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a b s t r a c t

In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in sup-
porting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be
applied in agricultural production or for the phytoremediation of pollutants. However, because of their
capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost
importance. The majority of plant-associated bacteria derives from the soil environment. They may
migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show
beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains
may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root
colonizing populations. A better understanding on colonization processes has been obtained mostly by
microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional
genes potentially involved in colonization. In this review we describe the individual steps of plant
colonization and survey the known mechanisms responsible for rhizosphere and endophytic compe-
tence. The understanding of colonization processes is important to better predict how bacteria interact
with plants and whether they are likely to establish themselves in the plant environment after field
application as biofertilisers or biocontrol agents.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since the elaboration of the rhizosphere concept by Lorenz
Hiltner in 1904, many studies have reported that the soil environ-
ment attached to the root system is a hot spot of microbial
abundance and activity due to the presence of root exudates and
rhizodeposits (Hiltner, 1904; Smalla et al., 2006; Hartmann et al.,
2008). Some rhizosphere microorganisms may be neutral or dele-
terious in regard to plant growth, whereas other microbes support
their hosts (reviewed in Welbaum et al., 2004; Raaijmakers et al.,
2008). Such plant growth-promoting bacteria (PGPB; Bashan and
Holguin, 1998) or plant growth-promoting rhizobacteria (PGPR;
Kloepper and Schroth, 1978) can stimulate plant growth, increase
yield, reduce pathogen infection, as well as reduce biotic or abiotic
plant stress, without conferring pathogenicity (Welbaum et al., 2004;
van Loon and Bakker, 2005; Lugtenberg and Kamilova, 2009). Plant
tsch).
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beneficial microorganisms are of interest for application in agri-
culture either as biofertilisers or as pesticides as well as for
phytoremediation applications (reviewed in Sturz et al., 2000; Berg,
2009; Lugtenberg and Kamilova, 2009; Weyens et al., 2009).
However, in many cases PGPB fail to induce the desired effects
when applied in the field. This might be due to insufficient rhizo-
sphere and/or plant colonization, which is as an important step
required for exhibiting beneficial effects (Lugtenberg et al., 2001).
Therefore, not only mechanisms responsible for plant growth
promotion have to be investigated, but also a thorough under-
standing of all steps involved in plant colonization by PGPB is
required to improve the efficiency and reliability of inoculant strains.

The rhizosphere is well known to host a variety of PGPB. In
addition, some rhizosphere colonizers can enter plants as already
postulated by Galippe in 1887 (Galippe, 1887). For a long time this
was not recognized, although di Vestea (1888) confirmed Galippe's
work. Other researchers at that time including Pasteur, Chamber-
land and Fernbach considered healthy plants to be free of micro-
organisms (reviewed in Smith, 1911). In the last decade it has been
repeatedly demonstrated that the plant interior is colonized by
a range of endophytes mostly deriving from the rhizosphere and
many of them have been reported to improve plant growth or
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health (reviewed in Sturz and Nowak, 2000; Hardoim et al., 2008).
Following rhizosphere colonization endophytes may colonize
various plant organs (James et al., 2002; Compant et al., 2005b,
2008a). However, distinct microbial communities have been found
in various plant organs such as roots, stem, leaves, flowers as well as
fruits and seeds or even during plant development (Sessitsch et al.,
2002; Berg et al., 2005b; Okunishi et al., 2005) indicating
different capacities of bacterial strains to colonize various plant
compartments.

In addition to understanding the mechanisms of the interaction
between plants andmicroorganisms, colonizationmechanisms and
strategies represent an important aspect of the interaction.
Successful colonization of a PGPB inoculant strain is a requirement
to promote plant growth or health. In this paper we review the
current understanding of the plant colonization process by bacteria
including rhizosphere and subsequent endosphere colonization.

2. Rhizosphere and rhizoplane colonization

Since the 1980's, many studies have focused on the colonization
by beneficial bacteria in the rhizosphere, i.e. the soil compartment,
which influenced by rhizodeposits. Generally, approx. 107e109 CFU
culturable rhizosphere bacteria g�1 of rhizosphere soil have been
found (Benizri et al., 2001), whereas population densities in the
rhizoplane range from 105e107 CFU g�1 of fresh weight (Benizri
et al., 2001; Bais et al., 2006). By using gnotobiotic conditions and
with the help of microscopic tools, which allow the detection of
gfp- or gusA-labelled strains or of strains by immunomarkers or by
fluorescence in situ hybridization, it has been demonstrated that
bacterial cells first colonize the rhizosphere following soil inocu-
lation (Gamalero et al., 2003). Then, bacterial cells have been
visualized as single cells attached to the root surfaces, and subse-
quently as doublets on the rhizodermis, forming a string of bacteria
(Fig. 1; Hansen et al., 1997). Colonization may then occur on the
whole surface of some rhizodermal cells (Fig. 1) and bacteria can
even establish as microcolonies or biofilms (Benizri et al., 2001).
Rhizoplane colonization has been studied not only by using in vitro
grown plants but also with plants grown in natural soil (Fig. 1),
which is characterized by a high microbial diversity. Before being
Fig. 1. Rhizoplane colonization under gnotobiotic (aec) or non sterile conditions (def) of a b
d) single bacterial cells attached to the root surfaces of grapevine, (b and e) lines of bacteria
(a) 15 mm, (bed) 30 mm, (e) 15 mm and (f) 40 mm. Pictures by S. Compant.
able to confer any plant beneficial effects, (inoculated) PGPB need
to be rhizosphere and/or rhizoplane competent (Compant et al.,
2005a), i.e. they have to be able to colonize the rhizosphere and/or
the rhizoplane during an extended period characterized by strong
microbial competition (Whipps, 2001). Many factors can be
involved in rhizosphere and rhizoplane competence by PGPB.
However, both in gnotobiotic systems and in natural soil, it is
important to note that the root system is not colonized in a uniform
manner. Different population densities were reported for the
diverse root zones. This has been well described by Gamalero et al.
(2004) with Pseudomonas fluorescens strain A6RI and tomato roots,
where the distribution and density of the inoculant strain varied
according to the root zone. Non-uniform bacterial colonization
along the root can be explained by different factors such as varying
root exudation patterns, bacterial quorum sensing effects as well as
many others, which are summarized in Table 1 and described below
in greater detail.

2.1. Chemotaxis towards root exudates

Rhizosphere and rhizoplane colonization has been described to
be linked to root exudation (Lugtenberg and Dekkers, 1999). Carbon
fixed by plant photosynthesis is known to be partly translocated
into the root zone and released as root exudates (Bais et al., 2006).
Various carbohydrates, amino acids, organic acids, as well as other
compounds, which provide a source of nutrients for root-associated
bacteria, are released in the rhizosphere (Walker et al., 2003).
Microorganisms are known to be chemoattracted and move
towards exudates, allowing them to colonize and multiply both in
the rhizosphere and the rhizoplane (Lugtenberg and Kamilova,
2009). A mutant of a plant growth-promoting P. fluorescens strain,
which lacked the cheA gene responsible for chemotaxis showed
reduced movement towards root exudates (or specific exudate
components) in the tomato rhizosphere and also decreased root
colonization (de Weert et al., 2002). In addition, genes known to be
involved in recognition and chemotaxis to plant root exudates are
involved. Mark et al. (2005) studied the transcriptomic response of
Pseudomonas aeruginosa strain PAO1 to exudates of two cultivars of
sugarbeet. This strain is an opportunistic human pathogen but was
eneficial bacteria, Burkholderia phytofirmans strain PsJN, tagged with gfp showing (a and
or (c and f) bacteria colonizing the whole outline of some rhizodermal cells. Scale bars:



Table 1
Known bacterial traits required in rhizosphere, rhizoplane and/or endophytic
competence by beneficial bacteria.

Rhizosphere and rhizoplane competence Endophytic competence

Chemotaxis
Bacterial growth rate
Quorum sensing
Amino acid synthesis
Vitamin B1 synthesis
NADH dehydrogenase I
O-antigenic site of LPS
Flagella
Fimbriae
Outer membrane protein
Agglutinin
Type IV pili
Antibiotic secretion
Siderophore production
Site specific recombinase

Flagella
Nod genes
Cell-wall degrading enzymes
Detoxification mechanisms
Type IV pili
Twitching motility
LPS
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shown to be associated with several plants (Mark et al., 2005 and
references therein). A commercial microarray facilitated the anal-
ysis of transcriptomic response to root exudates. Interestingly,
different genes responded to the exudates of the two cultivars, and
regulated genes included genes involved in aromatic compound
catabolism, energy generation and amino biosynthesis and
metabolism, type III secretion and various hypothetical proteins
(Mark et al., 2005). The expression of genes involved in chemotaxis
such as cheY encoding a two-component response regulator, cheA
encoding a chemotaxis response regulator, and pctA encoding
a chemotactic transducer protein, were down-regulated with
exudates from one sugarbeet cultivar but were not affected by root
exudates of the second cultivar (Mark et al., 2005). This is in
contradiction with other data previously reported on gene
expression or mutants involved in chemotaxis (de Weert et al.,
2002), but could also reflect the physiological response of this
strain at a given time point. Generally, chemotaxis is considered to
play an important role for successful rhizosphere colonization
(Walsh et al., 2001).

Host-bacteria associations can involve specific interactions and
recognition processes (Benizri et al., 2001). The composition of
exudates depends on the cultivar, the exposure of the plant to
stress, the plant growth stage and may also show differences along
the root structure resulting in differences in the composition of the
various bacterial communities (Haichar et al., 2008). Differences in
root exudate composition may also influence the colonization
process (Lugtenberg et al., 2001). In addition, some exudates are
known to have negative effects on bacterial strains. Differences
between attractive or repulsive compounds that affect bacterial
colonization (reviewed in Bais et al., 2006) are likely to have an
effect on bacterial gene expression.

The root exudation process is known to be heterogeneous in
space. Some exuded compounds are more concentrated in some
root zones than in others. For instance, in the root collar and root
hair zone high exudation occurs in comparison to root distal parts
such as tips (Grayston et al., 1996). Due to different exudation
patterns, some sites are better colonized by some rhizobacteria
(Gamalero et al., 2004), potentially resulting in spatial differences
of bacterial colonization. The amount of photosynthates secreted as
root exudates varies also with the type of soil and the availability of
nutrients (Kraffczyk et al., 1984; Paterson and Sim, 2000). This
indicates that at different sites on the root as well as at different
developmental stages, distinct rhizobacterial communities may
establish and interact with their hosts.

The process of exudation is moreover not an unidirectional flux
(Jones et al., 2009). Experiments under hydroponic conditions have
revealed that plant roots can take up a range of exuded compounds
from the rhizosphere into the roots and transfer them again to
shoots (Jones and Darrah, 1994, 1995, 1996), which will also influ-
ence the type of root exudates available for root and rhizosphere
colonizers.

Phytopathogen infection has been shown to influence root
exudation and thereby potentially influences the composition and
activity of rhizobacterial populations. Rudrappa et al. (2008)
recently demonstrated that a plant may select specific rhizosphere
colonizers via root exudation when its organs get infected by
a plant pathogen. Using the Arabidopsis thalianaePseudomonas
syringae pathosystem, the authors found enhanced exudation of
malic acid in the rhizosphere after pathogen infection of the plant's
leaves. Malic acid attracted a beneficial strain of Bacillus subtilis,
which then colonized the rhizoplane of the same plant, formed
a biofilm and protected roots against further aggression from the
phytopathogen (Rudrappa et al., 2008). This study nicely demon-
strated the interplay between the plant and different members of
the associated microbial community.

In addition to root exudates, some bacteria are known to be
attracted by root mucilage (Knee et al., 2001), i.e. hydrated
polysaccharides sloughed off from the root tip. For instance,
certain plant beneficial Azospirillum spp. strains are attracted by
the root mucilage produced by maize (Mandimba et al., 1986). On
the contrary, it has been reported that root mucilage prevents
colonization by P. fluorescens strain SBW25 interacting with maize
roots (Humphris et al., 2005). Different responses to root muci-
lage may further explain the spatial and temporal differences of
bacterial colonization that are frequently observed along the root
system.

2.2. Root colonization and biocontrol

Root exudates and mucilage-derived nutrients attract delete-
rious rhizobacteria as well as beneficial and neutral bacteria, fungi
and other soil organisms (Walker et al., 2003). Consequently PGPB
have to be highly competitive to successfully colonize the root zone.
Secondary metabolites involved in biocontrol, which are known to
confer the producing bacteria a selective and competitive advan-
tage against other microorganisms, further contribute to their
rhizocompetence and root site colonization (Compant et al., 2005a;
Haas and Défago, 2005; Raaijmakers et al., 2008; Lugtenberg and
Kamilova, 2009). Siderophores and lytic enzymes secreted by PGPB
may reduce the growth of phytopathogens present in the rhizo-
sphere. Moreover, some PGPB secrete antibiotics, which are
particularly relevant for rhizosphere and rhizoplane colonization
(van Loon and Bakker, 2005). Well known examples include 2,
4-diacetylphloroglucinol (DAPG), hydrogen cyanide, oomycin
A, phenazine, pyoluteorin, pyrrolnitrin, thiotropocin, tropolone, as
well as many others such as cyclic lipopeptides, rhamnolipids, oli-
gomycin A, kanosamine, zwittermicin A, and xanthobaccin (Trust,
1975; Kintaka et al., 1984; Thomashow and Weller, 1988; Défago,
1993; Maurhofer et al., 1994; Milner et al., 1995, 1996; Kim et al.,
1999; Nakayama et al., 1999; Nielsen et al., 2002; Raaijmakers et al.,
2002; de Souza et al., 2003). Some bacterial strains may secrete one
or more of these metabolites enabling them to better compete with
the natural microflora residing in the rhizospheres and the rhizo-
planes of plant hosts (Haas and Défago, 2005), further promoting
their competitive ability in the root environment. Genome analysis
further revealed that some bacteria such as the rhizosphere strains
Bacillus amyloliquefaciens FZB42 (Chen et al., 2007) or P. fluorescens
Pf-5 (Paulsen et al., 2005) possess large gene clusters responsible
for the secretion of antibiotics and siderophores as well as for
detoxification (which is also required during colonization), which
explained in part their efficient colonization of the plant hosts.
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2.3. Other determinants involved in epiphytic colonization

In addition to chemotaxis to exudates and mucilage or biocon-
trol activities, characteristics like bacterial flagella, quorum sensing
as well as the production of specific compounds/enzymes are
involved in colonization processes. Flagella allow bacteria to get
into contact with exudates and root mucilage components (Turn-
bull et al., 2001) and chemotaxis driven by flagella may thus play
an important role in root colonization. However, in some cases
flagella are not required for colonization, as it has been shown for
fluorescent Pseudomonas and Serratia strains and wheat (Scher
et al., 1988).

Cell density-dependent quorum sensing is known to regulate
many bacterial functions, e.g. antibiotic production, nitrogen fixa-
tion as well as many others (Latour et al., 2008). As shown by Soto
et al. (2006) quorum sensing can be also involved in the coloniza-
tion of the rhizosphere and the rhizoplane. Quorum sensing-
mediated root colonization was demonstrated with a derivative of
P. fluorescens 2P24 carrying a mutation in a gene of the LuxR-LuxI
family (Wei and Zhang, 2006). A pcoI mutant of P. fluorescens 2P24
showed reduced biocontrol activity against wheat take-all, biofilm
formation as well as reduced root colonization (Wei and Zhang,
2006). However, other studies showed that N-acyl homoserine
lactones (AHLs) mediating quorum sensing in Gram-negative
bacteria are not always required for plant colonization. Mutants of
Serratia liquefaciens or Serratia plymuthica, which do not produce
AHLs, did not differ in their colonization ability of tomato and
oilseed rape roots (Schuhegger et al., 2006; Müller et al., 2009).
Similarly, impaired AHL synthesis of Burkholderia phytofirmans
strain PsJN did not change colonization behaviour on and inside
potato roots, although this mutant strain had a major, but cultivar-
specific effect on stimulation of plant growth and physiology
(Trognitz et al., unpub. results). However, it might be that quorum
sensing affects the competitive ability of bacterial strains (e.g. by
regulating antibiotic production), which will further influence
colonization in the rhizosphere under natural conditions.

The ability of PGPB to synthesize amino acids, vitamin B1 and
NADH dehydrogenase I (Simons et al., 1997; Camacho Carvajal et al.,
2002), lipopolysaccharides (LPS) (de Weger et al., 1989; Dekkers
et al., 1998a) or fimbriae (Vesper, 1987) have been additionally
reported to be involved in root colonization. Furthermore, cell-
surface proteins such as outer membrane proteins (de Mot et al.,
1992) and agglutinin (Anderson et al., 1988), type IV pili (Dörr et al.,
1998) as well as a site-specific recombinase involved in phase
variation (Dekkers et al., 1998b) might be involved in the coloni-
zation process. In conclusion, the published information so far
indicates that PGPB may employ an array of distinct mechanisms,
either alone or in combination, to successfully colonize the root
system.

3. Endophytic colonization

Several bacteria deriving from the rhizosphere do not only
colonize the rhizosphere and/or the rhizoplane but can also enter
plants and colonize internal tissues and many of them have shown
plant growth-promoting effects (Hallmann, 2001; Compant et al.,
2005b, 2008a; Sessitsch et al., 2004; Hallmann and Berg, 2007). As
early as 1887, Victor Galippe postulated that soil microorganisms
can penetrate tissues of healthy plants and that the involved
colonization mechanisms needed to be investigated (Galippe,
1887). These early findings were, however, dismissed due to the
general belief that microorganisms detected inside plants represent
contaminants obtained during the isolation process (Smith, 1911).
Several recent studies confirm that plants host diverse endophytic
communities (Idris et al., 2004; Krechel et al., 2004; Berg et al.,
2005b) and that endophytic bacteria mostly derive from the
rhizosphere (Sessitsch et al., 2002; Compant et al., 2005a; Hardoim
et al., 2008). Endophytes represent a subgroup of the rhizobacterial
communities, which have the ability to enter the endorhiza (the
root interior) of their hosts once the rhizoplane is colonized
(reviewed in Gray and Smith, 2005; Rosenblueth and Martínez-
Romero, 2006; Hallmann and Berg, 2007). In general, endophytes
are more likely to show plant growth-promoting effects than
bacteria exclusively colonizing the rhizosphere (Conn et al., 1997;
Chanway et al., 2000).

3.1. Root endophytic colonization

Following rhizosphere and rhizoplane colonization, some soil-
borne microorganisms can enter roots, and establish subpopulations
ranging from 105e107 CFU g�1 FW (Hallmann, 2001). This involves
specific traits required for endophytic competence (Table 1), i.e. the
ability to successfully colonize the plant host. The penetration
process does not necessarily involve active mechanisms and thus all
rhizosphere bacteria can be expected to be endophytic at one stage
of their life (Hardoim et al., 2008). Passive penetration can take place
at cracks, such as those occurring at root emergence sites or created
by deleterious microorganisms, as well as by root tips (Fig. 2; Rein-
hold-Hurek and Hurek, 1998). For certain bacteria specific adapta-
tions have evolved, such as for nodulating bacteria or microbes,
which have specific mechanisms for active penetration of the root
system (reviewed in Hardoim et al., 2008). In some planterhizobia
interactions such as in the symbiosis between the semi-aquatic
legume Sesbania rostrata and Azorhizobium caulinodans (Goor-
machtig et al., 2004), invasion can happen through fissures at the
lateral root base and by cortical, intercellular crack entry. For other
rhizobia nodulating legumes, colonization occurs in the interior
of hairy roots before infection threads are formed, they penetrate
root tissues and subsequently specialized organs are developed by
the plant, known as nodules (reviewed by Garg and Geetanjali,
2007). This specific phenomenon, currently known to be mediated
by chemotaxis towards flavonoid exudates as well as by microbial
signals such as nod factors, is required for the symbiotic lifestyle of
nodule-forming bacteria. Sequenced genomes of nodule-forming
bacteria such as A. caulinodans ORS 571, Bradyrhizobium japonicum
USDA110 (Kaneko et al., 2002), Burkholderia phymatum strain
STM815, Cupriavidus taiwanensis strain R1 (Amadou et al., 2008) and
Frankia spp. strain CcI3 (Normand et al., 2007) have moreover
confirmed the role of these nod genes in nodulation. Endophytic
colonization apart from this specialized and frequently studied
interaction between nodulating bacteria and legumes is less well
understood.

Lipopolysaccharides, flagella, pili, and twitching motility (Duijff
et al., 1997; Dörr et al., 1998; Böhm et al., 2007) have been shown to
affect endophytic colonization and bacterial mobility within host
plants. In addition, the secretion of cell-wall degrading enzymes
(CWDEs) is involved in bacterial penetration (reviewed in Lode-
wyckx et al., 2002; Fig. 2) and spreading within the plant (see
below). The latter function has been confirmed by genome analysis
of the non-nodulating endophyte Azoarcus sp. BH72 (Krause et al.,
2006) possessing genes encoding CWDEs such as cellulases and
polygalactorunases. Within the genome of the endophyte Klebsiella
pneumoniae Kp342, which colonizes maize, alfalfa as well as many
other crops, it has been demonstrated moreover that several
additional genes are important for colonization (Fouts et al., 2008).
These not only include genes involved in chemotaxis, the formation
of flagella and pili but also various metabolic pathways and trans-
port systems. In particular, those enabling the recognition and
catabolism of plant compounds such as the uptake and degradation
of plant-derived polysaccharides have been described to be



Fig. 2. Sites of plant colonization by endophytic bacteria. Drawing modified from Reinhold-Hurek and Hurek (1998) and Compant (2007).
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involved in this process (Fouts et al., 2008). Recent work by Rasche
et al. (2009) further showed that endophytes have the capacity to
metabolize photosynthetic plant products.

Active or passive mechanisms have been reported for trans-
location processes of endophytic bacteria inside their plant hosts
allowing them to progress from the rhizoplane to the cortex of the
root system. Once a bacterium reaches the root cortical zone,
a barrier such as the endodermis can block further colonization as
only few bacteria are able to pass through the endodermis (Greg-
ory, 2006). It is likely that endophytes able to pass through the
endodermis can secrete CWDEs allowing them to continue colo-
nization inside the endorhiza (James et al., 2002). Alternatively,
some bacteria may passively enter as a portion of this endodermal
cell layer is often disrupted, such as during the growth of secondary
roots, which derive from the pericycle, situated just below the
endodermis barrier (Gregory, 2006). Under natural conditions,
some deleterious bacteria can moreover disrupt the endodermis,
allowing endophytic bacteria at the same time to pass into the
central cylinder (Fig. 2). After passing through the endodermis
barrier, endophytic bacteria have to penetrate the pericycle to
further reach the root xylem vessels of their hosts (Figs. 2 and 3).
This has been shown for example for Herbaspirillum seropedicae
Z67 in rice (James et al., 2002), for B. phytofirmans strain PsJN in
grapevine (Compant et al., 2005b, 2008a), and will be the case for
many additional endophytic bacteria. Even if some endophytes can
colonize root internal tissues and continue their progression until
the root xylem vessels, active penetration of the endophytes is
known to induce defence mechanisms of the host plants (reviewed
in Rosenblueth and Martínez-Romero, 2006). Different defence
reactions have been often described during planteendophyte
interactions. Strengthening of cell walls, establishment of
surrounding material inside the cortex or xylem as well as gum
formation inside vessels have been observed (James et al., 2002;
Compant et al., 2005b; Miché et al., 2006). However, in constrast to
the plant response to phytopathogens only few defence responses
have been described in plant response to endophytes. These
differences can be probably explained by the secretion of different
compounds or by the amount of secreted metabolites, which may
be very low in the case of endophytes (discussed in James et al.,
2002). However, it has been also reported that plants may show
defence reactions controlling endophytic colonization (Iniguez
et al., 2005). Dicotyledonous plants are known to use salicylic acid
(SA) and ethylene as signalling molecules, which control coloni-
zation by some endophytes, as demonstrated under laboratory
conditions (Iniguez et al., 2005). By contrast, in monocotyledonous
plants such as rice, the addition of jasmonic acid (JA) but not
ethylene was shown to interfere with the colonization of the
diazotroph Azoarcus sp., suggesting that plant defence responses
involving the JA signalling pathway might also control endophytic
colonization inside the root system (Miché et al., 2006). However,
in a compatible endophytic association, JA-associated plant
responses were less pronounced and did not restrict endophytic
colonization (Miché et al., 2006).

3.2. Bacterial colonization of xylem vessels and endophytic
translocation to vegetative plant parts

Although not frequently investigated it is well known that
endophytes may spread systemically inside the plant and colonize
stems and leaves (Hardoim et al., 2008), where their cultivable
population densities may reach 103e104 CFU g�1 of fresh weight
under natural conditions (reviewed in Hallmann, 2001). It is not
clear, whether endophytes colonizing roots or above ground plant
tissues have different effects on the plant or whether root coloni-
zation is sufficient for conferring beneficial effects.

Some endophytes colonize nutrient-rich intercellular spaces of
plant hosts using them to spread inside host plants (Cavalcante and
Dobereiner, 1988; Dong et al., 1994). Some systemic bacterial
colonizers can also use the lumen of xylem vessels to spread
throughout the plant (James et al., 2001; Compant et al., 2005b,
2008a). Lumen colonization of xylem vessels has been however
more frequently reported as a route of spreading of endophytic



Fig. 3. Endophytic colonization of a plant growth-promoting bacterium (Burkholderia phytofirmans PsJN) observed via fluorescence in situ hybridization (a) or with gfp tagging
(b) showing bacterial cells as green rods inside cortex (a) or xylem vessels (b) with green fluorescence. Scale bars: (a) 25 mm, and (b) 10 mm. Pictures by S. Compant. Picture b from
Compant et al. (2008a) with permission.

Fig. 4. Bacterial spread inside xylem vessels in aerial plant parts. Arrows show the
colonization process. Drawing of xylem vessels modified from The American Heritage�

Student Science Dictionary (2002).
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bacteria to reach vegetative plant parts, probably because they are
open conduits, whereas migration along intercellular spaces
requires the secretion of active CWDEs. Although at the beginning
of the 1990's it was strongly argued, that lumen xylem colonization
is a property of phytopathogens (McCully, 2001), it is nowadays
known that non-phytopathogenic endophytes can spread inside
plants in the samemanner (Fig. 4). Beneficial bacteria can pass from
one xylem element to another using the perforated plates (Fig. 4).
The size of the plate holes allows the passage of bacteria without
requiring the activity of CWDEs (Bartz, 2005). Bacterial flagella and/
or the plant transpiration stream seem to further support their
movements inside plants (James et al., 2002; Compant et al.,
2005b). However, only few endophytes are able to colonize aerial
vegetative plants parts (Hallmann, 2001) as they have to pass over
several barriers as well as need to possess the physiological
requirements to establish in different plant niches. Those migrating
to the above ground parts are thus well adapted to this particular
endophytic environment.

3.3. Endophytic colonization of flowers, fruits and seeds

A few studies reported that some endophytic bacteria colonize
flowers, fruits and seeds (reviewed in Hallmann, 2001). However,
under natural conditions the majority of flowers and fruits does not
contain endophytic bacteria at all or only very low densities (Hall-
mann, 2001), reaching population densities up to 102e103 CFUg�1 of
fresh weight (S. Compant, unpub. results). It is likely that only
specialized endophytic strains are able to colonize and survive in
reproductive plant organs. Mundt and Hinkle (1976) as well as
Misaghi and Donndelinger (1990) detected endophytic colonizers
inside ovaries and fruits of some plants. Moreover, some strains
belonging to Pseudomonas and/or Bacillus as well as to other genera,
which also show plant growth promoting abilities, were observed
and isolated from the interior of flowers, fruits and seeds of grape-
vine (Compant et al., unpub. results; Fig. 5). Few species were
isolated from sterilized rice seeds (Okunishi et al., 2005). Strains
belonging to Pseudomonas and Rahnella genera were additionally
isolated from Norway spruce (Cankar et al., 2005) as well as from
yellow lupine seeds (Barac et al., 2004), and from some other plants,
providing some information on the type of microorganisms colo-
nizing plant reproductive organs. However, their ecology, func-
tioning and their origin have been poorly investigated.

The migration of the endophyte B. phytofirmans strain PsJN from
the rhizosphere to inflorescence tissues of grapevinewas studied to
explain colonization of endophytes throughout the plant including
reproductive organs. This strain, known for its plant growth-
promoting effects on potato, tomato, grapevine, chickpea, barley
and other plants (Sessitsch et al., 2005) has been described to
colonize upper grapevine organs, especially berries of cv. Char-
donnay following soil inoculation (Compant et al., 2008a).
Although only a low density of bacterial cells has been detected
inside fruits, these experiments indicated that some PGPB can be
translocated (via xylem colonization; Fig. 4; Compant et al., 2008a).
These reports moreover demonstrated that some endophytes
colonizing infructescences may derive from the rhizosphere,
and provided information about the putative niche of a microbial
inoculant derived from the soil. Furthermore, field studies have
been performed and showed, that some strains isolated from plant
reproductive organs are the same as those reported as colonizing
the rhizosphere and the endorhiza, especially in grapevine
(S. Compant, unpub. results). This indicates that even under natural
conditions some rhizosphere colonizers can spread inside the plant
and finally colonize inflo/infructescence tissues.



Fig. 5. Bacterial presence inside cells of berries of grapevine plants visualized by fluorescence in situ hybridization (a and b) showing green fluorescent bacterial cells. Scale bars:
(a) 20 mm, and (b) 15 mm. Pictures by S. Compant.
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Limited knowledge exists on the function of endophytes colo-
nizing flowers, fruits and seeds. Recently, Mastretta et al. (2009)
reported that some endophytic bacteria, isolated from seeds of
Nicotiana tabacum grown in the field under metal stress, induced
plant growth promotion as well as reduced cadmium phytotoxicity
during the early growth of new plants. van Oevelen et al. (2003)
suggested that an endophyte, aBurkholderia sp. strain obtained from
Psychotria sp. (belonging to the Rubiaceae) can be transmitted from
seed to seed, as plants without the endosymbiotic Burkholderia sp.
strain could not grow and eventually died. This suggests that a plant
may support seed colonization of endophytes with specific func-
tions. Considering the observation that reproductive organs contain
(if at all) low numbers of endophyte cells it seems that these low
numbers might be sufficient for further vertical transmission.
Once established in the new plant, cell densities may increase and
be involved in plant growth promotion. However, this needs to be
confirmed. It is moreover unknown if all seed endophytes can be
successfully transmitted to the next plant generation or whether
they all derive from the soil/rhizosphere environment.
3.4. Other sources of endophytic bacteria

For a long time, any other source of beneficial endophytes than
soil has been questioned. Using cultivation-based approaches, some
endophytes have been isolated exclusively fromabove ground plant
parts, but were not found in the rhizosphere, the rhizoplane or
inside roots of potato (Berg et al., 2005b) or grapevine (S. Compant,
unpub. results). This has been confirmed using cultivation-inde-
pendent techniques, which detected some strains in aerial plant
parts but not in soil or inside roots (Berg et al., 2005b). Alternative
sources might be the caulosphere for stem endophytes, the phyl-
losphere for leaf endophytes, the anthosphere for the ones residing
inside flowers as well as the carposphere for those colonizing fruits.

Following phyllosphere inoculation of grapevine plants cv.
Chardonnay with B. phytofirmans strain PsJN, bacteria were found
inside leaf internal tissues using in vitro grown plantlets (Compant
et al., unpublished results). Beattie and Lindow (1995) assumed
that only phytopathogenic bacteria can colonize leaves endo-
phytically following phyllosphere inoculation. This was elaborated
after testing both, pathogenic and beneficial bacterial strains
(Beattie and Lindow, 1995). However, contrasting results have been
reported as well. For example, inoculation of sugarcane leaves with
a Gluconacetobacter diazotrophicus strain resulted in successful
colonization of leaf xylem vessels (James et al., 2001), although this
bacterium is well known to systemically spread inside the plant
following soil or rhizosphere inoculation (James et al., 2001). It is
thus possible that endophytic bacteria may also colonize leaves
endophytically following phyllosphere inoculation, but data on
survival or further transmission to other tissues of endophytes
entering from the phyllosphere are lacking.

Although experimental evidence is missing, the anthosphere or
carposphere might represent potential sources of endophytes. It
can be assumed that flowers or fruits with small injuries allow the
entry of some endophytes. This would explain the colonization of
some strains in inflo/infructescences but their absence in roots and
soils. Another explanation might be the presence of viable but not
cultivable bacteria (VBNC) in some tissues. This has been reported
for instance for Azoarcus sp. BH72 colonizing grasses, which has
been shown to fix nitrogen in an unculturable state following soil
inoculation (Hurek et al., 2002).
4. Conclusions and future prospects

Many plant-associated bacteria are well known for their
capacity to confer plant growth promotion and to increase resis-
tance towards various diseases as well as abiotic stresses. Never-
theless, they often fail to confer these beneficial effects when
applied in the field, which is often due to insufficient rhizo- and/or
endosphere colonization. The lack of various characteristics, which
are important for efficient colonization of the plant environment
and which have been outlined in this review, could explain poor
plant host colonization by rhizosphere and endophytic bacteria. A
better understanding on how beneficial bacteria colonize different
plant niches will not only result in increased knowledge on
plantemicrobe interactions but will also lead to a more successful
and reliable use of bacterial inoculants.

Several issues require further research. For example, some rhizo-
sphere-restricted bacteria as well as some endophytes have been
detected on and/or inside plants as VBNC cells (Hurek et al., 2002;
Gamalero et al., 2004, 2005), but it is currently unknown why cells
switch to this state. Switching to a VBNC state on and inside plants
might indicate that bacteria experience stress during host coloniza-
tion, but this phenomenon is still poorly understood. Additionally,
most rhizo- and endophytic bacteria cannot be cultivated, either
because they enter a VBNC state or because their cultivation condi-
tions are unknown. Little information is available on the functional
activities or the effects on plant performance of uncultivated bacteria.
Metagenomic approaches and other cultivation-independent tech-
niques might in the future reveal more information on not yet culti-
vated microorganisms.
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Research performed so far has been mostly related to plant
growth promotion and/or to rhizosphere or root endophytic colo-
nization. Although novel root colonizers are being detected (e.g.
Andreote et al., 2009), the functioning and contribution to plant
growth of endophytes localized in aerial parts is rather poorly
understood. Correlation between colonization and beneficial
effects as well as genomic comparison of bacteria colonizing
different plant tissues will help to better understand the role of
these endophytes. Of particular interest are endophytes that colo-
nize fruits as well as seeds (inside fruits), as they are likely to (i)
show specific functions, (ii) important for plant health and growth,
and are (iii) vertically transmitted.

An issue of concern, which has not been addressed in this
review, is that plants may host various human pathogens (Berg
et al., 2005a; Allerberger and Sessitsch, 2009). It has been reported
that some of them can even exhibit plant growth-promoting effects
or may improve plant health and colonize the rhizosphere as well
as plant internal tissues (Berg et al., 2005a). However, we are at the
onset of understanding the differences between plant colonizers
and clinical isolates. A recent paper on Stenotrophomonas malto-
philia, a species known for clinical infection as well as for plant
colonization (Ryan et al., 2009), revealed some information on
differences, which evolved among isolates derived from the
different niches. Some genomic islands typically found in clinical
strains are absent in endophytic strains, on the other hand some
endophytes and clinical isolates show extremely high homology.
Genome plasticity could explain differences between isolates
possibly allowing adaptation to a different environment (Ryan
et al., 2009). However, some genes known to be involved in path-
ogenicity were found in strains obtained from both, the plant and
the clinical environment (Ryan et al., 2009). Furthermore, the
mechanisms responsible for the colonization of plants and for the
antagonistic activity of S. maltophilia strains against plant patho-
gens might be similar to those that are responsible for the coloni-
zation of human tissues and for pathogenicity. This knowledge
necessitates careful selection of inoculant strains to be applied and
released into the environment (Berg et al., 2005a). Similarly, Bur-
kholderiales such as Burkholderia spp. (Compant et al., 2008b) and
Enterobacteriaceae that can be potent pathogens and which use the
plant as an internal reservoir (Holden et al., 2009). By investigating
further the genetic differences between plant and animal/human
colonizers it might be soon possible to better predict the patho-
genicity potential of microbial inoculants.

Further analysis of sequenced genomes, the characterization of
yet unknown genes and the identification of genes expressed
during colonization will help to improve our understanding on the
colonization process and the interaction of beneficial microbes
with plants. Matilla et al. (2007) showed by using microarrays that
two selective forces of different nature are important for beneficial
bacteria to colonize the rhizosphere: stress adaptation and the
availability of particular nutrients, as demonstrated with maize
rhizosphere and a Pseudomonas putida strain. New bacterial traits
conferring strain survival in this niche have been found and opened
a way to better understand specific signalling and regulatory
processes governing the plant-beneficial bacteria association
(Matilla et al., 2007). It will not be surprising if some new factors,
functions, as well as genes required for rhizosphere and endophytic
lifestyle of such microorganisms will be identified in the near
future. However, we will need to separate common traits required
for colonization and specific factors involved during the interaction,
as differences in specific adaptation and recognition might be
involved in different plant-bacteria associations. Generally, a more
comprehensive understanding of plant colonization by bacteria has
to be developed in order to better predict how bacteria interact
with plants and whether they are likely to establish themselves in
the plant environment after field application as biofertilisers or
biocontrol agents.
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