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Abstract

Background: Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses.
Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria,
fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed
mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play
critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling
networks and their ability to crosstalk make them ideal candidates for mediating defense responses.

Results: Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated
crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the
major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of
crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the
discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review.
Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting
hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected
abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine
balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to
environmental signals.

Conclusions: The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is
just beginning to be understood. Future research employing genome-scale systems biology approaches to solve
problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore,
discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be
an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of
genetic control that can be useful to engineer stress tolerant crops.
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(SA), Jasmonates (JA)

Background
The sensing of abiotic and biotic stresses initiates several
complex signaling pathways in plants. Some of the early
signaling events include alteration of intracellular Ca2+

concentration, production of secondary signaling mole-
cules such as inositol phosphate and reactive oxygen
species (ROS) as well as activation of kinase cascades.

The increase in intracellular Ca2+ levels in response to
the adverse environmental conditions is detected by
calcium binding proteins that function as Ca2+ sensors [1].
The activated Ca2+ sensors can either bind to cis-elements
in the promoters of major stress-responsive genes or can
interact with DNA-binding proteins controlling these
genes, thereby, resulting in their activation or suppression.
Furthermore, elevated Ca2+ levels can activate calcium-
dependent protein kinases (CDPKs), calcium/calmodulin-
dependent protein kinases (CCaMKs) or phosphatases
that in turn can phosphorylate/dephosphorylate specific
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transcription factors, thus, regulating expression levels of
stress-responsive genes [2].
Ca2+ functions in concert with other important second

messengers like ROS. A rapid increase in the rate of
ROS production, known as ‘the oxidative burst’, occurs
as a response to stress conditions [3]. The ROS mole-
cules that mediate signaling functions include hydrogen
peroxide (H2O2), singlet oxygen (1O2), hydroxyl radical
and superoxide anion radical [4]. The activation of
mitogen-activated protein kinase (MAPK) cascade by
H2O2 and subsequent upregulation of specific stress-
related genes in Arabidopsis is a perfect example of
ROS-mediated stress-response [5]. Nonetheless, Ca2+

and ROS-mediated responses of plants to environmental
constraints just form the tip of the iceberg. The mechan-
ism of stress-response in plants is highly intricate and
requires several integrated pathways to be activated in
response to external stresses. Because of the complex in-
teractions among various plant hormones and their abil-
ity to control a wide range of physiological processes,
they serve as the key endogenous factors in mediating
plant stress response. Moreover, with nine diverse
groups of plant hormones participating in defense re-
sponses, their signaling pathways are intricately inter-
connected to facilitate the generation of a sophisticated
and efficient stress response. Therefore, a concise over-
view of the role of plant hormones with special focus on
how they crosstalk in regulating various stress responses
will be provided in this review.

Plant hormones as watchdogs of stress response
The major hormones produced by plants are auxins,
gibberellins (GA), cytokinins (CK), abscisic acid (ABA),
ethylene (ET), salicylic acid (SA), jasmonates (JA), brassi-
nosteroids (BR) and strigolactones. Among these, ABA,
SA, JA and ET are known to play major roles in mediating
plant defense response against pathogens and abiotic
stresses [6, 7]. Typically, ABA is responsible for plant
defense against abiotic stresses because environmental
conditions such as drought, salinity, cold, heat stress and
wounding are known to trigger increase in ABA levels
[8, 9]. Contrastingly, SA, JA and ET play major roles in
response to biotic stress conditions as their levels increase
with pathogen infection [6]. However, the mechanism of
stress-response is not solely restricted to these hormones.
Recent studies have provided substantial evidence for the
crosstalk of ABA, SA, JA and ET with auxins, GAs and
CKs in regulating plant defense response [6, 10, 11]. Hence,
the regulatory roles of ABA, SA, JA and ET and their
crosstalk with other hormones will be discussed here.

Role of ABA in plant defense response
The prominent contribution of ABA to plant defense re-
sponse against abiotic stress conditions has long been

studied. Under osmotic conditions such as high salinity
and drought, ABA is known to stimulate short-term re-
sponses like closure of stomata, resulting in maintenance
of water balance [12] and longer term growth responses
through regulation of stress-responsive genes. ABA ac-
cumulates upon occurrence of osmotic stresses because
expression levels of several ABA biosynthesis genes,
such as ZEAXANTHIN EPOXIDASE gene (ZEP; also
known as LOS6 [for LOW EXPRESSION OF OSMOTIC
STRESS-RESPONSIVE gene 6]/ABA1), the ALDEHYDE
OXIDASE gene (AAO3), a 9-CIS-EPOXYCAROTENOID
DIOXYGENASE gene (NCED3), and the MOLYB-
DENUM COFACTOR SULFURASE gene (MCSU; also
known as LOS5/ABA3), are upregulated by drought and
salt stress [13].
Furthermore, promoter analysis of ABA-responsive

genes has shown the presence of multiple cis-ele-
ments, designated as ABA-responsive elements (ABREs;
PyACGTGG/TC), in their promoters [14, 15]. The basic
leucine zipper transcription factors, ABRE-BINDING
PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs)
can bind to ABRE and result in the upregulation of
ABA-responsive genes [16]. The ABA-mediated phos-
phorylation of ABFs is necessary for their activation
[17]. The induction of AREB1/ABF2, AREB2/ABF4
and ABF3 by dehydration, high salinity and ABA
treatment and enhanced drought tolerance by plants
overexpressing these factors further validates the sig-
nificance of these proteins and hence ABA in abiotic
stress response [16].
Other transcription factors from the MYC, MYB and

NAC protein families are also known to function in an
ABA-dependent manner [18, 19]. Overexpression of
AtMYC2 and AtMYB2 transcription factors, besides
exhibiting an ABA-hypersensitive response, also improved
osmotic stress tolerance of transgenic plants [19, 20].
Likewise, transgenic plants overexpressing RD26 (a
stress-inducible NAC transcription factor) showed
high sensitivity to ABA and thus an upregulation of
ABA- and stress-responsive genes [18].
Interestingly, studies in the recent past have

highlighted that ABA-dependent pathways also play an
important role in the regulation of dehydration-
responsive element (DRE)-BINDING PROTEIN (DREB)
transcription factors, under osmotic stress conditions
[8]. Exhibition of ABA-hypersensitive response by trans-
genic plants overexpressing DREB2C and interaction of
DREB1A and DREB2A with ABF2 and that of DREB2C
with ABF3 and ABF4 confirmed the involvement of
ABA in regulation of DREB transcription factors [21].
This was further validated by yeast one-hybrid and chro-
matin immunoprecipitation (ChIP) assays indicating the
binding of AREB1, AREB2 and ABF3 to the DREB2A
promoter, resulting in the activation of DREB2A in an
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ABA-dependent manner [22]. Thus, it is evident that
ABA employs a sophisticated process for mediating
plant defense responses against abiotic stresses.

Role of SA, JA and ET in plant defense response
SA, JA and ET are mainly known to play significant roles
in regulating plant defense responses against various
pathogens and pests [6]. SA is generally involved in the
activation of defense response against biotrophic and
hemi-biotrophic pathogens [23], whereas, JA and ET are
responsible for defense against necrotrophic pathogens
and herbivorous insects [24, 25].
SA synthesis takes place in response to detection of

phytopathogens. Once SA pathway is activated at the
site of infection, a defense response is often triggered in
distal plant parts to protect undamaged tissues. This
long-lasting and broad-spectrum induced resistance is
referred to as systemic acquired resistance (SAR). Mu-
tants insensitive to SA or defective in SA accumulation
exhibit enhanced susceptibility to pathogens. Moreover,
increase in SA levels in pathogen-exposed tissues results
in the induction of PATHOGENESIS RELATED (PR)
genes. These PR genes are a diverse group that encode
several proteins with antimicrobial activity and hence in-
crease resistance to a wide range of pathogens [26]. One
of the key regulatory elements in SA-dependent activa-
tion of PR genes is NON-EXPRESSOR OF PR GENE 1
(NPR1). It is known that SA regulates the deoligomeriza-
tion of NPR1 into its active monomeric forms. The
monomers localize into the nucleus and interact with
TGA class of bZIP transcription factors, which in turn,
facilitate PR gene expression and subsequent defense re-
sponse [23]. However, recent studies have highlighted
that NPR1 is a SA receptor and SA directly regulates the
conformation of NPR1 by deoligomerizing NPR1 into a
dimer [27]. Several WRKY transcription factors are also
known to play important roles, downstream of NPR1, in
mediating the defense responses in plants [28, 29].
An increase in JA levels in response to pathogen infec-

tion clearly highlights its involvement in plant defense
response. Besides, JA signaling also plays a prominent
role in defending plants against many herbivores, such
as, caterpillars, spider mites, beetles, thrips and mirid
bugs [24]. JA-responsive gene expression for defense
response is mainly mediated by a transcription factor
JASMONATE INSENSITIVE 1/MYC2 (JIN1/MYC2) [28].
Several members of the APETALA2/ETHYLENE-RE-
SPONSIVE FACTOR (AP2/ERF) family have also been
reported to participate in JA-regulated stress responses
[31, 32]. ERF1, ERF2, ERF5 and ERF6 control the ex-
pression levels of JA-responsive marker gene PLANT
DEFENSIN 1.2 (PDF1.2) and provide resistance against
necrotrophic pathogens [33–35]. Further, a repressor
protein, JASMONATE-JIM-DOMIN (JAZ), also plays a

crucial role in JA response under stress conditions [36]. In
the absence of JA-Ile, the bioactive JA [37], JAZ proteins
interact with JIN1/MYC2 and inhibit transcriptional
regulation of JA-responsive genes. In JA-stimulated
conditions, JA-Ile binds to its receptor, an F-box pro-
tein CORONATINE INSENSITIVE1 (COI1), and leads
to 26S proteasome-mediated degradation of JAZ, thereby
allowing MYC2 to upregulate the expression level of JA
target genes [36]. Recent studies show that MYC2 is post-
translationally modified by phosphorylation at Thr328
residue to stimulate its transcription activity [38]. How-
ever, the modified MYC2 is unstable and degraded by
Plant U-box protein (PUB10) which functions as an E3
ligase [39]. This facilitates turnover of MYC2, thereby
facilitating dynamism and fine-tuning of JA responses
by MYC2.
ET plays diverse roles in plant defense response

[6, 25]. ERFs are the major downstream regulatory
factors of ET signaling pathway in stress-responses.
The transcription factor ETHYLENE INSENSITIVE3
(EIN3) was suggested to induce ERF1 gene expression in
response to ET and activate defense responses [40].
Another positive regulator of ET signaling is EIN2. In the
absence of ET, CONSTITUTIVE TRIPLE RESPONSE
(CTR1) represses EIN2. Upon perception of ET by its re-
ceptor ETHYLENE RESPONSE 1 (ETR1), the repression
on EIN2 is relieved, thereby activating ET signaling [41].
ET can crosstalk with SA and JA pathways either antagon-
istically or by promoting them to achieve tailored defense
responses.
From the discussion so far, it is clear that plants are

challenged by a variety of stress conditions during their
life cycles. Consequently, plants have evolved a multi-
tude of stress responses, where response to a particular
stress condition is primarily under the control of a spe-
cific plant hormone. Nevertheless, recent findings have
proven beyond doubt that besides playing critical roles
at individual levels, different plant hormones also cross-
talk to facilitate the coordination of an array of genes
and their regulators involved in stress remediation [42].
Therefore, for gaining a better insight into the plant
defense mechanism, it is imperative to understand the
intricate nexus of crosstalk among different plant
hormones.

Hormonal crosstalk in plant defense
The signaling pathways of ABA, SA, JA and ET are
known to interact among themselves at various nodes,
such as hormone-responsive transcription factors to
regulate plant defense response. However, it is note-
worthy that whole plant adaptation and sustained
growth are the key features of a proper defense response
under stress conditions. Therefore, the crosstalk of ABA,
SA, JA and ET with the major growth promoting
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hormones, i.e. auxins, GAs and CKs plays an important
role in mediating the stress response. Also, the defense
responses activated in plants in response to different
stresses depends on the type of crosstalk (positive or
negative) between the hormone signaling pathways ra-
ther than solely on the individual contributions of each
hormone. Hence, this section will provide a brief over-
view of the crosstalk among different plant hormones
and the regulatory role of this crosstalk in plant defense
response. Subsequently, the crosstalk of GA with ABA,
mediated by DELLAs, in regulating the balance between
seed dormancy and germination, a key mechanism for
evading early abiotic stress conditions, will be discussed
in more detail to provide a deeper insight into the com-
plexities of hormonal crosstalk involved in mediating
stress responses.
The signaling pathways of SA and JA are known to

intersect at various points because SA and JA regulate
biotic stress responses antagonistically [6]. This antagonis-
tic relation was first reported in tomato, where JA-related
wound response was inhibited by aspirin, an acetylsalicylic
acid drug [43]. Studies have shown NPR1 to be a key
player in the antagonistic crosstalk of SA and JA. The
SA-facilitated suppression of JA-responsive genes like
LIPOXYGENASE 2 (LOX2), VEGETATIVE STORAGE
PROTEIN (VSP), and PDF1.2 was abolished in npr1
mutant plants [44].
The WRKY 70 transcription factor is also a key com-

ponent mediating the antagonistic interaction between
the two hormones. Overexpression of WRKY70, on the
one hand, resulted in constitutive expression of SA-
responsive PR genes, and on the other hand, caused re-
pression of JA-responsive PDF1.2 gene [45]. Likewise,
mpk4 (MAP kinase 4) knock-out mutants in Arabidopsis
that exhibited constitutive SAR had higher expression
levels of PR genes, but the expression levels of JA-
responsive genes (PDF1.2 and THI2.1) were impaired
[46] (Fig. 1). Although most studies prove antagonistic
interaction between SA and JA, synergistic interactions
have been observed at low SA-JA concentrations and by
simultaneous induction of both defenses [45, 46].
In contrast to the largely antagonistic functions of SA

and JA, JA and ET operate synergistically in regulating
defense related genes after pathogen infection. Both JA
and ET pathways induce/stabilize EIN3 and thus exhibit
synergy in root hair development and resistance to
necrotrophs [49]. A positive JA-ET interaction causes in-
duction of genes encoding for proteinase inhibitors in
response to wounding in tomato [50]. Likewise, both JA
and ET are required to simultaneously activate expres-
sion of ERF1, and thereby activate PR genes [32]. Recent
studies in Arabidopsis showed that JA and ET signaling
pathways could also behave antagonistically against at-
tack by insects and herbivores. JA-activated MYC2 was

found to interact with ET-stabilized EIN3 and repress its
downstream functions. Conversely, EIN3 represses MYC2
and thereby inhibits JA-regulated defense response against
herbivores [51]. Besides, ET is also known to crosstalk
with ABA for abiotic stress responses because DREBs be-
long to the ERF family of transcription factors that are in-
duced by ethylene Moreover, ET also counteracts ABA
action in seeds and thereby improves dormancy release
and germination [52].
Auxins have long been known to be responsible for

regulating plant development. However, several recent
studies have also highlighted their roles in stress re-
sponse. Auxins associate with ethylene to regulate root
development and architecture, which is a key aspect of
drought and salinity tolerance [53]. The negative regula-
tion of lateral root formation and positive regulation of
adventitious root formation by ethylene via modulation
of auxin transport provides another instance of auxin-
ethylene crosstalk in modifying root architecture [54].
Furthermore, treatment of Arabidopsis plants with
benzothiadiazole S-methyl ester (BTH), an SA analog,
resulted in the suppression of several auxin-responsive
genes. SA signaling represses the expression of the
TRANSPORT INHIBITOR RESISTANT 1 (TIR1)/ AUXIN
SIGNALING F-BOX (AFB) genes, resulting in stabilization
of auxin repressor protein AUX/IAA and thus repression
of auxin responses [55] (Fig. 1). A majority of the auxin re-
sponsive genes were also suppressed after induction of
SAR, clearly suggesting that auxin promotes disease sus-
ceptibility, and enhanced resistance to diseases would ne-
cessitate repression of auxin signaling. Taken together,
auxin acts as a key constituent of the signaling network of
hormones mediating the regulation of defense response.
The role of CKs in biotic stress response has been

demonstrated by several studies [53, 56, 57]. Transgenic
Arabidopsis plants having stabilized CK levels exhibited
enhanced resistance against infection with hemi-biotrophic
pathogen Verticillium longisporum [56]. Cytokinins are also
known to crosstalk with SA signaling cascade to regulate
plant defenses. For instance, cytokinin-activated transcrip-
tion factor ARABIDOPSIS RESPONSE REGULATOR 2
(ARR2), a type B ARR, interacts with a bZIP-type transcrip-
tion factor TGA3 and promotes SA defense responses in
an NPR1-dependent manner [57]. Similarly, the synergistic
interaction between SA and CK, in an OsNPR1- and
WRKY45-dependent manner, has been shown to increase
rice resistance to the blast fungus Magnaporthe oryzae [58].
Analyses of gene expression studies revealed that ex-

ogenous ABA application resulted in suppression of ISO-
PENTENYL TRANSFERASE, a cytokinin biosynthesis
gene [59]. A majority of the CYTOKININ OXIDASES
were also suppressed when treated with ABA. Likewise,
gain- and loss-of-function studies of ARABIDOPSIS
HISTIDINE KINASEs (AHKs), which function as cytokinin
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receptors, indicated that AHK1 acts as a positive regulator
of drought and salinity response and also ABA signaling,
while AHK2 and AHK3 negatively regulate osmotic stress
response and ABA signaling [60]. Also, ARABIDOPSIS
HISTIDINE PHOSPHOTRANSFER PROTEINs (AHPs),
namely AHP2, AHP3, and AHP5, negatively control re-
sponses to drought stress because the loss-of-function
of these three AHP genes resulted in up-regulation of
ABA-responsive genes and thus a strong drought toler-
ant phenotype [11] (Fig. 1).

DELLAs modulate early defense by mediating GA-ABA
crosstalk in seeds
Seed dormancy is an adaptive trait that delays germin-
ation until ambient conditions are favorable for survival.
It protects seeds from harsh environmental conditions
(abiotic stress) under which the probability of survival
for seedlings is very low. Thus, dormancy is the first and
foremost defense response in the seed stage of plants.
Dormancy is maintained by ABA whose levels rise dur-
ing embryogenesis and are high in mature seeds [61]. It
has been suggested that ABA inhibits water uptake by
preventing cell wall loosening of the embryo and thereby
reduces embryo growth potential [62]. ABA also causes

the accumulation of ABSCISIC ACID INSENSITIVE 5
(ABI5), a basic leucine zipper transcription factor that
causes growth arrest by recruitment of some of the
LATE EMBRYOGENESIS ABUNDANT (LEA) genes,
whose products confer osmotolerance to the embryo
under harsh environmental conditions [63, 64].
The repressive effects of ABA are overcome by GAs, a

class of phytohormones that has long held a prominent
role in plant growth and development. Gibberellins pro-
mote germination of mature seeds when favorable con-
ditions of light, temperature and moisture set in.
Germination begins with water uptake by seeds and ter-
minates with the emergence of the radicle [65]. GA bio-
synthesis and response pathways are activated during
seed imbibition resulting in an increase in bioactive
GAs. These GAs induce genes encoding for enzymes
such as ENDO-β-1,3 GLUCANASE [66], β -1,4 MAN-
NAN ENDOHYDROLASE [65, 67] that hydrolyze the
endosperm and release the inhibitory effects of ABA on
embryo growth potential [68]. This means that ABA and
GA have an antagonistic relationship; favorable environ-
mental conditions lead to high GA and low ABA levels
in seeds whereas unfavorable conditions cause the re-
verse ratio. Thus, GA-ABA crosstalk regulates the

Fig. 1 An overview of plant hormone signaling networks and their crosstalk in stress responses. ABA, SA, JA and ET are major players in stress
response, with ABA mainly regulating osmotic stresses. SA, JA and ET control biotic stress responses. ABA and GA signaling pathways interact,
with DELLAs serving as a crosstalk point, to influence the balance between seed dormancy and germination. SA and JA pathways are
antagonistically regulated by several transcription factors. JA-ET crosstalk synergistically. Auxins, GAs and CKs participate in biotic stress responses
via SA signaling pathway. CKs also crosstalk with ABA and function in drought and salinity stress responses. Arrows represent positive regulation
(accumulation of transcripts, proteins or hormones), and blocked arrows represent negative regulation. For abbreviations refer to text
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balance between seed dormancy and germination, a key
mechanism for evading early abiotic stress conditions.
Several GA signaling components have been identified

by genetic studies [69, 70]. Positive regulators of GA sig-
naling, mutants of which typically exhibit a dwarfed
phenotype with dark green compact leaves, delayed
flowering, reduced fertility, and no or poor seed germin-
ation have been identified. Some of them include the
rice dwarf1 (d1) [71] and GA-insensitive dwarf2 (gid2)
[72] as well as the Arabidopsis sleepy1 (sly1) [73] muta-
tion. GA signaling is also known to be negatively regu-
lated by a class of repressors called DELLA proteins that
belong to the GRAS family of transcription factors.
These DELLA proteins are known to function as inte-
grators of the GA and ABA triggered signaling pathways
[74]. They are named after their highly conserved N-
terminal DELLA motif, which mediates GA-responsiveness
[75, 76]. A single DELLA protein is present in rice and bar-
ley (SLENDER RICE1 [SLR1] and SLENDER1 [SLN1], re-
spectively) and it functions to repress every aspect of GA
responses in these species [77]. Surprisingly, five DELLA
proteins have been identified in Arabidopsis: GA INSENSI-
TIVE (GAI), REPRESSOR OF GA1-3 (RGA), RGA-LIKE1
(RGL1), RGL2 and RGL3 [75, 78–80]. Under stress condi-
tions, this growth-restraining function of DELLAs helps to
improve survival by diverting limited resources to defense
responses. RGA and GAI are the major repressors of stem
elongation [78, 81], RGA, RGL1 and RGL2 impair flower
development [82–84] whereas RGL2 is the major repressor
of seed germination and its function is enhanced by GAI,
RGA and RGL1.
A single knockout of RGL2 is able to rescue the ger-

mination defect of the GA biosynthetic mutant ga1-3
even in the absence of exogenous GA, thereby mimick-
ing WT germination. Thus, RGL2 has been proposed as
the main DELLA protein that needs to be inactivated
during GA-induced breaking of dormancy [85, 86]. Per-
ception of GA signal leads to the destruction of DELLAs
via the 26S proteasome pathway and thus promotes seed
germination [87, 88].
In addition to GA, studies have shown the involve-

ment of RGL2 in ABA signaling as well. RGL2 was
shown to stimulate XERICO expression, which encodes
a RING-H2 factor, to elevate endogenous ABA levels
and thus ABI5 activity, especially under low-GA condi-
tions [89, 90]. ABA, in turn, enhances the RGL2 expres-
sion [91]. Recently, it has been shown that high ABA
levels in imbibed dormant seeds requires the permanent
expression of RGL2 [92]. In contrast, non-dormant seeds
expressed RGL2 only transiently upon imbibition and
thereby germinated. Therefore, it is likely that RGL2
may integrate GA and ABA signaling pathways in regu-
lating seed dormancy. Accordingly, it has been found
that RGL2 upregulates MOTHER OF FT AND TFL1

(MFT), which encodes a phosphatidylethanolamine-
binding protein, by binding to its promoter region
through an unknown complex [93]. MFT expression is
also directly regulated by ABA-INSENSITIVE3 (ABI3)
and ABI5, with the former acting as a repressor and the
latter as a promoter. MFT, in turn, directly represses
ABI5, thereby providing a negative feedback regulation
of ABA signaling. Thus, MFT serves as a convergence
point of ABA and GA signaling pathways downstream
of RGL2 during seed germination [93] (Fig. 1). SPAT-
ULA (SPT) transcription factor has been shown to drive
both “dormancy-repressing” and “dormancy-promoting”
routes by regulating the expression of ABI4, ABI5, RGA,
RGL3 and MFT [94]. Hence, GA and ABA are the key
plant hormones that regulate the fine balance between
seed dormancy and germination and thus provide the
first level of defense.
Crosstalk between GA and JA pathways also occurs

via DELLA proteins. Studies have shown that the
DELLAs can interact with JAZ1, the key repressors of
JA signaling, thus preventing JAZ1-mediated repression
of transcription [95]. For instance, JA signaling induces
expression of RGL3, which competes with MYC2 for
binding to JAZ1 and JAZ8 [96]. Thereby, RGL3 posi-
tively regulates JA-mediated resistance to necrotrophs
and hemi-biotrophs. By interfering with GA-mediated
degradation of DELLA proteins, JA prioritizes defensive
over growth-related pathways [97, 98]. Also, another sig-
nificant crosstalk is illustrated by delayed induction of
the JA/ET dependent gene marker PDF1.2 in the Arabi-
dopsis quadruple-DELLA mutant lacking GAI, RGA,
RGL1, and RGL2 proteins, thereby making them more
susceptible to necrotrophs [10]. Because SA works
antagonistic to JA/ET, the SA-dependent PR1 and
PR2 transcripts were highly induced in infected
quadruple-DELLA mutant providing them resistance
to hemi-biotrophs [10].
GAs also crosstalk with several other hormones to

regulate plant growth and development in response to
stresses. DELLAs have been shown to integrate ET
signaling in promoting salt tolerance [99]. The root
growth in quadruple-DELLA mutant seedlings was
less inhibited by salt than that of the wild type,
thereby suggesting that salt slows growth by means of
a DELLA-dependent mechanism. Salt-activated ET
signaling was found to confer salt tolerance by enhan-
cing the function of DELLAs. Crosstalk with DELLAs
via the CTR1-dependent ET response pathway occurs
downstream of EIN3 [99]. Similarly, the cold-induced
CBF1/DREB1b, member of the AP2/ETHYLENE-RE-
SPONSIVE ELEMENT BINDING PROTEIN(EREB),
confers freezing tolerance and slows growth by allow-
ing the accumulation of DELLAs [100]. Thus, GAs
function in both salt and cold stress response
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pathways via the DELLA proteins and show signifi-
cant crosstalk with ET signaling.

Conclusions
From the foregoing discussion it is clear that plants
utilize elaborate signaling pathways in responding to
stresses. In addition to other small molecules such as
Ca2+ and ROS, plant hormones trigger specific signal
cascades upon abiotic or biotic stress perception. The
fluctuations in several key hormone levels such as ABA,
ET, SA and JA occur as early responses to stress. These
affect metabolic processes that ultimately result in an
altered growth pattern suitable for withstanding the en-
vironmental stress. Recent research findings have helped
to clarify the elaborate signaling networks and the
sophisticated crosstalk occurring among the different
hormone signaling pathways. Such crosstalk helps to in-
tegrate various stress signal inputs and allows plants to
respond to them appropriately. The readjustment of
growth responses and acquisition of enhanced levels of
tolerance to the stresses are key to the survival of plants.
At the molecular level, these are facilitated by the pres-
ence of multiple signal intermediates for each hormone
and their ability to crosstalk at various signaling levels.
These have been illustrated in the present review with
examples drawn from selected abiotic and biotic stress
responses. The discussion on seed dormancy and ger-
mination serves to illustrate the fine balance that can be
enforced by the two key hormones ABA and GA in
regulating plant responses to environmental signals.
It is apparent that the signaling interactions among

multiple phytohormones are rather common in control-
ling various growth and developmental processes. Plants
may control hormone action at various points, e.g., by
regulating the biosynthesis of a given phytohormone, by
modifying the available pool of hormone molecules or
by elaborate regulation of the signaling process. Plant bi-
ologists have long recognized the conundrum of extreme
pleiotropy in phytohormone action, namely, the regula-
tion of multiple developmental events by a given phyto-
hormone. The more recent discoveries of the presence
of multiple receptors and signaling intermediates (e.g.,
over 20 response regulators in cytokinin signaling, over
20 AUX/IAA genes in auxin signaling or the presence of
a similar number of JA signaling intermediates) shows
the molecular players behind the extensive pleiotropy in
phytohormone action. The intricate web of crosstalk
among the often redundant multitudes of signaling in-
termediates is beginning to be better understood. Future
research employing genome-scale systems biology
approaches to solve problems of such magnitude will
undoubtedly lead to detailed understanding of plant de-
velopment. Therefore, revealing additional crosstalk
mechanisms among various hormones in coordinating

growth under stress will be an important theme in the
field of abiotic stress research. Furthermore, such a para-
digm of phytohormone signal crosstalk will present valu-
able new avenues for genetic improvement of crop
plants needed to meet the future food production targets
in the face of global climate change. Thus, manipulation
of phytohormone action at the right developmental
stages and appropriate tissues/organs will be an attract-
ive avenue to understand and engineer stress tolerance.
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