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Microbes of the phytomicrobiome are associated with every plant tissue and, in

combination with the plant form the holobiont. Plants regulate the composition and

activity of their associated bacterial community carefully. These microbes provide a

wide range of services and benefits to the plant; in return, the plant provides the

microbial community with reduced carbon and other metabolites. Soils are generally

a moist environment, rich in reduced carbon which supports extensive soil microbial

communities. The rhizomicrobiome is of great importance to agriculture owing to the

rich diversity of root exudates and plant cell debris that attract diverse and unique

patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in

nutrient acquisition and assimilation, improved soil texture, secreting, and modulating

extracellular molecules such as hormones, secondary metabolites, antibiotics, and

various signal compounds, all leading to enhancement of plant growth. The microbes

and compounds they secrete constitute valuable biostimulants and play pivotal roles

in modulating plant stress responses. Research has demonstrated that inoculating

plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-

to-plant signal compounds can be an effective strategy to stimulate crop growth.

Furthermore, these strategies can improve crop tolerance for the abiotic stresses

(e.g., drought, heat, and salinity) likely to become more frequent as climate change

conditions continue to develop. This discovery has resulted in multifunctional PGPR-

based formulations for commercial agriculture, to minimize the use of synthetic fertilizers

and agrochemicals. This review is an update about the role of PGPR in agriculture,

from their collection to commercialization as low-cost commercial agricultural inputs.

First, we introduce the concept and role of the phytomicrobiome and the agricultural

context underlying food security in the 21st century. Next, mechanisms of plant growth

promotion by PGPR are discussed, including signal exchange between plant roots

and PGPR and how these relationships modulate plant abiotic stress responses via
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induced systemic resistance. On the application side, strategies are discussed to

improve rhizosphere colonization by PGPR inoculants. The final sections of the paper

describe the applications of PGPR in 21st century agriculture and the roadmap to

commercialization of a PGPR-based technology.

Keywords: phytomicrobiome, holobiont, rhizosphere, PGPR, sustainable agriculture, climate change resilience,

roadmap, deployment

INTRODUCTION

A plant growing under field conditions is not an individual;
it is a complex community (Lundberg et al., 2012) with subtle
and relatively constant partner relationships. A well-structured
and regulated community of microorganisms is always associated
with the plant (Turner et al., 2013; Chaparro et al., 2014;
Lebeis, 2014; Bulgarelli et al., 2015; Smith et al., 2015b). This
community is the phytomicrobiome (Smith et al., 2017); the
phytomicrobiome plus the plant is the holobiont (Berg et al.,
2016; Theis et al., 2016; Smith et al., 2017). Microbiome
relationships exist with all multi-cellular organisms, and probably
all eukaryotes. In fact, these probably predate the colonization of
the land by plants (Berg et al., 2014). This microbial community
has been associated with terrestrial plants since their earliest
evolution, to assist early land plants faced with challenges such
as access to nutrients, novel and often-stressful conditions and
pathogens (Smith et al., 2015a).

There are elements (including bacteria and fungi) of the
phytomicrobiome associated will all major plant structures
(flowers, fruits, stems, leaves, and roots) (Berg et al., 2016).
However, conditions vary substantially among these structures,
leading to specialized microbial populations inhabiting each
one. The microbial community associated with the roots (the
rhizomicrobiome), is the most populous and elaborate of all
those associated with higher plants. The best understood and
characterized example is the nitrogen-fixing rhizobia associated
with legumes (Gray and Smith, 2005). Many members of the
phytomicrobiome cannot be cultured and it has only been since
the advent of metagenomics (Hirsch and Mauchline, 2012) and
related methods that we are able to assess how membership is
changed by conditions, plant genotype (Delaplace et al., 2015;
Poli et al., 2016; Wintermans et al., 2016) and plant development.

The plant exerts considerable control over the composition
of the rhizomicrobiome (Zhang et al., 2017). It produces root
exudates of various compositions (Chaparro et al., 2012; Trabelsi
and Mhamdi, 2013), which can be more suitable as a source
of reduced C, to some microbes than others. The plant also
produces signal compounds that recruit specific species and
regulate their genetic and biochemical activities (Nelson and
Sadowsky, 2015; Massalha et al., 2017; Smith et al., 2017).
In addition, the soil microbial community undertakes various
aspects of self-regulation (Leach et al., 2017). The microbes
can produce quorum sensing compounds to communicate when
conditions warrant a collective physiological shift (Chauhan et al.,
2015). Plants have evolved to respond to microbial quorum
sensing compounds and to produce analogs, providing plants

with another level of regulation over the rhizomicrobiome (Ortiz-
Castro et al., 2009). Finally, it is now becoming apparent that
there is some degree of hierarchy within the phytomicrobiome
and that there are key members, termed “hub species” (Agler
et al., 2016) or “core species” (Toju et al., 2018), whose activities
are regulated by plants, and hub species in turn regulate broader
activities within the phytomicrobiome. Most hub species have
probably been part of the phytomicrobiome for a very long
time, allowing for development of their central position (van der
Heijden and Hartmann, 2016).

In the soil, there is a gradient of intimacy between plant roots
and microbes extending away from the plant root: the degree of
plant influence over the microbial community increases nearer
the root surface (Figure 1). This zone is now generally referred
to as the rhizosphere, however, the term was originally coined
by Hiltner (1904) to describe the soil microorganisms around
and inside roots. Now, microbes living on the root surface are
said to inhabit the rhizoplane, and those living inside the root
are said to be endophytes (Gray and Smith, 2005; Zhang et al.,
2017). Mitochondria and plastids (including the chloroplasts)
represent some of the oldest and most intimate, aspects of the
phytomicrobiome. They evolved from plant-associated microbes
into the permanent subcellular structures we see today.

Our current understanding of the phytomicrobiome has
demonstrated two main aspects. First, we know shockingly
little about it (Quiza et al., 2015). Second, the relationships
we have studied between rhizomicrobiome members and plants
have shown that there is a tremendous potential in exploiting
this community of organisms to increase worldwide crop
production (Barea, 2015; Nehra and Choudhary, 2015; Smith
et al., 2015b). This review is an update regarding the role of plant-
growth promoting rhizobacteria (PGPR) in agriculture, from
their collection to commercialization as a low-cost commercial
agricultural input. While also we recognize the value of PGPR as
a tool for phytoremediation, however, this is beyond the scope of
our review; excellent information on this topic can be found in
other review articles.

AGRICULTURAL CONTEXT: A “FRESH”
GREEN REVOLUTION IN THE FACE OF
CLIMATE CHANGE

TheGreen Revolution of the 20th century enabled unprecedented
gains in global food production. The Green Revolution
was roughly comprised of two main advances; chemical
inputs (pesticides, herbicides, and chemical fertilizers) and
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FIGURE 1 | The degree of intimacy and influence of the plant-microbe interactions. Microbes are represented by small colored (red, green, yellow, purple, and blue)

shapes. Diversity and number of microbes is variable between soils, distance from plant roots, crop species, and plant tissue.

improved crop plants (through targeted breeding and advanced
genetic manipulations). However, gains associated with fertilizer
inputs carry high environmental costs. A new revolution in
agricultural innovation will be needed to sustain the food,
fiber, and fuel needs of a growing global population and a
changing climate through the 21st century. A “Fresh” Green
Revolution, perhaps the Bio-Revolution, needs to be based
on fewer intensive inputs with reduced environmental impact.
A Bio-Revolution could be based on 1) biological inputs
through utilization of the phytomicrobiome (with inoculants,
microbially produced compounds, etc.), and improved crops
(by manipulation of the phytomicrobiome community structure)
(Timmusk et al., 2017). The use of microbial based agricultural
inputs has a long history, beginning with broad-scale rhizobial
inoculation of legumes in the early 20th century (Desbrosses
and Stougaard, 2011). More recently, strains of Bacillus,
Pseudomonas, Glomus, and others have been commercialized.
The use of bacterial taxa in plant production has been reviewed
previously for Bacillus (Borriss, 2011), Pseudomonas (Santoyo
et al., 2012; Sivasakthi et al., 2014), Actinobacteria (Shivlata
and Satyanarayana, 2017), and Lactobacillus (Lamont et al.,
2017). In addition, Acetobacter, Azospirillum, Paenibacillus,
Serratia, Burkholderia, Herbaspirillum, and Rhodococcus have
also been shown to enhance crop production (Babalola,
2010).

The effects of climate change are expected to impose more
environmental stresses on crops worldwide (Pachauri et al.,
2014). Moreover, as climate change progresses throughout the
21st century, significant areas of high-quality agricultural lands
will likely be lost to rising seas, erosion, salinization, and
desertification. This means that crop yields will need to be

maintained, in spite of production on a smaller area of land,
under more stressful conditions. The phytomicrobiome plays
a critical role in the survival of the holobiont, particularly
for plants growing in extreme environments. Some plants
that live in hypersaline coastal environments or geothermal
soils rely on endophytic fungi to survive (Rodriguez and
Redman, 2008). Likewise, constitutive microbial communities
of agave (Coleman-Derr et al., 2016) and cacti (Fonseca-
García et al., 2016) likely aid in the survival of these plants
in very dry habitats. The microbiomes of plants native to
extreme environments may be rich sources of stress-ameliorating
microbes.

PHYSIOLOGY OF PLANT-GROWTH
PROMOTING RHIZOBACTERIA

Plant-microbe co-evolution has led to some of the bacteria
becoming facultative intracellular endophytes (Bulgarelli
et al., 2013). Among these free-living bacteria are PGPR
that exert beneficial effects on plants through direct and
indirect mechanisms. Beneficial rhizobacteria have been
utilized to improve water and nutrient uptake, abiotic
and biotic stress tolerance. Even though numerous soil
bacteria have been reported to promote plant growth and
development, the mode(s) of action by which the bacteria
exhibit beneficial activities are often not well understood.
The molecular basis of plant-bacteria interaction mechanisms
responsible for the physiological changes are beginning
to be discerned, mainly due to the emerging “omics”
approaches.
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Nutrient Acquisition by PGPR
Soils with dynamic microbial ecologies and high organic
matter typically have lower fertilizer requirements than
conventionally managed soils (Bender et al., 2016). For
example, bulk microbial activity in soils is often considered
when managing the application of organic nutrient sources.
Phytomicrobiome research is beginning to reveal specific
plant-microbe interactions that directly aid in plant nutrition
(Beattie, 2015). Microbes that assist in plant nutrient acquisition
(biofertilizers) act through a variety of mechanisms including
augmenting surface area accessed by plant roots, nitrogen
fixation, P-solubilization, siderophore production and HCN
production (Pii et al., 2015). Therefore, manipulating microbial
activity has great potential to provide crops with nutritional
requirements.

The most extensively studied and exploited beneficial plant-
bacteria relationship is the N-fixing symbiosis between rhizobia
and legumes. In this relationship, legumes provide rhizobia with
reduced C and a protected, anaerobic environment required for
nitrogenase activity, while rhizobia provide the legumes with
biologically available N. Within this symbiosis, both rhizobia
and legume undergo significant transformations. The legume
forms a new organ, the nodule, to house the rhizobia, and the
rhizobia, in turn, changes from its free-living rod-shaped cell
type to a branched, N-fixing bacteroid (Oke and Long, 1999).
Rhizobial N-fixation contributes significant amounts of N to
global agricultural systems, with estimates ranging from 20 to
22 Tg N per year (Herridge et al., 2008) up to 40 Tg N per
year (Galloway et al., 2008). Rhizobial inoculants of leguminous
crops are the earliest example of commercial microbial products
in agriculture and still represent themost widely used agricultural
inoculants (Bashan, 1998). However, genetic improvements in
efficiency of the N-fixing symbiosis of rhizobia and crop plants
have been elusive. The fixation of atmospheric nitrogen and
conversion to ammonia is an energy demanding process, which
means oxidative phosphorylation of carbon sources to generate
ATP must be favored over glycogen synthesis within the bacterial
cell, to increase nitrogen fixation. However, experiments with
glycogen synthase deletion mutants of Rhizobium tropici have
not survived in soil environments, despite increased dry matter
and nodule number in inoculated bean plants (Marroquí et al.,
2001).

Starting in the early 21st century, interest began to mount
around the development of commercial inoculants of free-
living N-fixing bacteria such as Azoarcus sp., Burkholderia sp.,
Gluconacetobacter sp., Diazotrophicus sp., Herbaspirillum sp.,
Azotobacter sp., Bacillus polymyxa, and especially Azospirillum
sp. (Vessey, 2003). These free-living diazotrophs provide N to
a much wider range of crop plants than rhizobia. Commercial
inoculants of Azospirillum, produced by small and medium sized
companies around the world, have been effective in increasing the
yield of various cereal crops (Bashan and de-Bashan, 2015). Other
bacteria that do not fixN have been shown to increase N uptake in
plants, thus increasing nitrogen use efficiency (Adesemoye et al.,
2008; Adesemoye and Kloepper, 2009), likely due to increased
root growth, which allows plants to access more soil (Beattie,
2015).

Following Liebig’s law of the minimum in mind, the next
most limiting nutrient for crop plants after N is usually P.
While most agricultural soils contain ample quantities of P,
much of it is in non-soluble forms. To supplement indigenous
soil P, crops are typically fertilized with rock phosphate mined
from one of a few large deposits (up to 85% of the world’s
rock phosphate is estimated to be in Morocco and Western
Sahara). Furthermore, phosphorus solubilizing microorganisms
(PSMs) can help plants access the reservoir of non-labile
phosphorus by releasing it from its recalcitrant forms. Inorganic
P complexed with Ca, Fe, or Al can be solubilized by organic
acids or H+ ions excreted by PSMs. Similarly, phytase produced
by PSMs can liberate reactive P from organic compounds.
Production of HCN by PGPR was originally thought to promote
plant growth by suppressing pathogens, however, this idea has
recently been challenged by Rijavec and Lapanje (2016), who
argued that HCN indirectly increases P availability by metal
chelation and sequestration of these geochemical entities. PSMs
produce organic acids to reduce metal toxicity by using these
compounds to transform metal species to immobile forms or
chelate them for mobility, to be carried into the plant tissues
for further phyto-extraction possibilities (Ahemad, 2015). The
PSM Bacillus megaterium has been commercialized as BioPhos
(BioPower Lanka, Sri Lanka) and can reduce phosphate fertilizer
requirements of plantation crops up to 75% (Mehnaz, 2016).
Strains of P- solublizing Pseudomonas striata, B. Polymyxa, and
B. megaterium have also been commercialized by AgriLife (India)
(Mehnaz, 2016).

Other nutrient elements, such as Fe and Zn can limit crop
yields. Like P, Fe can also be abundant in soils, but unavailable
to plants. Many bacterial strains increase the availability of
Fe through the production of organic acids or siderophores
(Kloepper et al., 1980; Neilands, 1995; Ahmed and Holmstrom,
2014). Siderophores also act to control pathogenic microbes
by depriving them Fe (Ahmed and Holmstrom, 2014; Saha
et al., 2016). A commercial formulation of the Fe mobilizing
bacteria, Acidithiobacillus ferrooxidans has been developed by
AgriLife (India) (Mehnaz, 2016), although this genus apparently
solubilizes Fe through organic acid production rather than with
siderophores (Bhatti and Yawar, 2010). Several strains of Zn-
mobilizing bacteria have been shown to increase Zn uptake, and
thus increase yield in several crops, including rice (Tariq et al.,
2007; Shakeel et al., 2015), wheat and soybean (Ramesh et al.,
2014).While themechanisms of Zn-mobilizers remain uncertain,
they are likely similar to those of PSMs and Fe-mobilizers, namely
the production of chelating agents and organic acids (Hafeez
et al., 2013).

Signal Exchange Between Plant Roots
and PGPR
Plant Hormones Produced by PGPR

Phytohormones are key players in regulating plant growth and
development. They also function as molecular signals in response
to environmental factors that otherwise limit plant growth or
become lethal when uncontrolled (Fahad et al., 2015). Many
rhizosphere bacteria are known to excrete hormones for root
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uptake or manipulate hormone balance in the plants to boost
growth and stress response.

Many PGPR can produce auxins (Omer et al., 2004; Gupta
et al., 2015) to exert particularly strong effects on root growth
(Jha and Saraf, 2015) and architecture (Vacheron et al., 2013).
Indole-3-acetic acid (IAA) is the most widely studied auxin
produced by PGPR. It is involved in plant-microbe interactions
(e.g., Ahemad and Kibret, 2014; Afzal et al., 2015). The function
of exogenous IAA is dependent on the endogenous IAA levels
in plants. At optimal IAA concentrations in plants, application
of bacterial IAA may have neutral, positive, or negative effects
on plant growth (Spaepen and Vanderleyden, 2011). PGPR that
produce auxins have been shown to elicit transcriptional changes
in hormone, defense-related, and cell wall related genes (Spaepen
et al., 2014), induce longer roots (Hong et al., 1991), increase
root biomass and decrease stomata size and density (Llorente
et al., 2016), and activate auxin response genes that enhance plant
growth (Ruzzi and Aroca, 2015).

Many PGPR produce cytokinins and gibberellins (Gupta et al.,
2015; Kumar et al., 2015) but the role of bacterially synthesized
hormones in plants, and bacterial mechanism of synthesis, are
not yet completely understood (Garcia de Salamone et al., 2001;
Kang et al., 2009). Some strains of PGPR can promote relatively
large amounts of gibberellins, leading to enhanced plant shoot
growth (Jha and Saraf, 2015). Interactions of these hormones
with auxins can alter root architecture (Vacheron et al., 2013).
Production of cytokinins by PGPR can also lead to enhanced
root exudate production by the plant (Ruzzi and Aroca, 2015)
potentially increasing the presence of PGPR associated with the
plant.

Ethylene is a gaseous hormone, active at extremely low
concentrations (0.05 mL L−1) and is a “stress hormone,” as
illustrated by its concentration spiking during various abiotic
and biotic stresses. Accumulation of ethylene in response to
stress may increase plant tolerance or exacerbate stress-response
symptoms and senescence (Morgan and Drew, 1997). PGPR
function has been studied under both stressed and unstressed
conditions and often provides greater growth stimulation under
stressful conditions, for instance, under drought stress (Rubin
et al., 2017). Ethylene plays an important role for improving plant
stress tolerance for some PGPR (Nadeem et al., 2014): PGPR
secrete 1-aminocyclopropane-1-carboxylase (ACC) deaminase
which reduces ethylene production in plants (Glick, 2014; Vejan
et al., 2016). Many studies have shown enhanced stress tolerance
in plants through inoculation with PGPR that produce ACC
deaminase. This appears to occur since PGPR are able to keep
ethylene levels from reaching levels sufficient to reduce plant
growth (Ahemad and Kibret, 2014; Pérez-Montaño et al., 2014;
Ruzzi and Aroca, 2015), as has been demonstrated with Camelina
sativa (Heydarian et al., 2016).

Other Microbe-to-Plant Signal Molecules

A wide range of secondary metabolites and volatile organic
compounds (VOCs) produced by bacteria can improve stress-
tolerance and/or stimulate growth in plants. For example,
polyamines play important physiological and protective roles in
plants. B. megaterium BOFC15 secretes a polyamine, spermidine,

and induces polyamine production in Arabidopsis, resulting in
an increase in biomass, altered root architecture and elevated
photosynthetic capacity. The inoculated plants exhibited higher
drought tolerance and abscisic acid (ABA) content under PEG
induced water-deficit stress (Zhou et al., 2016). A range of
PGPR produce HCN, which can control the level of deleterious
microbes in the rhizosphere (Kumar et al., 2015). VOC
produced by PGPR stimulate plant growth, resulting in increased
shoot biomass and improve plant stress resistance (Bailly and
Weisskopf, 2012; Ruzzi and Aroca, 2015).

The microbes of the phytomicrobiome also affect each
other’s activities through signal compounds (Hagai et al., 2014;
Massalha et al., 2017). These signals amount to hormones of
the holobiont. For example, lumichrome and riboflavin can act
as microbe-to-plant signal compounds able to stimulate plant
growth. Both compounds can cause meaningful alterations in
plant development; lumichrome can accelerate appearance of
leaves (more rapid development) and leaf expansion (enhanced
growth). In addition, it can increase plant height and overall leaf
area, resulting in improved production of biomass. This is true
over a wide range of plant types including both monocots and
dicots (Dakora et al., 2015).

Microbe-to-plant signal compounds (e.g., lipo-
chitooligosaccharides and thuricin 17) have been shown to
increase plant growth for diverse species, particularly when
plants are growing under stressful conditions (Subramanian and
Smith, 2015; Subramanian et al., 2016b; Zipfel and Oldroyd,
2017). The receptor for the lipo-chitooligosaccharides is a LysM
kinase for the legume-rhizobia symbioses; this receptor system
seems to have evolved for pathogen detection almost Two billion
years ago (Spaink, 2004; Gust et al., 2012; Carotenuto et al.,
2017). The microbe-to-plant signal in the N2-fixing Frankia
symbiosis remains to be identified but appears not to be an LCO
(Chabaud et al., 2016).

Root Exudates as Plant-to-Microbe Signals

Plants excrete considerable control over the microbes they
associated with (Berendsen et al., 2012; Badri et al., 2013; Turner
et al., 2013; Massalha et al., 2017); even of simple genotype
differences within a plant species can have meaningful effects
(Peiffer et al., 2013; Winston et al., 2014). Some of this control is
the result of inter-organismal signals (Smith et al., 2017). Starting
when the seed is imbibing and germinating, then when roots are
growing and finally senescing, molecules are released from roots
into the surrounding soil. These molecules support microbial
growth and activity in the rhizosphere (Nelson, 2004a, 2017;
Schiltz et al., 2015). Variation in root exudation (timing, amount,
and/or constituents) provides a mechanism by which plants can
manipulate composition and abundances of their root-associated
microbiota (Bakker et al., 2012). Exudates are thought to consist
mainly of sugars, amino acids, and organic acids that are
present at high concentrations in the cytoplasm of the plant, but
also include smaller amounts of complex secondary metabolites
such as flavonoids, terpenes, and phenolic compounds that
can attract specific microbes in the rhizosphere (Jones et al.,
2004; Bais et al., 2006; Musilova et al., 2016). It has also
been suggested that exudation of the signal molecules jasmonic
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acid and salicylic acid into the rhizosphere can be involved
in the interplay between roots and microbes during the initial
events of colonization (Gutjahr and Paszkowski, 2009; Doornbos
et al., 2011). Root exudation is genetically regulated and can
thus shape distinct rhizobacterial communities for different
plant genotypes, resulting in highly variable exudates among
plant species, individual plant types within the same species,
at different plant developmental stages, growth conditions, and
biotic interactions (Gransee and Wittenmayer, 2000; Mougel
et al., 2006; Broeckling et al., 2008; Houlden et al., 2008; Badri
and Vivanco, 2009; Micallef et al., 2009; Badri et al., 2013; Kristin
and Miranda, 2013).

PGPR IMPROVE PLANT GROWTH
UNDER STRESSFUL GROWING
CONDITIONS

The mechanisms that regulate stress tolerance in plants are
intricate and complex, in part because plants are sessile organisms
(Wani et al., 2016) which have no choice but to stand where
they are and “take it.” Improving stress tolerance in crop plants
through conventional breeding is a long and capital-intensive
process, while genetic engineering is associated with ethical and
social acceptance issues. The role of beneficial microorganisms is
gaining importance in stress management and the development
of climate change resilient agriculture. Recent studies have
exploited molecular techniques to understand the mode of action
of the plant-microbe interactions resulting in induced stress
tolerance.

Abiotic Stress Tolerance Associated With
PGPR
Pseudomonas putida MTCC5279 ameliorated drought stress in
chickpea (Cicer arietinum) plants by modulating membrane
integrity, osmolyte accumulation (proline, glycine betaine)
and ROS scavenging ability. Stress responses were positively
modulated by the bacteria resulting in differential expression
of genes involved in ethylene biosynthesis (ACO and ACS),
salicylic acid (PR1), jasmonate (MYC2) transcription activation,
SOD, CAT, APX, and GST (code for antioxidant enzymes),
DREB1A (dehydration responsive element binding), NAC1
(transcription factors expressed under abiotic stress), LEA and
DHN (dehydrins) (Tiwari et al., 2016). Application of thuricin
17 produced by Bacillus thuringiensisNEB17 to soybean (Glycine
max) under water-deficit conditions resulted in modification of
root structures and increased root and nodule biomass, root
length, root ABA, and total nitrogen content (Prudent et al.,
2015). Beneficial microbes also help plants cope with flooding
stress. Rice (Oryza sativa) seedlings inoculated with an ACC
deaminase producing strain of Pseudomonas fluorescens REN1
increased root elongation under constantly flooded conditions
(Etesami et al., 2014).

Salt stress effects can be diminished by ACC deaminase.
Pea plants inoculated with Variovorax paradoxus 5C-2, which
produce ACC deaminase, had increased photosynthetic

rate, electron transport, balanced ion homeostasis through
increased K+ flow to shoots and Na+ deposition on roots,
decreased stomatal resistance and xylem balance pressure
and increased biomass under salt stress at 70 and 130 mM
NaCl (Wang et al., 2016). For okra, PGPR producing ACC
enhanced salt tolerance, increased antioxidant enzyme activities
(SOD, APX, and CAT) and upregulated ROS pathway genes
(CAT, APX, GR, and DHAR) (Habib et al., 2016). Maize
seedlings inoculated with Bacillus amyloliquefaciens SQR9,
had enhanced salt stress tolerance, including enhanced the
chlorophyll content, compared with the control. Additional
analysis showed that the mechanisms were related to enhanced
total soluble sugar content leading to decreased cell destruction,
improved peroxidase/catalase activity and glutathione content
for scavenging ROS, and reduced Na+ levels in the plant. These
physiological manifestations were confirmed by measured
upregulation of RBCS, RBCL, H+

−PPase, HKT1, NHX1,
NHX2, and NHX3 genes, as well as downregulation of NCED
expression, as determined by qPCR (Chen et al., 2016). Wheat
(Triticum aestivum) plants inoculated with the halotolerant
Dietzia natronolimnaea showed upregulation of genes involved
in the ABA-signaling cascade, salt overly sensitive (SOS)
pathway, ion transporters, and antioxidant enzymes; stress
tolerance is induced by modulation of complex network of gene
families (Bharti et al., 2016).

Exposure to cold and/or heat reduce yield and, in worst case
scenarios, result in crop failure (Cheng, 2014). A gibberellin-
producing PGPR, Serratia nematodiphila increases pepper
(Capsicum annum) growth under low temperature stress
conditions. The inoculated plants contained more GA4 and ABA
and less salicylate and jasmonate (Kang et al., 2015). Inoculation
with Burkholderia phytofirmans PsJN modulated carbohydrate
metabolism to reduce chilling damage to grapevine (Vitis
vinifera) plantlets exposed to low temperature stress (Fernandez
et al., 2012). Inoculation of tomato (Solanum lycopersicum) plants
exposed to low temperatures with Pseudomonas vancouverensis
OB155 and P. frederiksbergensis OS261 increased expression of
cold acclimation genes and antioxidant activity in leaf tissues
(Subramanian et al., 2015).

Biocontrol and Induced Systemic
Resistance for Biotic Stress Tolerance
Bacillus amyloliquefaciens (SN13) is a biocontrol agent against
Rhizoctonia solani, by prolonging tolerance through enhanced
defense response in the plants. The colonized plants exhibit
modulation of phytohormone signaling, sustained maintenance
of elicitors, production of secondary metabolites and balance
of reactive oxygen species and scavengers producing ROS
scavengers (Srivastava et al., 2016). Cotton (Gossypium hirsutum)
plants inoculated with Bacillus spp. exhibited increased
gossypol and jasmonic acid secretion reducing larval feeding
by Spodoptera exigua. Transcript levels of genes involved in
synthesis of allelochemicals and jasmonates were higher in
inoculated plants as was suppression of the pest (Zebelo et al.,
2016). Enterobacter asburiae BQ9 induced resistance against
tomato yellow leaf curl virus by increasing the expression
of defense-related genes and antioxidant enzymes, including
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phenylalanine ammonia lyase, peroxidase, catalase, and
superoxide dismutase (Li et al., 2016). Soil inoculation with
Peanibacillus lentimorbus B-30488 decreased cucumber mosaic
virus RNA accumulation in Nicotiana tabacum cv. White burley
leaves by 91%. This was associated with an increase in stress and
pathogenesis-related gene expression and antioxidant enzyme
activity suggesting induced resistance against the virus. PGPR
colonization resulted in improved tissue heath and physiology
of plants, which produced more flowers and seeds (Kumar et al.,
2016). The bacteria also produce ACC deaminase and induce
tolerance against southern blight disease in tomato caused by
Scelerotium rolfsii. The inoculated plants showed modulation of
the ethylene pathway and antioxidant enzyme activities; systemic
tolerance was corroborated by pathogen related gene expression
analysis (Dixit et al., 2016). Acyl-homoserine lactones (AHL)-
producing Serratia liquefaciens MG1 and P. putida IsoF elicited
induced systemic resistance (ISR) in tomato (S. lycopersicum)
against Alternaria alternate whereas AHL-null mutant strains
of both PGPR resulted in reduced ISR (Schuhegger et al.,
2006). Root exudates have been found to contain chemicals
that mimic AHL signals, stimulating beneficial rhizosphere
associations while inhibiting pathogenic bacteria (Teplitski et al.,
2000).

Besides functioning as biocontrol agents, PGPR protect plants
against pathogens by eliciting biochemical and molecular defense
responses within the plant (Lugtenberg and Kamilova, 2009).
PGPR can trigger ISR in plants, which activates pathogenesis-
related genes, mediated by phytohormone signaling pathways
and defense regulatory proteins to prime plants against
future pathogen attack (Pieterse et al., 2014). Bacterial signal
compounds and microbe-associated molecular triggers, such as
chitin oligomers, have been shown to modulate ISR induction
in plants. Pathogen cell-surface factors such as flagellins and
O-antigen of lipopolysaccharides elicit ISR, whereas analogs of
salicylic acid and jasmonic acid trigger ethylene to elicit NPR1
mediated systemic acquired resistance (SAR) in plants (Ping and
Boland, 2004).

STRATEGIES FOR IMPROVING
RHIZOSPHERE COLONIZATION BY
PGPR INOCULANTS

Under field conditions, other external factors come into play
and the ability of soil bacteria to elicit positive effects on plant
growth can be impaired and so that the effects of applying specific
PGPM can be variable (Nelson, 2004b). The plant rhizosphere
is colonized by microorganisms from the soil and the seed. The
determinants of soil microorganisms are based on properties such
as C and N availability, organic matter content, water availability
and pH (Bossio et al., 1998; Drenovsky et al., 2004; Garcia-Pausas
and Paterson, 2011) as well as biogeographic patterns including
soil type and seasonality (Kristin and Miranda, 2013). Hence it is
necessary to develop strategies for effective inoculation methods,
so that bacteria of interest gain advantage in colonization
efficiency over others. Product quality, compatibility, and stability

determine effective colonization and consistent performance of
the inoculum under field conditions (Lee et al., 2016).

Biofilm Versus Planktonic Inoculum
Plant-associated biofilms have been shown to establish
themselves on various parts of plants such as leaves, roots,
seeds and internal vasculature (Ramey et al., 2004; Ude et al.,
2006; Danhorn and Fuqua, 2007; Eberl et al., 2007). The ability
to form biofilms not only enhances bacterial survival but also
enhances plant growth through the various PGPR-associated
mechanisms described in the previous section, often to a greater
extent than their planktonic cell counterparts (Ricci, 2015).
Another advantage of biofilms over planktonic cells is their
higher resistance to antibiotics, leading to improved chance of
survival in a competitive soil environment (Mah et al., 2003).
This is an important consideration when applying microbial
inoculants to soils where microbes face intense competition
and may not be as well adapted to challenging conditions as
indigenous soil microbes (Anderl et al., 2000; Mah and O’Toole,
2001; Whiteley et al., 2001; Donlan, 2002; Walters et al., 2003;
Resch et al., 2005; Zhang and Mah, 2008; Beaudoin et al., 2012).
An alternative mechanism by which biofilms enhance plant
growth is through biocontrol of disease organisms (Innerebner
et al., 2011), such as competitive colonization of the rhizosphere
and the production of antimicrobial compounds (Bais et al.,
2004; Lugtenberg and Kamilova, 2009; Chen et al., 2013).

The literature contains several examples of the PGPR activity
of biofilms. Single and dual-species biofilms produced from
Pseudomonas, Trichoderma, Bradyrhizobium, and Penicillium
showed greater ammonia production, IAA production,
phosphate solubilization, siderophore production, and/or
nitrogenase activity than the planktonic inocula (Bais et al., 2004;
Jayasinghearachchi and Seneviratne, 2004; Triveni et al., 2012;
Mohd and Ahmad, 2014). Furthermore, when the biofilms were
used to inoculate seeds, cotton seed germination, wheat root and
shoot length, soybean dry weights and nitrogen accumulation,
and maize seed germination and root length were increased
compared to plants inoculated with planktonic cells (Mohd and
Ahmad, 2014).

Using Biochar to Promote Microbial
Growth and Survival in Soil
Biochar has received much attention in the scientific literature
over the last decade, as a soil amendment due to its ability
to improve soil fertility and increase crop yields. Biochar can
change soil fertility parameters that influence microbial survival
in soil, including pH, organic matter content, cation exchange
capacity and nutrient retention, water retention and oxygen
tension, bulk density and provide niche spaces for microbes, thus
preventing grazing by fungal predators (Major, 2009; Clough
and Condron, 2010; Gaskin et al., 2010; Singh et al., 2010; Van
Zwieten et al., 2010; Kameyama et al., 2012; Jaafar, 2014; Ye
et al., 2016; Backer et al., 2017; Jenkins et al., 2017). Recent
research has also investigated the use of biochar as a carrier
material for microbial inoculants, applied as seed-coatings,
constituting a sustainable alternative to peat-based inoculants,
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and promoting early colonization of the rhizosphere with
beneficial microorganisms (Rondon et al., 2007; Budania and
Yadav, 2014; Adam et al., 2016; Deb et al., 2016; Egamberdieva
et al., 2016; Głodowska et al., 2016; Kim et al., 2016; Shanta et al.,
2016; Siddiqui et al., 2016; Sun et al., 2016; Traxler et al., 2016;
Nadeem et al., 2017; Vecstaudza et al., 2017). It is important
to note, however, that not all biochar materials are the same;
biochar production conditions and feedstock materials have a
large influence on the biological, chemical and physical properties
of the final biochar material and while many provide desirable
effects on soil fertility, some can be toxic to microbes and/or
plants (Nguyen et al., 2017; Wang et al., 2017).

Challenges Moving From the Lab to the
Field
While the technology of bio-inoculants holds a promising future,
some major bottle necks have to be addressed to increase their
efficacy. The use of PGPRs as inoculants is centuries old; the
use of these inoculants have been largely focussed on legumes
and cereals (Sessitsch and Mitter, 2015). Development of new
PGPR inocula is based on laboratory screening assays that
rely on specific PGPR mechanisms, namely nitrogen fixation,
ACC deaminase activity, auxin synthesis and calcium phosphate
solubilization. However, screening of pure culture isolates for
those with PGPR functions does not always result in isolates that
promote plant growth under field conditions. At the same time,
those which have minimal in vitro growth promoting functions
may have alternate mechanisms to promote plant growth. Since
these mechanisms are less well-understood, they are difficult to
screen for under laboratory conditions. As a result, beneficial
strains that employ these mechanisms are discarded based on
poor performance on classical in vitro PGPR screening methods
(Cardinale et al., 2015).

Developing inocula containing highly effective microbes with
a long shelf-life and high rhizosphere colonization rate poses
a major challenge for commercialization. PGPR are often used
to inoculate plant material without an appropriate carrier or in
quantities that do not allow for efficient rhizosphere colonization
under field conditions, due to competition with resident soil
micro- and macro-fauna. In addition, soils growing high
value crops are often fumigated with broad spectrum biocidal
fumigants that alter the bio-community structure of the soil.
Long-term fumigation affects soil microbes and their interactions
that help plants with nutrient acquisition and mobilization,
thereby affecting soil health (Dangi et al., 2017). This may also
pose a challenge to rhizosphere colonization by PGPR inocula.

Plant breeding has been instrumental in the success of Green
Revolution. However, in the context of bio-inoculants, very little
has been done to integrate microbiome-based plant breeding
to achieve a heritable PGPR community that enhances crop
productivity (Mitter et al., 2013; Trivedi et al., 2017). The Green
Revolution also has introduced inorganic fertilizers, pesticides,
and herbicides into soils leading to extensive damage in the
form of contaminants. Combining bioremediation with plant
growth promotion would be a beneficial approach in addressing
this global agriculture problem. Designing microbial consortia

to address various aspects of bioremediation and plant growth
potential is an essential aspect to this approach (Macouzet, 2016;
Baez-Rogelio et al., 2017). Synthesis of bio-inoculants for specific
soil conditions, to overcome environmental constraints, and
training farmers and associated staff to efficiently apply them to
crop plants is very important element in the development and
deployment of more beneficial inocula (Bashan, 2016; Parnell
et al., 2016; Itelima et al., 2018).

APPLICATIONS

Bacteria with multiple benefits can be advantageous in
commercial agriculture and are relevant to the bio-economy.
Many plants of economic significance are grown in monoculture
and require amendments for optimal growth and yield, as well
as protection against disease organisms (Vejan et al., 2016;
Andreote and Pereira, 2017).

Increasing Yield and Decreasing
Fertilizer Inputs
Utilization of bacterial consortia has inconsistent effects on
crop yield (Wu et al., 2009). The mixing of a bacterium
(B. amyloliquefaciens) with a fungus (Trichoderma virens)
improves yields of corn and tomato, among other crops
(Akladious and Abbas, 2012; Molla et al., 2012) and is available in
the market place. The company Excalibre-SA (ABM) combines
Trichoderma with Bradyrhizobium for improved growth of
soybean while BioGrow Endo (Mycorrhizal Applications)
combines arbuscular mycorrhizal fungi and Trichoderma for
improved growth and treatment of pathogens present in the soil;
both of which are commercially available.

Inoculation with N-fixing bacteria (Azospirillum and
Azobacter) allowed half-rate N-fertilizer application and
increased sesame seed yield and oil quality (Shakeri et al., 2016).
Similar effects were shown for Azospirillum vinelandii inoculated
Brassica carinata cv. Peela raya (Nosheen et al., 2016a,b).
A consortium of bacteria (Bacillus cereus PX35, Bacillus subtilis
SM21, and Serrati asp XY2) reduced the incidence of root knot
nematode (Meloidogyne incognito) in tomato, increased fruit
yield (31.5 to 39%) and quality (soluble sugars, vitamin C, and
titratable acids) (Niu et al., 2016).

Advanced biofuels are derived from non-food biomass
(Ajjawi et al., 2017), often lignocellulosic material, to minimize
any competition with food production; the long-term goal
is provision of renewable fuels, along with high value bio-
products, to reduce the atmospheric CO2 emissions associated
with fossil fuels (Rokem and Greenblatt, 2015). Conversion of
lignocellulosic material to fuel needs to become easier and less
expensive to make this fuel economically competitive (Kuhad
et al., 2011); in addition, there needs to be improved biomass
availability from purpose-grown biomass crops (e.g.,Miscanthus,
switchgrass, and Sorghum bicolour) (Carpita and McCann, 2008;
Lynd et al., 2008; Margaritopoulou et al., 2016; McCalmont
et al., 2017). The growth and productivity of purpose grown
biofuel crops can be improved through inoculation with PGPR
(Smith et al., 2015a) as has been demonstrated for switchgrass
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(Ker et al., 2012, 2014; Shanta et al., 2016; Arunachalam et al.,
2017). Marginal and contaminated lands can be used to grow
biofuel crops in order to avoid conflicts around food versus
energy crops.With the use of PGPR that contain natural potential
to cope with soil contaminants, the biofuel crops could be used
efficiently for phytoremediation and also to reduce high levels of
agrochemicals residues in agriculture lands (Weyens et al., 2009b;
Evangelou and Deram, 2014).

Improving Disease Control and Reducing
the Use of Agrochemicals
Biologicals are an alternative method for combating plant
pathogens (Harman, 2000), and there are commercially available
examples (Velivelli et al., 2014). Beneficial rhizobacteria may
secrete antibiotics and other compounds antagonistic to plant
pathogens. Production of antibiotics is one of the more common
biocontrol mechanisms (Fravel, 1988; Doumbou et al., 2001;
Compant et al., 2005). There are commercially available examples
of biocontrol agents (Velivelli et al., 2014).

Pathogens often develop resistance to the antibiotics and
other mechanisms of biocontrol, so that they cannot be fully
controlled in the long-term. A holistic approach with multiple
controllingmethods is probably better than excessive dependency
on a single solution when confronting pathogens. Over the
long term, pathogen-antagonistic bacteria will also evolve their
mode of action to counteract the pathogens. PGPR also produce
antibiotics such as lipopeptides, polyketides and antifungal
metabolites that suppress pathogens (Prashar et al., 2013).

ROADMAP TO COMMERCIALIZATION

Bioformulations of the products for plant growth promotion,
soil fertility and suppression of phytopathogens offer green
alternatives to conventional agrochemicals (Arora et al., 2016).
Agricultural products can be developed on the basis of live single-
or multi-species inoculum or based on isolated signal molecules.
In the case of signal compounds, one can use microbe-to-plant
signals, for direct effects on the plants, or even plant-to-microbe
signals to trigger enhanced production of the microbe-to-plant
signals in the soil environment, assuming the presence of the
microbe in the soil. One could also use plant-to-microbe signals
to control the composition of the phytomicrobiome in ways that
are beneficial to the crop plants.

The development of PGPR-based inoculants is not strictly
defined but generally includes the following steps:

(1) Isolation of the bacteria from roots or other plant tissues.
(2) Laboratory and controlled growth environment screening.
(3) Field screening for a range of crops, geographic locations,

planting dates and soil types.
(4) Evaluation of the possible combinations of strains and/or

signals.
(5) Consideration of the management practices (e.g.,

agrochemical use and rotation)
(6) Refinement of the product.
(7) Experiments confirming absence eco-toxicological effects.

(8) Product delivery formulation – e.g., peat, granular, liquid or
wettable powder.

(9) Registration and regulatory approval of the product.
(10) Product available on the market.

Live PGPR Inoculum
For the development of a single-strain inoculum, one begins by
isolating microbes from plants. This is achieved by extensive
sampling of plants from a range of habitats (agricultural, dry,
wet, cold, hot, and saline). Currently efforts are more focused on
the rhizomicrobiome as it has the greatest microbial diversity.
Once the cultivable strains have been isolated, they can be
screened for ability to enhance germination of Arabidopsis, or
crop plants. Promising isolates can then be screened for ability
to accelerate emergence and early plant growth, under controlled
environment conditions. Germination and early plant growth
experimentation should be conducted under both optimal and
stressful plant-growth conditions. In general, the easiest stress
to apply uniformly is salt stress; salt stress responses are
generally representative of responses expected for other stresses
(Subramanian et al., 2016a,b). However, if a signal molecule
responsible for effects on plant growth is a protein, saline
conditions may denature it, rendering it ineffective; this is
why experiments should also be conducted under optimal and
other stressful conditions, time and resources permitting. The
most promising PGPR can then be evaluated under the more
complex and demanding conditions of the field, to select the
top-performing strains for commercialization.

When screening for strains that control diseases (Weyens
et al., 2009a; Wagner et al., 2014) Petri plate assays can be
used to test for biocontrol activity against common plant
pathogens. The disease strain is inoculated onto potato dextrose
agar (PDA), and the PGPR strain is inoculated on a disk of
filter paper to determine an inhibition or kill zone around the
disk (Ilangumaran and Smith, 2017; Ilangumaran et al., 2017;
Takishita et al., 2018). Results can be validated in planta, under
controlled conditions and eventually under field conditions.

It is clear that some strains will be overlooked with this
approach. Not all PGPR strains will be cultivable. In addition,
there could be strains that do not show promising results at
early stages (e.g., do not affect germination) but would enhance
subsequent growth. However, given the large number of strains
to evaluate at this stage, we must accept this risk and consider
revisiting the situation once initial-stage screening is complete.

In the case of consortia, managing the strains so that they
are in consistent proportions within the resulting product can
be a challenge; combining the strains near or at the end of their
growth cycles may result in the most reliable outcomes. However,
consortia, through interactions among the strains, may well offer
advantages over single strain-based inoculum.

Signal Compound-Based Products
For strains showing promise, effective signal compounds,
potentially biostimulants, can be isolated and developed into
products. Todo this, PGPR strains are grown inbroth cultures and
thenthecellsare removedthroughacombinationofcentrifugation
and filtration (Gray and Smith, 2005; Gray et al., 2006). The
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supernatant can then be evaluated for the ability to promote seed
germination and early plant growth, as described in the “Live
PGPR inoculum” section. If the liquid promotes growth, then it
can be concentrated and subjected to HPLC for fractionation.
Fractions corresponding to peaks are collected and their ability to
promote plant growth under controlled conditions, or biocontrol
activity against apathogen,using thePetriplatemethodsdescribed
in “Live PGPR inoculum” section. Once a given peak has
demonstrated activity, the compound is isolated, purified and
subjected to mass spectrometry and, possibly other chemical
analyses, to determine its identity.

At this time, there are signal-based products on the market
that use microbe-to-plant signals. In some cases, the signal
molecule is produced on an industrial scale by cultivation of
PGPR in the presence of a plant-to-microbe signal molecule
which triggers the production of the microbe-to-plant signal
molecule. For example, the production of LCOs by rhizobia
can be triggered by addition of appropriate plant-to-microbe
signals, generally isoflavonoids (Smith et al., 2015b), although in
some cases jasmonates can also be used (Mabood et al., 2014).
The addition of isoflavonoids to trigger LCO production has
been developed as a technology and is now widely applied as a
growth enhancement for a broad range of crops (Smith et al.,
2017). Thuricin 17, a small protein produced by B. thuringiensis
NEB17, and LCOs can both be extremely effective in mitigating
the effects of abiotic stresses on a wide range of crop plants
(Subramanian et al., 2016a,b). Thuricin 17 is in the early stages
of being commercialized.

Product Formulation, Registration and
Intellectual Property
To generate PGPR- or signal compound-based products,
formulations must be developed that allow for even distribution
in the field. For example, the legume inoculant industry has
focused on solid carriers, the most common of which is sterilized
peat (Bashan et al., 2014), which is inoculated with cells, and
adhered to seeds using sticking agent at the time of sowing. Due
to concerns about sustainable sourcing of peat, alternative solid
carriers such as alginate (Bashan, 2016) have been investigated.
Recently, biochar has been shown to be a high potential
alternative because its porosity and nutrient content can be
altered according to source material and production conditions
(Głodowska et al., 2016).

Alternatively, liquid inoculants can be sprayed onto seeds
prior to sowing or dripped into the seed furrow at the time
of sowing. Signal molecules are probably best applied as liquid
sprays, although slow release solid formulations could also be
investigated. The ones commercialized so far have been effective
at very low concentrations, so the actual mass or volume of the
signals per se is extremely low. Storage and product lifespan are
important considerations that need to be determined for a given
product, to ensure microbial survival and/or bioactivity of the
strain or compound of interest.

Another consideration is acute versus chronic application of
PGPR or signal molecules. Acute application occurs just once
or a limited number of times during a growing season, on the

seed or at a target stage of crop development, or in response to
environmental conditions, such as onset of drought. In the case
of chronic application, the product could be applied at regularly
timed sprays or as a slow-release seed treatment.

As the product nears the marketplace, it is necessary to have
approval for registration. In Canada, this often requires safety
and efficacy data; the product must also meet other specific
regulatory requirements. However, when the technology is very
novel, it may not fit into pre-existing regulatory categories and
therefore require the regulatory agency to conduct consultations.
Important considerations include manufacturing practices and
documentation of efficacy and safety from a third party.

Currently, the regulatory procedures for registration and
commercialization of biostimulants are complex. The main
reason for the absence of a specific harmonized framework for
European Union, United States, and Canada, is that there is no
standard legal or regulatory definition for plant biostimulants.
Du Jardin (2015) proposed the following definition: “A plant
biostimulant is any substance or microorganism applied to
plants with the aim to enhance nutrition efficiency, abiotic
stress tolerance and/or crop quality traits, regardless of its
nutrients content.” This definition could be amended to include:
By extension, plant biostimulants also designate commercial
products containing mixtures of such substances and/or
microorganisms.

The biostimulants currently available in Europe, are registered
via two routes: (1) the European pesticides law which combines
supranational and national provisions for introducing plant
protection products on the national markets or (2) following the
national regulations on fertilizers specific to each European state.
In the United States, federal agencies (EPA and USDA) regulate
registration of biostimulant products. Every state has its own set
of compliance programs for their registration, which follow state-
specific standards, fees and other mandates (Du Jardin, 2015).
Presently every product submitted for registration in Canada,
is considered as a unique product; therefore, every biostimulant
is commercialized via its own pathway. When the product is
sold it will be under a label with specific claims. If the claims
are around enhanced nutrient uptake and other fertility aspects
the product may be grouped with fertilizers and approval may
be more straightforward. If the product is a biocontrol agent
(Berendsen et al., 2012; Gu et al., 2016) with claims related to -
cidal activity there will be additional scrutiny and time involved.
It can be wise to claim fewer properties at the early stages of
licensing to move more quickly to market, however, this may
constrain the ability to claim further benefits after licensing. In
terms of efficacy testing, if this is required, it may be good to
have, at least in the later stages, on-farm testing, as this causes
the grower community to be more engaged, which enhances
acceptance and edges toward marketing.

Of course, underlying all stages of product development is
the matter of intellectual property. One can no longer patent
life forms or naturally occurring compounds, but formulations
and uses can be patented (Matthews and Cuchiara, 2014). Thus,
when a novel technology is possible, a patent search must be
conducted. If there is freedom to operate (FTO) then a patent
application can be filed; if enough supporting data is available,
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the full application can occur immediately. If time is required to
produce supporting data, an application for a 1-year provisional
patent can be submitted and followed by a full and formal patent
application.

Private-Public Partnerships for
Increased Knowledge and Improved
Training
Every step in the process from microbe isolation to licensing is
laborious, expensive and requires time. Collaboration between
industrial, academic and government research should become
an important part of the product development process.
Biotechnology organizations, for example, Genentech in South
San Francisco, California encouraged their researchers to
conduct side scientific projects and share their outcomes in
publications. Universities are now pursuing commercialization
of their innovation discoveries. Today, associations among
companies and the scholarly world are common (Tachibana,
2013). As the sector develops there will be a need to train more
experts in the area, through university research activities, often in
collaboration with industry, as this brings the commercialization
perspective to the research activities and imparts it to the trainee.

CONCLUSION

The relationships between plants and the phytomicrobiome are
ancient and represent the result of a very long coevolution.
Evolution is pragmatic, random and relentless, and we should
expect to discover many additional and sometimes surprising
relationships that are beneficial to crops, and therefore
global food production. It is clear that members of the
phytomicrobiome offer huge potential in terms of new and more
sustainable crop management practices, however, it is also clear
that we understand only a tiny amount of this potential and a
very great deal remains to be done.

Probably the easiest area for exploitation at the outset will
be around single strains or consortia with small numbers of
members and/or the signal compounds they produce. These
could be focused on stimulation of plant growth, particularly

under adverse conditions, such heat and drought stress, which are
becoming increasingly prevalent as climate change progresses.
Another set of products could be focused on plant disease
control. We have examined the steps necessary to develop these
technologies into products and have them approved for sale
through the regulatory process.

Finally, one should take care to have “public license.” At this
point the public perception of “bio” is not overly well formed,
but generally positive. At the same time, there is public concern
around the use of “chemicals” and biologicals are seen as a
positive alternative, in the form of “plant probiotics.” It is our
duty to try to anticipate any problems with phytomicrobiome
technologies and to forestall their development, while projecting
the benefits to the public. These technologies should be
compliant with organic crop production practices and it would
be useful to have them registered as such. The phytomicrobiome
offers enormous potential for agricultural benefit, in terms of
global food security, crop production sustainability and making
agricultural systems climate change resilient. We need to ensure
that this is approached in a systematic, thorough and broadly
considered manner.
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