard cells. In plants treated with the P. syringae pv. tomato monocul-
ture, callose deposition was detected in the form of a di�use veil near the spot-a�ected area.

Discussion
Novel strategies to boost plant growth and combat plant diseases in agriculture are currently being investi-
gated with the aim of replacing current procedures with more sustainable approaches6. Many PGPB, such as 
Pseudomonas spp., act as biological control agents against plant diseases40, produce compounds including hor-
mones, antibiotics, polysaccharides and siderophores, induce ISR in plants and increase their abilitiy to defend 
against pathogens41–43.

Likewise, the enzymatic degradation of AHL signal molecules in plant pathogenic bacteria appears to be an 
interesting alternative strategy for combating bacterial infections26. As interference with AHL activity reduces 
QS-regulated phenotypes, including certain virulence factors, without a�ecting pathogen growth29,34, resistance 
development is less probable given that essential bacterial genes are una�ected38.

Although many PGPB and QQ bacteria have been described8,44, no studies have been carried out on a strain 
that combines both plant growth promotion and AHL degradation or, to our knowledge, on the silencing of 
bacterial phytopathogen virulence by a PGP bacterium to degrade QS-signalling molecules. In this study, we 
evaluate the use of strain P6’s PGP and QQ activities as a bene�cial strategy to promote plant growth and to con-
trol bacterial infections. Strain P6, which had been isolated from the Salicornia europaea rhizosphere, belongs to 
the species Pseudomonas segetis45. To our knowledge, this is the �rst time that this species has been isolated from 
a saline environment.

Although we found no information regarding P. segetis45, this species belongs to a genus commonly found 
among PGPB. Capable of growing in a wide range of NaCl concentrations, with optimal growth occurring at 
1% (w/v) NaCl, P. segetis is classi�ed as a halotolerant bacterium. �is boosts its biotechnological potential in 
agriculture, which is increasingly a�ected by climate change, for which salt-tolerant PGPB represent a promising 
solution15,41. Several PGPB genera, such as Azospirillum, Arthrobacter, Bacillus, Burkholderia, Enterobacter and 
Pseudomonas, are already being used to improve salt tolerance in agriculture crops46.

We evaluated the plant-growth promotion properties of P. segetis P6 using biopriming techniques and in vivo 
experiments with tomato plants under sterile conditions. �e results indicated that strain P6 substantially a�ects 
all the parameters studied, with an increase in plant length and vigor index observed in seeds and an increase of 
weight in plants treated by strain P6 with respect to negative controls. Given the sterile conditions under which 
the experiments were carried out, the plant growth promotion observed was caused by strain P6 alone rather 
than in conjunction with other soil bacteria. As reported for other Pseudomonas spp. bacteria, this is probably 
due to strain P6’s PGP properties such as acid/alkaline phosphatase and siderophore production and nitrogen 
�xation47,48. �e PGP ability of several Pseudomonas species has been evaluated by other authors. For instance, 
tomato seed biopriming with P. aeruginosa and with several �uoresecent Pseudomonas spp. increased root lenght 
by 100% and vigor index by 138–177%49,50. On the other hand, addition of P. geniculata in tomato plants enhanced 
aerial and root weight by 7 and 9%, respectively51, while P. �uorescens increased aerial dry weight by 4.7%52. 
�ese results contrast with the increase in plant length, vigor index and aerial weight by ~191, 207% and ~19% 
produced by strain P6, respectively. Regarding the species P. segetis, there are no studies focusing on plant growth 
promotion to which compare our data.

�e QQ activity of P. segetis P6, which was evaluated against a wide range of synthetic AHLs with di�er-
ent chemical substitutions, resulted in e�cient short-, medium- and long-chain AHL degradation. Despite a 

Parameter
Negative 
control P. segetis P6

P. syringae 
pv. tomato

P. syringae pv. tomato 
-P. segetis P6

Arnon formula

Chlorophyll a (mg g−1) 0.52 ± 0.14 0.63 ± 0.13 0.41 ± 0.08 0.57 ± 0.12

Chlorophyll b (mg g−1) 0.20 ± 0.05 0.27 ± 0.05 0.17 ± 0.03 0.23 ± 0.12

Total chlorophyll (mg g−1) 0.72 ± 0.19 0.91 ± 0.19 0.58 ± 0.12 0.80 ± 0.42

Lichtenthaler formula

Chlorophyll a (mg g−1) 0.50 ± 0.13 0.60 ± 0.13 0.39 ± 0.08 0.55 ± 0.29

Chlorophyll b (mg g−1) 0.14 ± 0.03 0.19 ± 0.04 0.12 ± 0.02 0.16 ± 0.08

Total chlorophyll (mg g−1) 0.64 ± 0.16 0.79 ± 0.16 0.51 ± 0.10 0.70 ± 0.37

Table 2. Chlorophyll content of fresh shoots a�er treatment with Pseudomonas syringae pv. tomato and 
Pseudomonas segetis P6. Measurements were carried out using the Arnon and Lichtenthaler methods. Data are 
expressed as mean values and standard deviation.
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more frequent degradion of long-chain AHLs among AHL-degrading bacteria53–55, strain P6 totally or partially 
degraded all the molecules assayed.

To identify the type of QQ in P. segetis P6, the samples were acidi�ed and incubated in the presence of AHLs56. 
Acidi�cation enabled the AHL lactone ring to restructure itself if previously degraded by lactonase. No signif-
icant recovery in the AHLs tested was observed using HPLC-MRM analysis, suggesting that the degradation 
activity was not caused by lactonase. �is result was con�rmed by the quanti�cation of remaining C10-HSL by 
HPLC-MRM which showed a total degradation of this AHL. Our data suggest that the QQ enzyme can be an 
acylase although the corresponding metabolites decanoic acid and L-Homoserine lactone metabolites were not 
detected in HPLC-MRM analysis, probably due to the incorporation of them in the metabolic activity of P. segetis 
P6. As the P. segetis FR1439T genome search showed a putative QQ enzyme annotated as a penicillin acylase, a 
similar gene was ampli�ed and sequenced in strain P6. A phylogenetic analysis found that its predicted amino 
acid sequence co-clustered with other QQ acylase enzymes, which reinforces the hypothesis of the presence of an 
acylase enzyme in strain P6. �is gene was cloned into pGEX-4T-2 and expressed in E. coli DH5α demonstrating 
the AHL degradation activity of P6 strain. Although previous studies have reported that penicillin acylases are 
capable of degrading AHLs in other bacteria57,58, this activity had not previously been identi�ed in the species 
Pseudomonas segetis. �e actual physiological signi�cance of AHL-degrading enzymes remains largely unclear59. 
Several authors have suggested that AHL degradation could be related with a self-regulation of intercellular sys-
tems25. Using di�erent AHL biosensor strains we found that strain P6 does not produce any AHLs, nor could we 
identify any gene coding for a QS signal synthase (luxI) in the genome of the type strain P. segetis FR1439T. �is 
shows that the AHL-degrading capacity of P6 is not associated to self-regulating intercellular systems. However, 
we found an orphan QS signal receptor/regulator (luxR). It is emerging that the luxR orphans could allow bacteria 
to respond to endogenous and exogenous signals produced by their neighbors60.

We also tested P. segetis P6’s capacity to degrade AHL-containing crude extracts from major plant bacterial 
pathogens such as Dickeya solani, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum and P. syrin-
gae pv. tomato. �is capacity was con�rmed by experiments with plant bacterial pathogen-strain P6 co-cultures. 

Figure 4. Observation by microscopy of chlorophyll and callose deposits in tomato leaves. Di�erential 
interference contrast (DIC) micrographs: (a–d) and (i–l). Fluorescence micrographs: (e–h) and (m–p). Each 
DIC micrograph shows tissue morphology of the corresponding �uorescence micrograph: (a–e, b–f, c–g, 
d–h, i–m, j–n, k–o and l–p). All micrographs from each determination were taken at the same magni�cation, 
exposure time, gamma and gain settings. Fluorescence micrographs were digitally colored.
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Given that AHLs regulate the expression of some virulence factors in many plant bacterial pathogens17, the results 
obtained show that strain P6 could be a potential candidate for controlling bacterial infections in agriculture 
through enzymatic inhibition of QS systems.

�e impact of AHL degradation on the production of virulence factors could not be proved for some plant 
pathogens in the co-culture experiments, as P. segetis P6 itself produces many hydrolytic enzymes. However, 
we did observe some e�ects on D. solani, in which caseinase, gelatinase and motility were totally inhibited in 
the co-culture with strain P6, while lipase (hydrolysis of Tween 80) was reduced by ~70%, though not inhib-
ited. Similar results were found for P. atrosepticum when co-cultured with strain P6, resulting in an inhibition 
of caseinase and a substantial reduction in swimming motility. Moreover, experiments on potatoes and carrots 
demonstrated that the addition of strain P6 signi�cantly reduced so�-rot maceration caused by D. solani, P. 
atrosepticum and P. carotovorum subsp. carotovorum. �is reduction in pathogen virulence was due to the QQ 
activity of strain P6 and not to any inhibitory e�ect on pathogen growth, as the concentration of each bacterium 
was maintained throughout the experiments. Several studies have also demonstrated that AHL-degrading bac-
teria prevent and reduce pathogen QS-dependant plant infection30,31,54,61. �e heterologous expression of QQ 
enzymes in bacterial pathogens, such as P. carotovorum subsp. carotovorum22,62,63 and D. chrysanthemi64, also 
reduces AHL accumulation and virulence.

P. segetis P6’s combination of PGP and QQ activities was evaluated by performing indoor greenhouse experi-
ments on tomato plants infected by P. syringae pv. tomato strain DC3000. A signi�cant reduction was observed in 
the number of dead leaves and necrotic/chlorotic symptoms in the plants treated with the P. syringae pv. tomato 
DC3000-strain P6 co-culture. Additionally, the higher chloro�ll content detected by �uorescence microscopy 
demonstrates that strain P6 protects against the bacterial speck caused by P. syringae pv. tomato in tomato plants. 
Plants treated with the co-culture or with strain P6 alone showed an increase in shoot dry weight as compared 
to plants inoculated with the pathogen alone. Given that P. syringae mainly a�ects shoot photosynthetic tissue 
(leaves, stems, etc) but not roots65, this increase reinforces the protective e�ect of strain P6 against infection by 
the pathogen.

Callose deposition was also evaluated in order to determine the biocontrol potential of P. segetis P6. Callose 
has been proven to play a defensive role in plants by reinforcing cell walls and by hampering or controlling path-
ogen infections66. Some PGPB of the genera Bacillus and Pseudomonas have been reported to induce callose dep-
osition via ISR67,68, which activates basal defense reponses prior to pathogen infection. As pathogen-associated 
molecular patterns (PAMPs), such as �agellin22 (�g22) and coronatine (COR), produced by P. syringae pv. tomato 
also induce callose deposits69, callose deposition caused by the treatment of tomato plants with strain P6 could 
be due to the induction of basal defenses. �is is corroborated by strong callose deposition in cells surrounding 
stomatal guard cells in co-culture-treated leaves, as P. syringae pv. tomato infection �rst entered via the stomata 
and then disseminated through the leaf tissue. �ese callose deposits surrounding stomata act as a �rst line of 
defense against P. syringae pv. tomato infection and appear to be induced by strain P6 in order to reinforce the cell 
wall. �ese �ndings, together with a reduced incidence of disease in pathogen-strain P6 co-culture-treated plants 
suggest that this strain could be used as a safe environmentally-friendly alternative to pesticides commonly used 
in agriculture.

In previous studies, PGPB species, such as Lysobacter enzymogenes70 and Pseudomonas putida71, were trans-
formed by an AHL-degrading gene, which led to a substantial reduction in P. carotovorum so� rot symptoms in 
Chinese cabbage and potatoes. However, to our knowledge, no naturally occurring AHL-degrading PGPB were 
identi�ed prior to our study.

In summary, we used both in vitro and in vivo experiments to demonstrate that Pseudomonas segetis strain P6 
is a plant growth-promoting quorum-quenching bacterium. �e results obtained suggest that strain P6 has great 
potential as a biocontrol agent in the agriculture sector.

Experimental procedures
Bacterial strains, media, compounds and culture conditions. Strain P6 was isolated from the 
rhizosphere of the salt-tolerant plant Salicornia europaea. Strain P6 and the phytopathogen strains Dickeya 
solani LMG 25993T, Pectobacterium carotovorum subsp. carotovorum CECT 225T, P. atrosepticum CECT 314T 
and Pseudomonas syringae pv. tomato DC3000 were grown in tryptic soy broth (TSB) medium. �e biosensor 
strain Chromobacterium violaceum CV02672 was used to detect C4- to C8-HSL, while C. violaceum VIR0773 was 
used to detect C10- and 3-OH-C10-HSL. We used Agrobacterium tumefaciens NTL4 (pZLR4) to detect C8- to 
C12-HSL. Biosensors CV026 and VIR07 were grown in Luria-Bertani (LB) medium, while NTL4 was grown in 
Agrobacterium broth (AB) medium74. When necessary, the antibiotics kanamycin (Km) and gentamicin (Gm) 
were used in �nal concentrations of 50 µg mL−1. Unless otherwise stated, all strains were grown at 28 °C and at 
120 rpm in a rotary shaker.

�e synthetic AHLs (Sigma-Aldrich, Saint Louis, USA) used were: C4-HSL (N-butyryl-DL-homoserine lac-
tone), C6-HSL (N-hexanoyl-DL-homoserine lactone), 3-O-C6-HSL (N-3-oxo-hexanoyl-DL-homoserine lac-
tone), C8-HSL (N-octanoyl- DL -homoserine lactone), 3-O-C8-HSL (N-3-oxo-octanoyl-DL-homoserine lactone), 
C10-HSL (N-decanoyl-DL-homoserine lactone), 3-OH-C10-HSL (N-3-hydroxydecanoyl-DL-homoserine lactone), 
C12-HSL (N-dodecanoyl-DL-homoserine lactone) and 3-O-C12-HSL (N-3-oxo-dodecanoyl-DL-homoserine 
lactone).

Characterization of strain P6. Optimum salinity growth conditions were determined in TSB medium 
supplemented with di�erent concentrations of NaCl [0.5, 1, 3, 5, 7.5 and 10% (w/v)]. �e following phenotypic 
characteristics were evaluated: acid and alkaline phosphatase production75,76; hydrolysis of starch, casein, DNA, 
Tween 20, Tween 80 and gelatin77,78; siderophore production79 and swimming motility80. Virulence was evaluated 
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using the Artemia salina infection model81 and ecotoxicity was assessed by a Aliivibrio �scheri bioluminescence 
inhibition assay82.

Genomic DNA of strain P6 was isolated using the XDNA puri�cation kit (Xtrem Biotech, Granada, Spain). 
�e 16S rRNA gene was ampli�ed using primers 16F27 and 16R148883 and the PCR product was sequenced and 
compared to reference 16S rRNA gene sequences available in the NCBI database using the BLASTN search tool84, 
while pairwise 16S rRNA gene sequence similarity was calculated using the EzBioCloud server85.

Plant growth promotion assays. PGP capacity of strain P6 was tested by biopriming tomato (Solanum 
lycopersicum) seeds and was also assessed in plant seedlings cultured in pots under sterile conditions86,87. In both 
cases, tomato seeds were surface-sterilized according to the protocol described by Molan et al.88. Biopriming assay 
was performed as previously described89. Vigour index, germination rate and length of germinated plants were 
evaluated.

For plant growth promotion assays, 50 sterilized seeds were sown in each 20 × 20 × 20 cm pot containing 
sterile vermiculite. When seedlings reached 5 cm, each pot was irrigated with 10 mL of 109 CFU mL−1 of strain 
P6-washed cells every seven days. SDW was used for the negative controls. Pots were kept in an indoor green-
house during a long-day photoperiod (16:8 h light:dark) at 25 °C for 4 weeks. �en, root and shoot length and dry 
weight were determined.

Quorum-quenching activity against synthetic AHLs and crude AHL extracts from plant bacterial  
pathogens. Strain P6’s QQ activity was analysed using a well di�usion agar-plate assay90,91. Brie�y, overnight 
grown strain P6 cultures were supplemented with 10 µM of each AHL and then incubated at 28 °C for 24 h. 
Cell-free TSB medium supplemented with AHLs was incubated as a negative control. �e remaining AHLs were 
detected on LB agar plates overlaid with CV026 or VIR07, or on AB agar plates supplemented with 80 µg mL−1 of 
5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (Xgal) overlaid with NTL4 to check for the appearance of a 
purple or blue color around each well.

To evaluate QQ activity against the phytopathogen-produced AHLs, crude AHL extracts from each patho-
gen strain were obtained as described elsewhere92,93. Brie�y, AHLs were extracted twice with equal volumes of 
dichloromethane, dried, and �nally suspended in 20 µL of 70% (v/v) methanol. �en, each crude AHL extract 
was added to an overnight culture of strain P6 and incubated at 28 °C for 24 h. �e remaining AHLs in the whole 
culture were extracted as explained above, spotted on sterile 5-mm-diameter paper disks placed on AB agar plates 
and detected with NTL4 as explained above.

Characterization of the AHL-degrading enzyme. An assay based on lactone ring closure following 
acidi�cation was performed to elucidate the QQ activity type of strain P656,94. Brie�y, C10-HSL (10 µM) was added 
to an overnight culture of strain P6 and incubated for 24 h at 28 °C. As a negative control, cell-free TSB medium 
was supplemented with the same AHL concentration. �en, an aliquot of supernatant was acidi�ed to pH 2 using 
HCL 1M and incubated for 24 h. �e remaining AHLs were extracted and qualitatively and quantitatively meas-
ured using the well di�usion-agar plate method and high-performance liquid chromatography-multiple reaction 
monitoring (HPLC-MRM), respectively53.

�e genome of P. segetis FR1439T (NZ_FZOG01000001) was used for an in silico search for reference genes 
encoding for QQ activity. A gene coding for a predicted acylase was selected and used to design the following spe-
ci�c primers: forward 5′-ATGCAATCGCGTGTGTTTCG-3′ and reverse 5′-TTATTTGCCGGGCGTGAGC-3′. 
The gene was amplified by PCR in strain P6, purified and cloned into the pGEM-T cloning vector. 
Neighbour-joining tree was performed for the phylogenic reconstruction of the acylase sequence. �e puta-
tive acylase gene was also amplified with primers psacBamHI-F 5′-GGATCCATGCAATCGCGTG-3′ and 
psacECoRI-R 5′-GAATTCTTATTTGCCGGGC-3′ (BamHI and EcoRI sites are underlined) and ligated in the 
expression vector pGEX-4T-2, previously digested with the appropriate enzymes. �is construction was cloned 
in E. coli DH5α and the activity of the clones were tested.

Antagonist assay. Antagonistic activity of strain P6 against the phytopathogens used in this study was eval-
uated using the well di�usion method95.

Interference with the QS system of phytopathogens by co-culture assays. Co-culture assays of 
phytopathogens and strain P6 were performed according to the methodology described by Torres et al.96. Brie�y, 
pathogen (107 CFU mL−1)-strain P6 (109 CFU mL−1) co-cultures were conducted in a 1:100 ratio in TSB medium 
and incubated for 24 h at 28 °C. A similar concentration of each pathogen was added to cell-free TSB as negative 
control. �e remaining AHLs from each co-culture were quanti�ed according to the well di�usion-agar plate 
method using NTL4. �e abundance of each bacterium was determined in the co-culture by serial dilutions and 
plate counts using TSA and MY medium97 modi�ed by a balanced mixture of 5% (w/v) sea salt solution98.

Virulence assays in potato and carrot slices. �e ability of strain P6 to interfere with so� rot caused 
by D. solani LMG 25993T and P. atrosepticum CECT 314T was assessed on potato slices, and on carrot slices for 
P. carotovorum subsp. carotovorum CECT 225T 61,63. Brie�y, surface-sterilized and sliced potato tuber (Solanum 
tuberosum) and carrots (Daucus carota) were inoculated with P6-phytopathogen co-cultures and controls (the 
bacterium mono-cultures and the SDW). Nine replicates of each treatment were performed, and the experiment 
was repeated three times. A�er 48 h of incubation at 28 °C, maceration zones were visually detected, and the spa-
tial extent of the damage was calculated using ImageJ so�ware99. Plate counts in co-cultures were performed to 
assess the concentration of each phytopathogen and strain P6.
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In vivo tomato plant virulence test. �e e�ect of AHL degradation caused by strain P6 on P. syringae 
pv. tomato DC3000 virulence was tested in tomato plants according to the technique described by Yan et al.87. 
Brie�y, tomato seeds were surface-sterilized and sown in pots with vermiculite as described above. Four treat-
ments were tested: sterile distilled water (negative control), P. syringae (positive control), strain P6 and the strain 
P6-P. syringae co-culture. �ree pots, each containing 50 tomato seeds, were used per treatment. Plants treated 
with strain P6 (alone or in co-culture) were inoculated with 10 mL of washed cells of strain P6 (109 CFU mL−1). 
�is was done every seven days for three weeks to enable strain P6 to establish in soil and to interact with the 
seedlings. �e other pots were inoculated only with 10 mL of SDW. Pots were kept in an indoor greenhouse dur-
ing a long-day photoperiod (16:8 h light:dark) at 25 °C for four weeks. A�er the third week, the pots were exposed 
to 100% humidity for 16 h to induce stomatal opening. �en, the pots to be infected with the pathogen (alone or 
in co-culture) were sprayed with 5 mL of P. syringae pv. tomato-washed cells (109 CFU mL1). Relative humidity 
was maintained at 100% for 24 h to facilitate pathogen infection.

A�er a week post-inoculation, leaf infection symptoms were recorded100 from a total of 400 leaves. �e shoot 
and root length and total dry weight of 20 plants per treatment were determined. Chlorophyll content was deter-
mined in 100 mg of fresh shoots by acetone extraction and absorbance reading101–103 and with a �uorescence 
microscope at wavelength 365 nm104. Callose deposition was studied in fresh shoots using �uorescence micros-
copy a�er ethanol decoloration and methylene blue coloration105. Di�erential interference contrast (DIC) micros-
copy was used to visualize tissue morphology. Assays were conducted in triplicate.

Statistical analysis. Statistical analyses were carried out using Statistical Package for the Social Sciences 
(SPSS) software. Data normalization was checked by the Shapiro-Wilk test. Finally, we used ANOVA and 
post-hoc Tukey analyses to assess the e�ects of each treatment.
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