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Drought stress (DS) is the most impa ting global phenomenon affe ting the e ologi al balan e of a parti ular habitat. )e sear h
for potential plant growth-promoting rhizoba teria (PGPR)  apable of enhan ing plant toleran e to drought stress is needed.
)us, this study was initiated to evaluate the effe t of ino ulatingAcacia abyssinica seedlings with PGPR isolated from rhizosphere
soil of Ethiopia to enhan e DS toleran e.)e strains were sele ted based on in vitro assays asso iated with toleran e to drought and
other benefi ial traits su h as salinity, a idity, temperature, heavy metal toleran es, biofilm formation, and exopolysa  haride
(EPS) produ tion. )e strains with the best DS toleran e ability were sele ted for the greenhouse trials with a a ia plants. )e
results indi ate that out of 73 strains, 10 (14%) were  ompletely tolerant to 40% polyethylene gly ol. Moreover, 37% of the strains
were strong biofilm produ ers, while 66 (90.41%) were EPS produ ers with a better produ tion in the medium  ontaining su rose
at 28± 2°C and pH 7± 0.2. Strains PS-16 and RS-79 showed toleran e to 11% NaCl. All the strains were able to grow in wider
ranges of pH (4–10) and temperature (15–45°C) and had high toleran e to heavy metals. )e ino ulated ba terial strains sig-
nifi antly (p≤ 0.05) in reased root and shoot length and dry biomass of a a ia plants. One of the strains identified as P. fluorescens
strain FB-49 was outstanding in enhan ing DS toleran e  ompared to the single ino ulants and  omparable to  onsortia. Stress-
tolerant PGPR  ould be used to enhan e a a ia DS toleran e after testing other phytobenefi ial traits.

1. Introduction

Nowadays, the world has been terrified by global  limate
 hange s enarios.)e s ar ity of water is amongst a problem
seen in the world whi h will drive the severity of drought
episodes [1]. Degrading environment, rising population, and
in reased demand for resour es affe t severely e ologi al
stability [2]. A tion is needed to fa e the global threats
arising from the effe ts of  limate  hange, whi h  ould
in rease episodes of drought, salinity, toxi ity by heavy
metals, soil a idity, and extreme temperatures [3]. Drought
stress (DS) is the most impa ting phenomena that affe ts
e ologi al integrity and ultimately results in degraded
habitats with poor and/or no produ tivity [4]. It is estimated
that drought  overs approximately 41% of earth’s land

surfa e [5] and threatens more than 50% of arable lands and
 auses a 50% loss in  rop yields, so ial, e onomi  risis, and
environmental impa ts [6]. Drought in reases the demand
for irrigation, whi h already  omprises 70% of global water
 onsumption [7]. Plants have evolved different me hanisms
to mitigate DS that in lude a series of mole ular,  ellular,
and physiologi al adaptations [8, 9]. All DS-asso iated
problems result in loss of soil mi robial diversity, soil fer-
tility, and aggravate  ompetition for nutrients. )ese  all for
urgent intervention measures using drought-tolerant mi-
 robes as e o-friendly approa hes [10]. Hen e, integrating
drought-tolerant benefi ial mi robes as a  omponent of
e ologi al systems to enhan e plant drought toleran e might
represent an interesting strategy. At the moment, efforts
have been fo used on harnessing the potential of
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phytobenefi ial soil mi robes to enhan e environmental
rehabilitation to  ombat the negative impa ts of drought
[11]. )e positive influen e of PGPR on  onferring resis-
tan e to DS in many  rops and trees has been reported [12].
Also, the produ tion of biofilms and exopolysa  harides
provides remarkable prote tion from external stress, de-
 reases mi robial  ompetition, gives prote ting effe ts to the
host plants, and in reases soil aggregation [13].

Numerous studies have do umented the potential of
many PGPR genera in luding Klebsiella, Pseudomonas,
Acinetobacter, Paenibacillus, and Bacillus in enhan ing plant
stress toleran e in dryland areas [14, 15]. PGPR  an enhan e
plant stress toleran e by an array of me hanisms that en-
 ompass the produ tion of ACC deaminase [16], regulation
of the hormonal balan e of  ytokinins [16], gibberellins [17],
EPS [18], and mi robial biofilm formation for prote tion
from external stresses [13]. S reening for stress toleran e is
an important parameter while sele ting ba terial strains for
the development of biofertilizers sin e the performan e of
PGPR is  onstrained by environmental stresses in luding
temperature, desi  ation, pH, alkalinity/a idity, and salinity
in the soil [19]. Due to their multiple traits, the sear h for
suitable and rhizosphere  ompetent PGPR be omes inter-
esting and  an be used as ino ulants for biofertilization and
bio ontrol purposes in agri ulture, forestry, and environ-
mental rehabilitation. A a ia is highly used for  onserving
and improving degraded soils and lands apes.Acacia senegal
is a key  omponent of traditional agroforestry and a valuable
tree spe ies for restoration of soil fertility [20]. It is also used
as belt rehabilitation at Dilling area (South Kordofan) in
solving the problems of the traditional agri ultural limited
land [21]. )erefore, the sele tion of stress-tolerant ba terial
strains might be  riti al for improving the field performan e
of diverse  rops in luding woody plants. Hen e, this work
aimed to identify and  hara terize PGPR isolates that  ould
enhan e stress toleran e by promoting the growth of a a ia
seedlings.

2. Materials and Methods

2.1. Rhizobacteria Growth Conditions and Identification.
Acacia and Juniperus rhizosphere soil samples were  olle ted
from degraded soil of north Shewa Zone, Oromia National
Regional State, Ethiopia. It is lo ated at 9° 45′ 57″ N and 38°

42′ 06″ E, and the soil is  hara terized as sandy  lay loam
[22]. Soil samples were pro essed within 24 h, and a tenfold
serial dilution was made using sterilized distilled water.
Primary isolations were done on Nutrient and King’s B agar
(both from Himedia). From an appropriate dilution fa tor,
100 μL of the suspension was plated on Nutrient and King’s
B agar and in ubated at 28± 2°C for 24–48 h [23]. Trypti 
Soy Agar (TSA, Himedia) was used for the s reening pur-
pose. Sin e water is the limiting fa tor in the study area,
drought stress (DS) toleran e was taken as a baseline pa-
rameter and other plant growth-promoting (PGP) traits to
sele t the potential strains were  onsidered.

A total of 80 PGPR isolates with promising phytobe-
nefi ial traits and DS toleran e were sele ted. Sin e 7 isolates
showed poor gel quality with very short base pair sequen es,

the number is further redu ed to 73. Firstly, the ba terial
DNA was extra ted and isolated using the DNeasy Blood &
Tissue kit (QIAGEN®, Germany).)e 16S rRNA genes were
amplified using universal primers fD1 (forward) and rD1
(reverse). Primers used for gene amplifi ation had the fol-
lowing sequen es: fD1 (5′-AGAGTTTGATCCTGGCT-
CAG-3′) and rD1 (5′-AAGGAGGTGATCCAGCC-3′) [24].
)e PCR produ ts were purified using PureLink® Qui k
PCR Purifi ation Kit and separated in a 1.5% agarose gel to
be examined under a UV illuminator (Lo us Biote hnology
L-Pix, Brazil) [25]. )e PCR  ondition was set at initial
denaturation at 95°C for 2min, denaturation at 94°C for
15 se , annealing at 55°C for 45 se , elongation at 72°C for
2min, and final elongation at 72°C for 5min. Finally, the
PCR produ ts were eluted and sequen ed using 3500XL
Geneti Analyzer (Hita hi, Applied Biosystems, Londrina,
Brazil) with the in orporation of dideoxynu leosides (dd
NTPs) into the rea tion mixture. )e sequen e was done in
Brazil, Londrina, and the sequen e data was edited with
Bionumeri 3.2 version [26]. Sequen es were further ana-
lyzed using BLAST software of the National Center of
Biote hnology Information (NCBI) website. Phylogeneti 
analysis of partial 16S rRNA gene sequen es was done using
the Mega 7 software version 7.0.2 [27].

2.2. Screening Drought Stress (DS) Tolerance of PGPR. All the
80 isolates were tested for in vitro drought toleran e and plant
growth-promoting traits. Osmoti stress was tested by adding
40% of polyethylene gly ol-6000 (PEG) (400 g/L to Trypti 
Soya Broth (TSB) g/L: pan reati digest of  asein 17; a pepti 
digest of soya beanmeal 3; sodium  hloride 5; dextrose 2.5; and
dibasi potassium phosphate 2.5). A 1mL of the ba terial
 ulture at the  on entration of 1× 107 CFU/mL was estimated
by opti al density (OD) at 600nm to be used as initial ino -
ulum and added to the test tubes  ontaining 10mL of TSB
amended with PEG 6000 to adjust the osmoti pressure at 1.76
Mega Pas al (MPa). )e ino ulated tubes were in ubated at
28± 2°C for 24h, and OD was re orded after 3 days. )e OD
values of drought toleran e were determined as follows:
 ompletely sensitive OD< 0.3; sensitive OD� (0.3–0.39); tol-
erant OD� (0.4–0.5), and  ompletely tolerant OD> 0.5 [28].

2.3. Qualitative Assay for Biofilm Detection

2.3.1. Plate Method (PM). Mu oid nature of the ba terial
 olonies was observed after growth on Congo red agar
(CRA) medium  omposed of (g/L): brain heart infusion
broth, 37; su rose, 5, agar, 10; Congo red dye, 0.8 [29].
Eighteen-hour-old ba terial  ultures were streaked on the
CRA plates and in ubated at 28± 2°C for 24–48 h and ob-
served for  olony  olor. Bla k  olonies with a dry  rystalline
 onsisten y indi ate biofilm produ tion [30].

2.3.2. Tube Method (TM). Biofilm formation ability was
observed by its adheren e  apa ity to the walls of  ulture
tubes [30]. A loopfull of ea h ba terial strain grown on TSB
plates for 24 h was ino ulated into 10mL of nutrient broth
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with different NaCl  on entrations (100 and 150mM whi h
is used to show enhan ed absorban e) in test tubes followed
by shaking at 95 rpm for 24–48 h. )e  ulture medium with
ba teria was dis arded, and the tubes were washed with 3mL
of 1X phosphate-buffered saline (PBS) of pH 7. A 3mL of 2%
 rystal violet solution was added and left for 15min. Tubes
were then washed with sterile water and allowed to dry, and
the tubes were visually observed for the presen e of biofilms
rings on the inner walls of the test tubes. Tubes then re eived
1.5mL of 33% gla ial a eti a id and mixed gently to
measure OD at 570 nm. PBS served as  ontrol. Biofilm
formation in tubes was dete ted when a visible film (ring)
lined the wall and the bottom of the tubes [31].

2.4. Exopolysaccharide Production. )e qualitative deter-
mination of exopolysa  haride produ tion was performed
a  ording to Paulo et al. [32]. Dis s of sterile filter paper
(5mm) whi h were ino ulated with 4 μL of ea h isolate
pla ed in Petri dishes  ontaining nutrient agar medium g/L:
(peptone 5; sodium  hloride 5; beef extra t 1.5; yeast extra t
1.5 and agar 15) for the produ tion of EPS test. )is was
evaluated by the size of the halo produ ed with its slime
appearan e. )e produ tion of EPS was  onfirmed by
mixing a portion of the mu oid substan e in 2mL of  hilled
absolute ethanol, where the formation of a pre ipitate in-
di ates the presen e of EPS [32]. Similarly, ea h isolate was
 ultured at 28± 2°C but varying the type of sugar (su rose,
glu ose or la tose) ea h at 10 g/L  on entrations and the pH
(5.5± 0.2 and 7.5± 0.2). After 48 h of growth, EPS pro-
du tion was evaluated based on the mu oid nature of growth
around 5mm dis s.

2.5. Growth and Ecophysiological Characterization. For ea h
bio hemi al and physiologi al tests, growth was determined
by reading OD at 600 nm in nutrient broth (g/L): peptone, 5;
NaCl, 5; beef extra t, 1.5; yeast extra t, 1.5. In all  ases of
toleran e measurements, the viability of the isolates was
 he ked by streaking on TSA immediately following the OD
reading and in ubated at 28± 2°C for 24 to 48 days to
 onfirm ba terial growth [33].

2.5.1. Salt, pH, Temperature, and Heavy Metal Tolerance.
Toleran e to salinity was evaluated on TSA medium
 ontaining 1%, 3%, 5%, 7%, 9%, and 11% (w/v) NaCl [34].
pH toleran e was tested in nutrient broth by adjusting the
pH to 4, 5, 6, 8, and 10 with either 1N NaOH or HCl [35].
Temperature toleran e was evaluated by growing ba -
terial  ultures in TSA at 4°C, 15°C, 25°C, 35°C, 40°C, 45°C,
and 50°C. )e agar dilution method was used to test the
heavy metal (HM) toleran e of PGPR isolates [36]. A
loopfull of 24-hour-old ba terial  ulture grown in the
nutrient broth was streaked on Mueller-Hinton Agar
(MHA) [37] plates amended with in reasing  on en-
trations (50, 100, and 300 μg/mL) of different heavy
metals (lead from (Pb(CH3COO)2.3H2O, zin from
ZnSO4.5H2O,  opper from CuCl2.2H2O, manganese
from MnSO4.4H2O, and iron from FeSO4.6H2O). Plates

were in ubated at 28 ± 2°C for 24 h and examined visually
for the presen e or absen e of growth where the presen e
of growth was re orded as resistan e/toleran e (R) and
the absen e of growth was re orded as sus eptible (S).
Unamended Mueller-Hinton Agar plates were used as
 ontrols to evaluate toleran e [38].

2.6. Greenhouse Experimental Trials. Pot trials were per-
formed under greenhouse  onditions at the Department of
Mi robial, Cellular, and Mole ular Biology, Addis Ababa
University. It was done to evaluate the potential of PGPR
strains based on phytobenefi ial traits exhibited for
drought stress experiments using A. abyssinica plants. )e
seeds were  olle ted from the highland region of Ethiopia
and were s arified with  on entrated H2SO4 in flasks to
break seed dorman y. )e flasks were swirled o  asionally
over 25–35 minutes [39]. Eight seeds were kept in equi-
distan e position in sterilized Petri plates  ontaining sterile
moist filter paper and  otton for 7 days for germination
[40]. After seeds germinated, four seedlings were trans-
planted into sterile plasti pots (20 ×15  m) filled with 3 kg
sandy  lay loam soil auto laved for 1 h. Plants were kept in
well-watered  onditions and fertilized with half-strength
Hoagland solution ea h week to obtain nutrients at a free
a  ess rate for 60 days [41]. Plants were ino ulated during
transplanting and 7 days intervals after transplantation
with 15mL test strains (108CFU/mL) for 60 days. After 60
days of growth, plants were regularly watered to maintain
20% moisture by measuring the weight of pots every two
days. )e experiment was performed with a  ompletely
randomized design (CRD) and repli ated three times.
Plants were harvested after 2 weeks of water suppression,
and data on root length, shoot length, and root and shoot
dry biomass were re orded [42].

2.7. DataAnalysis. Analysis of varian e (ANOVA) was used
to test for signifi ant differen es of measurements of ea h
bioassay, whereas Dun an’s multiple range test (DMRT) was
employed to show signifi ant differen es among diverse
treatments (mean separation) at p≤ 0.05. Values are pre-
sented as mean± standard deviation (SD). All the statisti al
analyses were performed using the Statisti al Analysis
System (SAS) version 9.0 software pa kage [27]. All phy-
logeneti analyses were performed with the software MEGA
7 [43].

3. Results

3.1. Microorganism Isolation and Identification. Eighty rhi-
zoba terial strains were isolated from highly degraded soil of
Ethiopia. But, 7 isolates were never sequen ed, and 73
isolates were used for our purposes. Twenty-two isolates
showed supreme drought toleran e. Of these, 10  ompletely
drought-tolerant (CT) strains were used for plant growth
promotion experiments in the greenhouse. )e relationship
among themwith the  losest spe ies is shown in Figure 1 and
Table 1.
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3.2. Tolerance of Rhizobacteria to Stresses

3.2.1. Drought Stress. From the 73 tested ba terial isolates,
10 (14%) were  ategorized as  ompletely tolerant (CT) to DS
with OD> 0.5 followed by 12 (16%) in the  lass of tolerant
(T) with OD that ranged from 0.40 to 0.47 and 15 (21%) as
sensitive (S) with OD 0.3 to 0.36, and the remaining 36 (49%)

grouped as  ompletely sensitive (CS) with OD that ranged
from 0.06 to 0.25 (Figure 2).

Out of 73, 10 isolates showing  ompletely drought
tolerant (CT), and multiple PGP traits were sele ted for
other stress assays and greenhouse experiments. )e
mean drought toleran e of ea h isolate is shown in Ta-
ble 2. )e highest drought toleran e (0.64) OD value was
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Figure 1:)e phylogeneti relationship of top ten drought-tolerant strains with  losest spe ies. A  ession numbers are indi ated in bra kets
with bold text.

Table 1: In vitro top drought stress-tolerant PGPR isolates and the  losest spe ies identity based on the 16S rRNA gene sequen e analysis.

Isolate  ode Closest relatives Best mat h ID (NCBI) Query  over (%) % Similarity Gene bank a  essions

BS-45 Bacillus thuringiensis CP021436.1 100 100 MN005965
PS-16 Enterococcus gallinarum JF915769.1 99 99 MN005973
BS-51 Paenibacillus polymyxa CP006872.1 98 100 MN005974
FB-50 Paenibacillus polymyxa CP025957.1 100 100 MN005976
RS-79 Agrobacterium tumefaciens CP033032.1 100 99 MN005977
RS-58 Ochrobactrum intermedium KC146415.1 100 100 MN005978
RS-59 Ochrobactrum intermedium AJ242582.2 92 99 MN005979
RS-66 Ochrobactrum intermedium AJ242582.2 99 99 MN005982
RS-72 Ochrobactrum intermedium KC146415.1 100 100 MN005988
BS-27 Acinetobacter calcoaceticus KC257031.1 99 99 MN005992
BS-19 Pseudomonas putida CP025262.1 99 99 MN005993
BS-26 Pseudomonas plecoglossicida MF281997.1 100 99 MN005997
BS-44 Pseudomonas fulva CP014025.1 100 99 MN006005
BS-53 Pseudomonas fulva CP014025.1 100 99 MN006006
FB-49 Pseudomonas fluorescens KY228953.1 100 100 MN006008
PS-2 Klebsiella michiganensis CP033824.1 100 99 MN006010
PS-3 Klebsiella oxytoca CP033824.1 99 99 MN006011
BS-46 Morganella morganii CP032295.1 99 99 MN006012
PS-6 Morganella morganii CP032295.1 100 99 MN006013
PS-14 Morganella morganii CP032295.1 100 99 MN006017
RS-65 Serratia marcescens CP021164.1 99 99 MN006026
RS-54 Serratia fonticola LR134492.1 100 99 MN006030
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observed in P. fluorescens strain FB-49 followed by
P. putida strain FB-49 with OD value 0.60.

3.3. Qualitative Biofilm Detection. Most of the isolates
produ ed bla k  olonies on CRA after 24–48 h (Supple-
mentary Figure S1). In the tube method, the formation of
visible thi k film inside the wall of tubes and their bottom
(supplementary Figure S2). Out of 73, 27 (37%) isolates were
strong biofilm produ ers, while 49% were moderate, and the
remaining (14%) were weak or nonbiofilm produ ers using
test tubes method (TM) at 150mM NaCl. By using TM but
with different NaCl  on entrations (100mM), 10%, 55%,
and 34% were per eived as strong, moderate, and weak
biofilm-produ ing PGPR isolates, respe tively (Figure 3).

)e results indi ated that the a tivity of biofilm for-
mation was in reased with in reasing NaCl  on entration.
)e highest signifi ant in rease was re orded in BS-19 (0.805
OD) and FB-49 (0.765 OD) isolates treated with 150mM
NaCl, while the lowest was observed in isolate PS-2 (0.39
OD) (Figure 4).

3.4. Exopolysaccharide Production. )e produ tion of EPS
was determined based on both mu oid  olony produ tion
on  ulture medium and pre ipitate formation in  hilled
ethanol in a test tube (Supplementary Figures S3). Of the 73
PGPRs evaluated for the EPS produ tion, 66 (90.41%) were
positive, while the remaining 7(9.59%) were negative. )e
medium  ontaining su rose indu ed a higher number of
isolates to produ e EPS, with 41 (48.2%) positive results,
most of whi h (65.85%) were at 28± 2°C and pH 7± 0.2. )e
se ond-highest number of EPS-produ ing isolates was

found in the medium  ontaining glu ose, with 26 (30.58%)
positive results, of whi h 61.53% were under the same
 onditions of pH and temperature that tested best with
su rose. Moreover, the medium  ontaining la tose resulted
in 18 (21.17%) positive results, with 61%, also under the same
 onditions of pH and temperature of other media (data not
shown).

3.5. Salt, pH, Temperature, and Heavy Metal Tolerance

3.5.1. Tolerance at Different NaCl Concentrations. Our re-
sults indi ate that PGPR strains  ould grow over a wide
range of NaCl (1 to 11%)  on entrations (Figure 5). Isolates
PS-16 and RS-79 showed the highest NaCl toleran e fol-
lowed by FB-49 and FB-50 with 9%. BS-19 was identified as
the least tolerant. However, higher NaCl  on entration led
to a drasti redu tion in the growth of ba terial isolates.
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Figure 2: )e per entage of drought toleran e  lassifi ation of PGPR re overed from degraded soil.

Table 2: In vitro features of the strains sele ted based on water stress-tolerant potentials.

S. No. Isolate  ode Closest relatives Mean± SD 600 nm OD (n� 3) Toleran e levels

1 BS-45 Bacillus thuringiensis 0.53± 0.12 CT
2 PS-16 Enterococcus gallinarum 0.54± 0.17 CT
3 FB-50 Paenibacillus polymyxa 0.51± 0.16 CT
4 RS-79 Agrobacterium tumefaciens 0.57± 0.20 CT
5 RS-72 Ochrobactrum intermedium 0.52± 0.22 CT
6 BS-27 Acinetobacter calcoaceticus 0.59± 0.19 CT
7 BS-19 Pseudomonas putida 0.60± 0.12 CT
8 FB-49 Pseudomonas fluorescens 0.64± 0.15 CT
9 PS-2 Klebsiella michiganensis 0.50± 0.17 CT
10 RS-65 Serratia marcescens 0.55± 0.15 CT

Values are mean± standard deviation.
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Figure 3: Classifi ation and  omparisons of ba terial biofilm
formation abilities at 100mM and NaCl 150mM NaCl
 on entrations.
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3.5.2. Growth at Different pH Ranges. In our study, a wide
pH range toleran e was  onfirmed in PGPR ability to survive
both in a idi and alkaline soils. Among different levels of
pH tested, all the isolates showed maximum growth at pH 7
followed by pH 10 and pH 9, while the minimum growth of
most of the ba terial isolates was observed at pH 4. Isolates
RS-79, FB-49, BS-65, and PS-2 grew better on agar medium
of pH 5 and FB-49 and RS-79 at pH 4 (Table 3).

3.5.3. Response to Different Temperatures. All the 73 isolates
were able to grow within a broad range of temperature (20°C
to 45°C) but grew not at 4°C or 50°C as  onfirmed on solid
agar medium. Maximum growth was a hieved at 25°C, 35°C,
and 40°C but lower at 15°C and 45°C (Table 4). Four (FB-50,
RS-45, FB-49, and RS-79) isolates exhibited remarkable
toleran e to high temperature (45°C) followed by BS-19.

3.5.4. Tolerance of PGPR to Heavy Metals (HMs). Many
isolates were tolerant to various  on entrations of heavy
metals tested (Figure 6). All isolates (100%) showed resis-
tan e to 50 μg/mL of Fe, Mn, Cu, Zn, and Pb, whereas almost

all isolates were able to grow on the medium  ontaining 100
μg/mL of Fe and Mn. However, fewer isolates grew on the
medium  ontaining the same  on entration of Zn (77% of
the isolates), Pb (73%), and Cu (67%), respe tively. More-
over, ba teria growth signifi antly de lined (p ≤ 0.05) to
32%–44 at 300 μg/mL in rease in  on entrations of the
heavy metals, ex ept Fe (Table 5).

3.6.DroughtStressEnhancements inAcaciaunderGreenhouse
Trial. Ino ulation with ba terial  onsortia had a signifi ant
(p≤ 0.05) effe t on plant biomass 57.3  m, 19.3  m, 2.1 g,
0.8 g, and 16.7 in SH, RL, SDW, and RDW and number of
leaves per plant, respe tively,  ompared to nonino ulated
 ontrol. Among single ino ulants, P. fluorescens and
P. polymyxa showed the maximum A. abyssinica perfor-
man e under drought  onditions. Klebsiella michiganensis
showed the least drought stress improvement (38.7  m) in
SH  ompared to the other singly ino ulated plants but
performed better  ompared to nonino ulated  ontrol
treatment (Table 6). )e performan e of a a ia in the
greenhouse trials is shown in Figure 7.
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4. Discussion

In the present study, effe tive PGPR isolates that grew in
medium with redu ed water  ontent is  onsidered as
drought tolerant. Be ause 30% of the ba terial isolates
showed in vitro toleran e to 40% PEG. )e toleran e is
mainly asso iated with biofilm formation and EPS pro-
du tion potential of the isolates. )is is an initial sele tion of
ba terial isolates based on their ability to grow in medium
and is an interesting approa h for other stress-asso iated
assays. )is feature is very  ru ial for degraded land res-
toration under water-stressed  onditions by ino ulating

su h potential isolates. )e variation in drought toleran e
among ba teria may be related to spe ifi adaptations and
gained strain-spe ifi traits. )e ba teria rea hing OD
greater than 0.5  ategorized as  ompletely drought tolerant
[28]. Also, drought-tolerant Rhizobium sp. survived with
45% of PEG-enhan ed drought toleran e of sesbania [44]. In
another trial, Pseudomonas spp. and Bacillus spp. with good
plant growth-promoting ability survived 40.5% PEG  on-
 entration [45]. )e me hanisms by whi h PGPR  an sur-
vive and adapt to extreme drought  onditions are asso iated
with se retion of EPS [46, 47], biofilm formation [48, 49],
and ACC (1-amino y lopropane-1- arboxylate deaminase)
produ tion [47, 50] and indu ed systemi toleran e by
ba terial  ompounds [51] and other phytobenefi ial traits.
Moreover, drought toleran e o  urs on wheat root  olo-
nization with Paenibacillus spp. and Bacillus spp. that  an
boost plant survival under drought stress [52, 53].

In the present study, we observed a dramati  hange in
PGPR ability to form a biofilm in 100 and 150mM NaCl
 on entration. )e  urrent finding indi ates that the a tivity
of biofilm formation was in reased with in reasing NaCl
 on entration. )e formation of biofilm and exopoly-
sa  haride kept the viability of ba terial  ells under salt stress
to prote t them in the rhizosphere. )is is due the higher
ioni strengths that are known to redu e the repulsion
between a ba terial  ell and a material surfa e. Moreover, it
is well known that salt stress indu es biofilm formation [54].
Biofilm-produ ing  ells are atta hed to bioti or abioti 

Table 4: Effe t of temperature on the growth of sele ted PGPR isolates OD readings at 600 nm.

Isolates Temp. 15°C Temp. 25°C Temp. 35°C Temp. 40°C Temp. 45°C

BS-27 0.30± 0.04a 0.89± 0.07ab 1.13± 0.04ab 0.89± 0.14ab 0.55± 0.05b
FB-50 0.25± 0.07ab 0.98± 0.11ab 1.16± 0.02ab 0.82± 0.15b 1.01± 0.09a
RS-45 0.19± 0.04ab 0.85± 0.17ab 0.87± 0.05b 1.12± 0.02ab 0.95± 0.11a
FB-49 0.26± 0.05ab 1.21± 0.14a 1.36± 0.19ab 1.10± 0.12a 0.94± 0.14a
RS-72 0.16± 0.01b 0.76± 0.05b 1.05± 0.02 0.73± 0.03 0.29± 0.03b
BS-19 0.22± 0.02ab 0.93± 0.07ab 1.39± 0.09a 0.85± 0.07ab 0.53± 0.05b
RS-79 0.21± 0.04ab 0.80± 0.13b 1.29± 0.07ab 0.73± 0.05 0.55± 0.03b
PS-16 0.17± 0.02ab 0.98± 0.09ab 1.13± 0.07ab 0.92± 0.10ab 0.45± 0.07b
BS-65 0.21± 0.03ab 0.90± 0.11ab 1.15± 0.09ab 0.72± 0.09 0.54± 0.04b
PS-2 0.12± 0.02 0.75± 0.06b 1.14± 0.07ab 1.07± 0.06ab 0.47± 0.09b

Means with the same letter down the  olumn are not signifi antly different. Mean± SD of three repli ates using Dun an’s multiple range test (p≤ 0.05) n� 3.
Temp � temperature.
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Table 3: Growth determined at OD 600 nm of sele ted PGPR isolates at varying pH ranges.

Isolate pH4 pH5 pH7 pH9 pH10

BS-27 0.12± 0.01 0.44± 0.04 d 1.26± 0.21ab d 0.68± 0.02b 1.13± 0.09ab 
FB-50 0.14± 0.02b 0.43± 0.05 d 1.32± 0.19ab d 0.4± 0.08def 1.11± 0.12ab 
RS-45 0.08± 0.01 0.15± 0.05e 1.39± 0.09ab 0.3± 0.05ef 1.17± 0.11ab
FB-49 0.26± 0.04a 0.67± 0.09b 1.46± 0.11a 0.85± 0.14ab 1.32± 0.23a
RS-72 0.12± 0.04 0.24± 0.05de 1.05± 0.04b 0.42± 0.09ef 0.97± 0.07b d
BS-19 0.11± 0.02 0.14± 0.06e 1.11± 0.10b d 0.26± 0.06f 0.80± 0.11 d
RS-79 0.21± 0.02ab 0.84± 0.06a 1.20± 0.14ab d 0.51± 0.15 de 0.70± 0.15d
PS-16 0.07± 0.02 0.42± 0.05 d 1.39± 0.06ab 0.54± 0.14 de 1.13± 0.116ab 
BS-65 0.09± 0.02 0.63± 0.05b 1.09± 0.10 d 0.65± 0.15b d 1.01± 0.04ab d
PS-2 0.06± 0.03 0.49± 0.08b 1.34± 0.03ab 0.93± 0.05a 1.18± 0.03ab

Means with the same letter down the  olumn are not signifi antly different with mean± SD, n� 3.
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Table 5: Heavy metal toleran e profile of ten potential PGPR strains at a varying  on entration of HMs.

S.
No.

Isolates

Toleran e (μg/ml)

Fe
50

Fe
100

Fe
300

Mn
50

Mn
100

Mn
300

Cu
50

Cu
100

Cu
300

Zn
50

Zn
100

Zn
300

Pb
50

Pb
100

Pb
300

%

(R)

1
Bacillus thuringiensis

BS-45
T T T T T S T T T T T T T T T 90

2
Enterococcus

gallinarum PS-16
T T T T T T T S S T T S T T T 70

3
Paenibacillus polymyxa

FB-50
T T T T T T T T T T T T T T T 100

4
Agrobacterium

tumefaciens RS-79
T T T T T T T T S T T S T T T 80

5
Ochrobactrum

intermedium RS-72
T T T T T S T T T T S S T S S 50

6
Acinetobacter

calcoaceticus BS-27
T T T T T T T T T T T T T T T 100

7
Pseudomonas putida

BS-19
T T T T T T T T T T T T T T T 100

8
Pseudomonas

fluorescens FB-49
T T T T T T T T T T T T T T T 100

9
Klebsiella

michiganensis PS-2
T T T T T S T T T T S S T T T 70

10
Serratia marcescens

RS-65
T T T T T S T S S T S S T T T 50

% (T) 100 100 100 100 100 70 100 80 70 100 70 60 100 90 90

% (S) 0 0 0 0 30 0 20 30 0 30 40 0 10 10

T� tolerant and S� sensitive.

Table 6: Plant growth promotion in A. abyssinica treated with different PGPRs individually and  onsortium under  ontrol and drought
stress  onditions.

Treatment SH ( m)/pot RL ( m)/pot No. of leaves/pot SDW (g)/pot RDW (g)/pot

Control 38.3± 2.9i 10.0± 2.6i-k 14.0± 2.6f-i 0.9± 0.2jk 0.12± 0.01jk
Control +D 31.7± 2.1j 7.0± 2.6k 9.3± 1.5j 0.6± 0.1k 0.1± 0.02k
BS-27 50.7± 0.6d 14.0± 2f-h 17.3± 1.2 -e 1.9± 0.4b-e 0.4± 0.06d-i
BS-27 +D 43.3± 1.5f-h 11.0± 1h-j 11.0± 2ij 1.5± 0.2e-i 0.3± 0.04g-j
FB-50 52.0± 2.6d 17.7± 1.5b-e 18.0± 3b-e 1.9± 0.3b-e 0.4± 0.11d-i
FB-50 +D 46.3± 3.1ef 11.7± 2.1h-j 15.7± 2.5d-g 1.7± 0.1g-j 0.5± 0.05g-i
RS-65 46.7± 3.2ef 16.0± 1d-f 21.3± 3.1ab 1.5± 0.4e-i 0.3± 0.09e-i
RS-65 +D 39.3± 2.5hi 11.0± 2h-j 18.0± 2b-e 1.1± 0.2ij 0.2± 0.05j-k
FB-49 61.0± 1.7b 20.3± 1.5ab 21.3± 2.1ab 2.2± 0.4b 0.60.03b 

FB-49 +D 51.7± 1.5d 18.7± 1.5b-d 17.7± 1.5 -e 1.8± 0.1d-h 0.55± 0.07 -f
RS-72 51.7± 2.1d 16.7± 1.5 -f 18.3± 2.5b-d 2.1± 0.4b-d 0.5± 0.12 d
RS-72 +D 44.0± 2fg 11.3± 1.5h-j 13.7± 1.5f-i 1.3± 0.1g-i 0.4± 0.1e-h
BS-19 48.3± 1.5de 14.0± 1f-h 18.7± 3.1b-d 2.2± 0.3b 0.5± 0.14 -e
BS-19 +D 40.3± 2.5g-i 10.3± 1.5ij 13.0± 2j-i 1.6± 0.3d-h 0.4± 0.04d-f
RS-79 43.3± 2.5f-h 12.7± 2.1g-i 15.3± 1.5d-g 1.9± 0.3 -f 0.4± 0.11d-h
RS-79 +D 39.3± 1.5hi 8.7± 1.5jk 11.3± 1.5i-j 1.4± 0.2f-i 0.3± 0.08g-j
PS-16 46.0± 2ef 11.0± 1h-j 20.3± 2.5b 1.8± 0.5 -f 0.3± 0.12g-i
PS-16 +D 39.7± 2.5hi 8.4± 2.1jk 15.7± 2.5d-g 1.4± 0.2g-i 0.2± 0.06g-j
BS-45 51.0± 2d 11.3± 1.5h-j 14.7± 1.5e-h 2.4± 0.2b 0.4± 0.15d-i
BS-45 +D 42.7± 2.1f-h 9.3± 1.5i-k 11.0± 1ij 1.4± 0.1g-i 0.2± 0.08h-k
PS-2 41.3± 1.5g-i 10.0± 1i-k 18.3± 1.5b-d 1.4± 0.1g-i 0.2± 0.07g-j
PS-2 +D 38.7± 2.1i 8.3± 1.5jk 11.7± 2.1h-j 1.2± 0.1h-i 0.2± 0.02i-k
Consortia 70.3± 1.5a 22.3± 2.1a 23.7± 1.5a 2.9± 0.3a 0.9± 0.12a
Consortia +D 57.3± 1.5 19.3± 2.5b 16.7± 2.8d-f 2.1± 0.2b-d 0.8± 0.07ab

Means with the same letter down the  olumn are not signifi antly different at (p≤ 0.05) by using DMRT. Mean± SD (n� 3); D represents drought.
Consortia� FB-50 +BS-27 +BS-19 + FB-49. SH� shoot height, RL� root length, SDW� shoot dry weight, RDW� root dry weight.
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surfa es sin e biofilms provide important environmental
reservoirs and prote tion for ba teria [55]. Biofilm assists
drought toleran e by produ ing extra ellular matri es to
maintain a hydrated root environment, in reasing root-
adhering soil and stability [49]. Biofilms  ontain sugars and
oligo- and polysa  harides that  an play various roles in
ba teria-plant intera tions, e.g., in improving water avail-
ability in the root medium. Several studies have shown that
different  hemi al substan es or physi al parameters affe t
the biofilm expression su h as NaCl  on entration and
presen e or absen e of oxygen [29]. Besides, the pro ess of
biofilm is affe ted by several fa tors su h as temperature, pH,
nutrients  ontent, salinity,  onta t surfa e properties, and
mi robial strains [56].

)e present finding  onfirms that the best situation for
EPS produ tion by PGPR isolates was found to be a basi 
medium supplemented with su rose at pH 7 ± 0.2 and a
temperature of 28± 2°C. )e formation of EPSs by rhi-
zoba teria is one of the important me hanisms in exerting
drought toleran e. Based on the qualitative results, it was
found that environmental stresses su h as pH and tem-
perature stimulated the produ tion of EPS. Higher EPS
produ tion has been indi ated in  ulture media supple-
mented with su rose and glu ose [57]. )ese variations are
due to the kinds of sugar used and enzymati metabolism of
ea h strain [58] and the a tivity of glu osyltransferases
[59, 60]. EPS is fundamental for mi robial life and provides
an ideal environment for  hemi al rea tions, nutrient
entrapment, and prote tion against environmental stresses
su h as salinity and drought [61]. )e EPS plays an im-
portant role in soil aggregation, thereby improving soil
water holding  apa ity and soil fertility as observed in
Azospirillum [15, 62]. Ba terial EPS produ tion is one
me hanism to survive under stressful (drought)  onditions
[63].

)is study finds a wider range of NaCl toleran e al-
though higher  on entration brings a drasti de line in
ba terial growth. It was observed that the extent to whi h

growth was suppressed was dire tly proportional to the
in reasing  on entration of NaCl. )erefore, some of the
salt-tolerant isolates (in this study) had good saprophyti 
and  ompetitive abilities to perform well in drought-stressed
 onditions. It seems that this high osmoti strength is due to
the produ tion of proline, glutamate, gly ine, betaine, and
trehalose in the  ells. Na+ a  umulation de lines soil po-
rosity, soil aeration, and water  ondu tan e. High Na+ ions
also interfere with K+ and Ca2+ and affe t enzymati a -
tivities [64]. Soil ba teria inhabiting salty and arid e osys-
tems have the potential to promote plant growth under
salinity and drought  onditions [65]. Drought  onditions are
a  ompanied by an in rease in temperature,  hanges in soil
pH, heavy metals, and salinity. )erefore, the su  essful
deployment of PGPR in stressed e osystems depends on
their ability to withstand and proliferates under adverse
environments [66].

Seven isolates were identified with high-temperature
(45°C) toleran e. Among tested strains, Bacillus spp.
exhibited higher toleran e of temperature than Pseudomo-
nas spp. One possible reason for this is due to the synthesis of
heat-sho k proteins [50] and also the presen e of extremely
resistant and dormant endospores produ ed by Bacillus spp.
[67]. Similarly, the formation of endospores by Bacillus
isolates  ould enhan e their toleran e to high temperature
[45]. Moreover, [67] highlighted that Bacillus endospores are
extremely resistant and  apable of withstanding unfavorable
 onditions. A thermotolerant P. putida NBRI0987 was
isolated from the drought-affe ted rhizosphere of  hi kpea
(Cicer arietinum) [68]. Another study has reported that a
strain of Pseudomonas AKM-P6 possessing plant growth-
promoting properties enhan ed the toleran e of sorghum
seedlings to high temperatures (47–50°C). Studies suggested
that rhizoba terial isolates RR-1, GGP-1, and GNR-1 were
both tolerant to high temperature (45°C) and also exhibited
multiple benefi ial plant growth-promoting a tivities [69].
Although in vitro temperature sele tion is not  onsidered as
a promising approa h for field appli ations, but high

Mixed inoculations Single inoculation Control

Figure 7: Drought stress enhan ements of PGPR isolates in Acacia plants. Mixed� FB-50 +BS-27 +BS-19 + FB-49 +D; single� FB-49 +D;
and  ontrol�without ino ulation +D.
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temperature toleran e  an be useful for isolating  ompetitive
PGPR in os illating temperature in the fields [70].

In this study, four isolates P. polymyxa strain FB-50,
A. calcoaceticus stain BS-27, P. putida strain BS-19, and
P. fluorescens strain FB-49 showed 100% toleran e to all
HMs tested. )e result revealed that PGPR showed sen-
sitivity to the different  on entrations of HMs applied.
)e toleran e of Paenibacillus spp and B. thuringiensis to
HMs like Cd, Cu, and Zn was also reported in [71].
Pseudomonas sp. showed a 97.9% Pb, 93.5% Cd, and 68%
Cu removal effi ien y from  ontaminated industrial
wastewater is reported [72]. Surfa e binding/redu ed
uptake, in reased efflux intra ellular sequestration, en-
zyme detoxi ation, and a tive transport are among the
proven me hanisms of toleran e [73]. Hen e, these iso-
lates  ould be useful in the bioremediation of HM-pol-
luted environments.

)e results of this study proved that the ino ulation of
PGPR isolates alone or in  onsortia had a signifi ant effe t
in a a ia growth under  ontrolled  onditions and also
ameliorates the negative effe t of drought stress. Ino u-
lation with  onsortia showed the best plant growth per-
forman e and enhan ed drought toleran e owing to their
synergisti benefits in order to enhan e plant growth.
Similarly, ino ulation with individual strains also im-
proved plant biomass SH, RL, leave numbers, SDW, and
RDW  ompared to the  ontrol. P. fluorescens strain FB-49
resulted in the highest biomass in rease in under water
restri tion followed by P. polymyxa FB-50. Ba terial in-
o ulation signifi antly in reased the biomass of palm
under drought, thereby  ontributing an essential e o-
logi al servi e to the entire oasis e osystem. )e possible
me hanisms asso iated with PGPR-derived drought tol-
eran e in lude alterations in host root system ar hite -
ture, osmoregulation, management of oxidative stress,
produ tion of EPS, and trans riptional regulation of host
stress response genes [47, 52, 74, 75]. Moreover, PGPR
maintains the water budget of plants by improving the
growth of the root system. )is improves the water use
effi ien y and water absorption ability of roots under
water s ar ity [76]. Ino ulation of plants with PGPR
in reases the growth rate/yield and fosters seedlings
emergen e in plants under greenhouse trials [77] and
enhan ed the root system (up to 40%) in pepper [78].
Also, in [79], it is reported that ino ulation with Enter-
obacter spp and Klebsiella spp in reased in the dry matter
of Lupinus albescens by 75 and 81%, respe tively,  om-
pared to the  ontrol. )e appli ation of Bacillus subtilis
(BERA 71) turned out to be potentially benefi ial in
ameliorating the deleterious impa t of salinity and
drought in Acacia gerrardii [80]. Drought enhan ement in
Sambucus williamsii via the ino ulation of A. calcoaceticus
X128 was reported [81]. P. polymyxa enhan ed the
drought toleran e in Arabidopsis thaliana [82]. Acineto-
bacter spp and Pseudomonas spp enhan ed the shoot and
leaf biomasses of drought- hallenged grapevines indi-
 ating the PGP a tivity of phytobenefi ial mi robes [83].
)is study suggests the integrative use of a  ombination
and/or single appli ation of PGPR strains to be a

promising and e o-friendly strategy for redu ing moisture
stress in plants.

5. Conclusion

)is study revealed that PGPR strains re overed from de-
graded lands in Ethiopia have exhibited a promising abioti 
stress-toleran e  apa ity. Some ba terial strains were  on-
sidered  ompletely tolerant (CT) to indu ed osmoti stress.
Most of the ba terial isolates were biofilm formers and EPS
produ ers whi h play prote tive roles under stressing
 onditions. Some PGPR strains su h as P. polymyxa,
A. calcoaceticus, P. putida, and P. fluorescens enhan ed the
drought stress toleran e in a a ia under greenhouse  on-
ditions. Mixed ino ulation resulted in higher drought tol-
eran e in  omparison to single ino ulation. )us, the elite
indigenous strains identified in this study are potentially
used in field trials to  onfirm their performan e and ap-
pli ability for the rehabilitation of degraded environments.
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