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Summary

 

Invasive nonindigenous plant species (NIPS) threaten native diversity, alter ecosystem
processes, and may interact with other components of global environmental
change. Here, a general framework is outlined that attempts to connect patterns of
plant invasion to processes underlying these patterns at four well-established spatio-
temporal stages of the invasion process: transport, colonization, establishment, and
landscape spread. At each stage we organize findings and ideas about the filters
that limit NIPS success and the interaction of these filters with historical aspects of
introduction events, NIPS traits, and ecosystem properties. While it remains difficult
to draw conclusions about the risk of invasion across ecosystems, to delineate universal
‘invader traits’, or to predict large-scale extinctions following invasions, this review
highlights the growing body of research that suggests that the success of invasive
NIPS is controlled by a series of key processes or filters. These filters are common to
all invasion events, and will interact throughout the stages of plant invasion,
although the relative importance of a filter may be stage, species or location specific.
It is suggested that both research and management programs may benefit from
employing multiscale and stage approaches to studying and controlling invasion. We
further use the framework to briefly examine potential interactions between climate
change and filters that limit NIPS invasion.
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I. Introduction

 

The invasion of nonindigenous plant species (NIPS) is an
important component of global environmental change. Invasive
NIPS disrupt ecosystems, compete with native species and
cause economic losses (Hobbs & Humphries, 1995; Vitousek

 

et al

 

., 1996; DiTomaso, 2000; Levine 

 

et al

 

., 2003; Dukes &
Mooney, 2004; D’Antonio & Hobbie, 2005). In the USA
alone, the estimated economic impact of invasive NIPS is
$34 billion per year (Pimentel 

 

et al

 

., 2005). Invasive NIPS
can act synergistically with other elements of global change,
including land-use change (Vitousek 

 

et al

 

., 1996; Hobbs,
2000), climate change (Dukes & Mooney, 1999; Simberloff,
2000; Kriticos 

 

et al

 

., 2003), increased concentrations of
atmospheric carbon dioxide and nitrogen deposition (Dukes
& Mooney, 1999; Dukes, 2002; Weltzin 

 

et al

 

., 2003).
Studies of traits that make NIPS invasive (Baker, 1965;

Rejmanek & Richardson, 1996), characteristics of invasible
communities (Elton, 1958; Lonsdale, 1999; Davis 

 

et al

 

., 2000),
and ecosystem or community responses to invasion (Levine

 

et al

 

., 2003; D’Antonio & Hobbie, 2005) have increased our
understanding of the invasion process. However, patterns of
invasion observed in the field at one site may be difficult to
extrapolate to other sites because those observations are
specific to a time, place and spatial scale (Table 1). Studies
may employ different methods or measures of invasion success

and there is often no standardized method for evaluating the
generality of these conclusions (Cadotte 

 

et al

 

., 2006). Recognition
of this problem led to field studies and synthesis papers that
examined invasion across spatio-temporal scales, often exploring
the role of one or two factors (e.g. propagule pressure) in the
invasion process (e.g. Kolar & Lodge, 2001; Hamilton 

 

et al

 

.,
2005; Colautti 

 

et al

 

., 2006; Dietz & Edwards, 2006; Pauchard
& Shea, 2006; Melbourne 

 

et al

 

., 2007). These papers suggest
that the failure to identify a general suite of factors underlying
invasion success may have resulted from attempts to extract
generalities from diverse studies that do not address invasion
at the same spatio-temporal stage (e.g. Kolar & Lodge, 2001).

In this review, we examine the broad categorical filters that
NIPS pass through at four well-established (e.g. Vermeij,
1996) spatio-temporal stages of invasion: transport, coloniza-
tion, establishment, and landscape spread (Figs 1, 2). These
stages are not discrete and filters will likely affect more than
one stage. However, separating invasion into stages allows us
to compare patterns of NIPS success from disparate studies
and to discuss the relative importance of filters to invasion at
each stage. Further, identifying the stage at which an invasion
fails may allow us to understand the interaction of invasion
filters with invasion character (e.g. number of introduction
events), species traits, and ecosystem characteristics (Table 2,
Fig. 3). Generalities arising from this type of synthesis can
then be used to predict the outcome of invasion events, or to

Table 1 Different approaches to invasion research that may complicate comparisons among studies

Potential difference Example Explanation of critical differences Solutions

Scale Landscape-scale 
observational study vs

Landscape patterns are generally 
observational and correlative

Conduct studies at more than one scale

experimental neighborhood-
scale study

Experimental factors at a small 
scale are easy to manipulate

Relate local-scale studies to large-scale 
spatial pattern studies

It is easier to isolate invasion 
mechanisms in small-scale studies

Stage Mature forest study 
vs microcosm

NIPS may respond to different 
factors at different stages

Conduct studies at multiple stages

assembled community study Initial success may not predict 
landscape spread

Definition of invader Native species not in 
original plot vs NIPS

Different factors may be responsible 
for success of this new species

Only compare studies that use all 
NIPS or all native invaders

Cannot test the same questions 
on native and NIPS invaders

Compare similar traits between 
natives and NIPS

Definition of invader
success or invasibility

Biomass of one specific 
invader vs diversity of exotic 
species  within the entire

Diversity of NIPS does not necessarily 
correlate with NIPS success
or potential impact

Use biomass and other abundance 
or cover-related measures
to get at invader success

community Biomass may correlate more 
strongly with impact and success

Ecosystem studied Forest vs grassland Forests have more complex canopy 
structure with more diffuse competition
Forest succession is longer, and 
forest plants are longer lived

Direct comparisons between 
studies in different ecosystems
should focus on general concepts, 
not specific results

NIPS, nonindigenous plant species. 
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Fig. 1 Four stages of invasion, and the factors affecting nonindigenous plant species (NIPS) success at each stage. Graphics at the top of the 
figure depict the dominant process occurring at a stage, and conceptual diagrams below identify dominant mechanisms determining the success 
of NIPS at the relevant stage. The three conceptual figures on the left share the same vertical axis. The conceptual figure for spread shows the 
dependence of spread rates on success of a species at passing through the previous stages, in addition to its typical propagule dispersal 
characteristics and the characteristics of the landscape. Conceptual figures are hypothetical, although many featured mechanisms are widely 
supported by experimental results (see text). Figures are meant to be illustrative, but not comprehensive.

Fig. 2 The spatial and temporal scale of the 
four stages of invasion relative to other key 
biological processes. Adapted from Chapin 
et al. (2002).
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explore mechanisms responsible for deviations from these
generalizations (Cadotte 

 

et al

 

., 2006).
Integration of processes occurring at different spatial and

temporal scales (Figs 2, 3) will allow us to connect local and
regional invasion filters with the factors affecting NIPS success
(Table 2, Fig. 3). The importance of local and regional

processes has been widely debated, but it is clear that communities
are shaped by both (Ricklefs, 1987, 2004; Schluter & Rick-
lefs, 1993). Studies of local filters focus on species interactions
and niche-based processes, as well as environmental constraints.
Local communities assemble from the larger regional species
pool (Fig. 3), which is shaped by history, biogeography, range

Table 2 The major filters, character of the invasion, nonindigenous plant species (NIPS) traits and physical factors in the recipient ecosystem 
that interact to affect NIPS success at each stage of invasion

Invasion 
stage Major filters Character of the invasion event NIPS traits

Physical factors in 
recipient ecosystem

Transport Geographic distance and 
barriers to long-distance 
dispersal (waterbodies, 
intervening deserts, etc.)

Type of introduction 
(accidental vs deliberate, etc.)

Wide native range NA

Propagule pressure Seed longevity
Cause of species transport Association with humans

Human desirability

Colonization Abiotic barriers to colonization Propagule pressure Phenotypic plasticity Climate
Genetic variation contained 
in introductions

Wide abiotic tolerances Soil

Reason a species is introduced Fast growth/short 
juvenile period

Resource availability

Spatial distribution of introductions Self-compatibility Disturbance regime
Germination without 
pretreatment

Establishment Biotic filters to population 
growth and establishment

Propagule pressure Competitive ability Climate
Reason a species is introduced Fast growth Soil
Genetic variation Efficient resource use Resource availability

Disturbance regime

Spread Landscape filters to dispersal 
and establishment in 
new areas

Propagule pressure Effective long- and 
short-distance dispersal

Disturbance regime

Number of invasive foci High fecundity Patch attributes
Distribution of invasive foci Phenotypic plasticity Presence of suitable 

patches for
Dispersal by seed colonization and 

establishment
Generalist Dispersal corridors
Fast generation time Heterogeneity of landscape

NA, not applicable.

Fig. 3 The assembly of local communities is 
influenced by filters at local, landscape and 
regional scales. The regional species pool is 
assembled through speciation, migration, biotic 
exchange and geological events. Transport 
into this regional pool occurs on a much faster 
time-scale than most natural movements of 
species. Here transport is shown outside the 
axis of spatial and temporal scales. Following 
transport, colonizing nonindigenous plant 
species (NIPS) move through local abiotic 
filters to colonization success, biotic filters to 
establishment success, and dispersal barriers 
to success in landscape spread. As the NIPS 
moves from colonization to landscape spread, 
the temporal and spatial scales of processes 
underlying the invasion increase.
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expansions, evolution, and extinction (Ricklefs, 1987). The
success of NIPS likewise reflects the interaction of local filters
that reduce diversity and regional processes that enhance it
(Fig. 3; Davis 

 

et al

 

., 2005; Smith & Shurin, 2006). To enter a
new regional species pool, a NIPS must first be transported
over long distances. Upon arrival, local environmental con-
ditions, biotic interactions, and demographic processes limit
its entrance into the new community. Following local
establishment, the NIPS may spread across the landscape,
navigating across or around dispersal barriers (Fig. 3). Successful
landscape spread can entrench the NIPS in the species pool of
a new region. The invasion process therefore reflects a series of
regional, local, and landscape filters that limit NIPS success
during four stages of invasion.

 

II. Stages of invasion

 

1. Long-distance transport

 

Transport involves the intercontinental movement of a species
into a new region. Although such species movements have
always occurred, current species movements are happening
faster than before and from more distant regions, primarily as
a result of global commerce and travel (Huenneke, 1997;
Mack 

 

et al

 

., 2000; Reichard & White, 2001; Le Maitre 

 

et al

 

.,
2004). However, many species are unlikely to be purposefully
or accidentally transported by humans or may not survive
such transport (Perrings 

 

et al

 

., 2005). The factors that allow
NIPS to pass through geographic filters are sometimes elusive
because most transport events are studied long after they have
occurred. We can gain insight from studies examining past
transport events or studies addressing general patterns of
human-mediated transport at global scales.

 

i. Invasion character and species traits

 

The character of
the invasion (Table 2) will affect NIPS transport success. In
general, higher numbers of propagules increase the likelihood
that species survive transport (Kolar & Lodge, 2001;
Lockwood 

 

et al

 

., 2005). NIPS originating from large native
ranges that are introduced across a wide swath of the nonnative
range may be particularly successful. The invasion of 

 

Phalaris
arundinacea 

 

(reed canary grass) was facilitated by multiple
introduction events from a variety of sources within the native
European range (Lavergne & Molofsky, 2007). Multiple
introductions resulted in the transport of continental-scale
genetic variation from the native range of 

 

P. arundinacea

 

 and
subsequent reshuffling within North American populations.
High genetic variation alleviated bottlenecks at expanding
invasion fronts and increased genetic diversity. New genotypes
coding for advantageous traits such as vegetative reproduction
have also evolved in North American populations through
genetic recombination (Lavergne & Molofsky, 2007).

Species traits may also influence transport. It is important
to distinguish between traits that allow NIPS to survive

transport and traits preferentially selected by humans before
transport. Humans may preferentially transport plants with
qualities that make them strong horticultural or agricultural
species such as cold hardiness, disease resistance and showy
flowers. Human-selected traits may not confer invasiveness to
NIPS, although many human-selected traits may be advan-
tageous. Traits that correlate with successful transport and
introduction relate mainly to geographic origin, native range
extent and dispersal ability. Widespread species may have a
higher overall chance of transport as they are more likely to
come into human contact (Goodwin 

 

et al

 

., 1999; Cadotte

 

et al

 

., 2006).

 

ii. Human activities and NIPS transport

 

Humans are the
primary dispersers of NIPS during the transport stage
(Vermeij, 2005; Pauchard & Shea, 2006), so understanding
patterns of trade, travel, and human desires may allow
predictions of the types of NIPS that will be transported,
common origin and destination regions of NIPS, and the
potential success of different types of introduction events.

Today there are higher numbers of NIPS in the Americas
and Africa than in Eurasia (Vermeij, 2005). Pysek (1998)
reports that Eurasia, with 4.4% of the world’s total floral
diversity, contributes 58.9% of nonnative species to other
regions. This asymmetrical pattern closely parallels historical
trends in human colonization, agriculture, horticulture, and
trade (Delcourt, 1987; Lonsdale, 1999; Williamson, 1999).
Large-scale movements of plant species began with the
establishment of European colonies (1500 AD) and trade
routes running to the New World from Europe (Mack &
Lonsdale, 2001; Le Maitre 

 

et al

 

., 2004).
Intercontinental plant transport has occurred accidentally,

for utilitarian reasons, and for aesthetic purposes (Huenneke,
1997; Mack & Lonsdale, 2001). Accidental introductions
occurred (more frequently in the past than today) in ships’
cargo, in seed stock, or with livestock and travelers from other
regions (Gerlach, 1997; Mack & Lonsdale, 2001; Perrings

 

et al

 

., 2005). These NIPS tended to be ruderal species, capable
of fast growth and high resource uptake (Mack & Lonsdale,
2001). NIPS were also deliberately introduced for food, fuel,
forage, lumber and medicinal purposes in many European
colonies. The introduction of European food crops in the
Americas reflects an ingrained human avoidance of novel food
sources (Mack, 1999), while forage and fuel crops were often
introduced in areas with ‘insufficient’ native species. Utilitarian
plant introductions continue today as developed and developing
nations struggle to keep pace in a global economy (Huenneke,
1997; Le Maitre 

 

et al

 

., 2004). Some countries have adopted
high-yield NIPS to increase agricultural production despite
knowledge that these plants are invasive elsewhere (Le Maitre

 

et al

 

., 2004).
The human desire for both familiar and exotic species

resulted in the introduction of NIPS for aesthetic purposes
during the 19th century and continues today (Mack &
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Lonsdale, 2001). Species introduced ornamentally may have
a significant advantage over species introduced accidentally.
Because species introduced for human use are intentionally
cultivated, they may suffer less as a result of environmental
stochasticity and low population size (Mack, 1995, 2000).
Species growing under human care can form stable source
populations that may eventually spread into natural areas.
Additionally, NIPS introduced for horticulture typically pass
through a climate-matching process to determine where they
will best grow. Climate matching, combined with intentional
cultivation, greatly increases the likelihood that the species
will escape cultivation (Huenneke, 1997; Mack & Lonsdale,
2001). Invasive species introduced for ornamental purposes in
the USA include 

 

Cortaderia jubata 

 

(pampas grass), 

 

Fallopia
japonica 

 

(Japanese knotweed) and 

 

Lonicera japonica 

 

(Japanese
honeysuckle).

 

2. Colonization

 

Species that pass through the transport phase do not
necessarily colonize their destination area. Survival depends
on environmental conditions (e.g. soil type and climate) and
biotic processes at the neighborhood scale. Arriving populations
must survive and achieve positive growth rates at low densities
(Chesson, 2000; Sakai 

 

et al

 

., 2001). Founder populations of
NIPS are also strongly regulated by incoming propagule
pressure. Because of small population sizes, colonizing NIPS
must overcome environmental and demographic stochasticity,
lack of genetic variability and allee effects (Mack, 1995; Sakai

 

et al

 

., 2001). As a very approximate rule, Williamson & Fitter
(1996) suggest only 10% of imported species give rise to
naturalized populations.

 

i. Propagule pressure

 

Propagule pressure strongly influences
NIPS colonization success (Williamson, 1999; Lockwood

 

et al

 

., 2005; Colautti 

 

et al

 

., 2006; Pauchard & Shea, 2006).
Propagule pressure is the combined measure of the number of
individuals reaching a new area in any one release event and
the number of discrete release events. Propagule pressure may
range widely. For example, forage species have sometimes
been introduced in large numbers by airplane, while
populations of 

 

Salix babylonica

 

 (weeping willow) in New
Zealand may have invaded from a single cutting (Mack,
1995). NIPS introduced across a wide area of the new region
may have a better chance of landing in suitable locations for
colonization (Lockwood 

 

et al

 

., 2005) Repeated introductions
from the source region may save a population at the brink of
extinction (Mack, 1995), and greater genetic variation may
allow NIPS to adapt to novel conditions (Sakai 

 

et al

 

., 2001;
Lavergne & Molofsky, 2007). The importance of propagule
pressure can vary based on local conditions (Foster 

 

et al

 

.,
2004; Lockwood 

 

et al

 

., 2005). Very little propagule pressure
may be necessary for colonization to occur in benign
environments where disturbance has eliminated native

competitors. However, in locations with intense competition
or harsh abiotic conditions, high propagule pressure may
be necessary (D’Antonio 

 

et al

 

., 2001; Foster 

 

et al

 

., 2004;
Lockwood 

 

et al

 

., 2005).

 

ii. Abiotic filters and species traits

 

Climate sets the broad
limits to plant distribution and productivity and may cause
NIPS to fail immediately during colonization (Sakai 

 

et al

 

.,
2001). While many NIPS become naturalized in new ranges
with similar climates to their native range, there are examples
of species moving to areas with very different climates (e.g.

 

Conyza canadensis

 

), as well as NIPS failing to establish under
similar climates (e.g. 

 

Lantana trifoliata

 

) (Mack, 1995). Plants
with wide geographic ranges in their native region may be
more likely to survive in a new region, as a result of broader
climatic tolerances (Goodwin 

 

et al

 

., 1999). Additionally,
phenotypic plasticity and high levels of genetic variability
may allow NIPS to adapt to less favorable conditions or
environmental variability (Sakai 

 

et al

 

., 2001; Lavergne &
Molofsky, 2007). Fast growth, self-compatibility, a short
juvenile period, and seeds that germinate without pretreatment
may also be advantageous (Goodwin 

 

et al

 

., 1999; Sakai 

 

et al

 

.,
2001).

Many successful NIPS invasions occur in areas of high
resource availability or under fluctuating resource conditions
where temporal heterogeneity in resource availability opens a
window for colonizing NIPS (e.g. Burke & Grime, 1996;
Davis 

 

et al

 

., 2000; Tilman, 2004; Leishman & Thomson, 2005;
but see Funk & Vitousek, 2007). Increased light, moisture,
and soil nutrients have been shown to increase NIPS success
and alter community dynamics (Huenneke 

 

et al

 

., 1990;
Burke & Grime, 1996; Parendes & Jones, 2000; Davis &
Pelsor, 2001). In California’s nutrient-poor serpentine
grassland, Huenneke 

 

et al

 

. (1990) found that macronutrient
additions increased the overall productivity of the community,
decreased species richness, and increased NIPS biomass with
or without soil disturbance. Results from this and other
studies, as well as theoretical findings, indicate that some
NIPS respond more strongly to increased resource availability
than native species. Others capitalize on resource opportunities
following disturbance events that remove native vegetation or
directly add resources to a community (Huenneke 

 

et al

 

.,
1990; Burke & Grime, 1996; Davis 

 

et al

 

., 2000; Davis &
Pelsor, 2001; Leishman & Thomson, 2005). However, in
order for a plant to establish it must continue to increase from
low density over the long term. While short windows of
resource availability may allow colonization success, periods
of low resource availability may not allow NIPS to establish.
Alternately, NIPS could retain gains made during high
resource availability or in high-resource locations through
the storage effect (e.g. storing temporal gains in storage
organs) (Melbourne 

 

et al

 

., 2007). We will discuss resource
availability and plant invasion further in the context of
establishment.
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3. Establishment

 

To establish, a NIPS must colonize a site and develop
self-sustaining, expanding populations. Establishment may
last longer than colonization and occurs on a slightly larger
spatial scale (Fig. 2). At this stage, small subpopulations of
individuals may be tightly linked through dispersal
(Melbourne 

 

et al

 

., 2007). During establishment, biotic filters
that constrain the population size of NIPS may be most
important, although they will interact with environmental
conditions, species traits, and continued propagule pressure
from source regions (Table 2). Biotic filters are barriers to
invasion created by the actions or presence of living organisms.
While biotic filters will not necessarily prevent the
germination of seeds or the spread of NIPS, these filters can
affect survival, growth, and reproduction.

Traits that enhance competitive performance, reduce niche
overlap between NIPS and natives or increase enemy resistance
may be most important during establishment (Lloret 

 

et al

 

.,
2005; Dietz & Edwards, 2006). Species that share similar
resource acquisition traits are likely to compete strongly.
Conversely, NIPS representing functional groups not present
or in low abundance within a new community may encounter
less competition with native species, especially in regions with
a number of different resources or heterogeneous resource
conditions (Lloret 

 

et al

 

., 2005; Turnbull 

 

et al

 

., 2005; Melbourne

 

et al

 

., 2007). Other advantageous traits include secondary
chemical compounds that deter herbivores, ‘novel weapons’,
such as root exudates that negatively impact other plants, fast
growth, and high fecundity (Rejmanek, 1996; Callaway &
Ridenour, 2004; Richardson & Rejmanek, 2004; Dietz &
Edwards, 2006). Although specific traits conferring these
abilities may vary among habitats, examples of traits that
correlate with competitive ability include vegetative
reproduction, leaf size, stem height and flowering phenology
(Goodwin 

 

et al

 

., 1999; Lloret 

 

et al., 2005).

i. Plant–plant interactions: competition (–), novel weapons
(–), and facilitation (++++) Competition is likely the best studied
of the biotic filters of invasion, although this filter alone
appears unlikely to fully exclude invasive plant species (Levine
et al., 2004). Competition or, more specifically, exploitation
competition occurs at local scales when plants reduce the
growth of their neighbors by consuming resources. Because
invasive NIPS are generally most successful in areas with high
resource availability (Dukes & Mooney, 1999; Davis et al.,
2000; but see Funk & Vitousek, 2007), competition
undoubtedly reduces the size, density, and impact of many
NIPS. In some instances a single, strongly competitive species
may slow the growth of an NIPS by reducing availability of
a limiting resource. In other cases a suite of species may
collectively reduce the availability of critical resources to levels
that suppress growth of the NIPS. This latter scenario, along
with growing recognition of the pace of global biodiversity

loss, has given rise to dozens of studies examining the role of
plant community diversity in determining invasibility (e.g.
Knops et al., 1999; Levine, 2000; Naeem et al., 2000; Dukes,
2001; Hector et al., 2001; Kennedy et al., 2002; Fargione
et al., 2003; van Ruijven et al., 2003; Fargione & Tilman,
2005).

Taken together, results of these neighborhood-scale diversity–
invasibility studies suggest that diverse plant communities
often (but not always) provide greater competitive resistance
to NIPS (Hooper et al., 2005). So, does resistance result from
niche complementarity or reduced resource overlap (i.e. many
species with different resource requirements collectively reducing
the perceived availability of resources for the invader)? Or are
diverse communities resistant to invasion simply because they
are more likely to include the species that most strongly compete
with a suite of NIPS (i.e. the much-discussed ‘sampling effect’
of the biodiversity literature) (Hooper et al., 2005)? While
many early studies were unable to address this question
(Wardle, 2001), it now seems that the answer may be: both.

Recent studies suggest three nonexclusive patterns of
competition. (1) In some systems, growth of invasive species
can be suppressed by species that are morphologically, pheno-
logically, and physiologically similar, that is, species of the
same functional type (e.g. Dukes, 2001; Fargione et al., 2003;
van Ruijven et al., 2003). (2) In other cases (and even in some
of the same systems), a single dominant species or functional
group can most strongly suppress all or most invaders (Symstad,
2000; Fargione et al., 2003). (3) Finally, in some systems, an
assemblage of species with different traits can compete more
strongly with an invader than any one species alone (Fargione
& Tilman, 2005; Milbau et al., 2005; Losure et al., 2007).
Thus, niche complementarity among residents can contribute
to a community’s biotic resistance to invasion in cases where
a single resident species is unlikely to out-compete the
invader. The degree to which complementarity (and thus
species diversity) plays a role in determining invasibility may
be influenced by resource availability of a site, with more fertile
sites being more prone to the influence of dominant species.
In some cases, losses of even the least abundant native species
can markedly increase the invasibility of resident com-
munities (Lyons & Schwartz, 2001; Zavaleta & Hulvey,
2004). The critical variable in the diversity–invasibility
relationship is likely to be whether the species that are lost
contribute to lowering the availability of a limiting resource
below some threshold level at a sensitive time for the invasive
species (Davis & Pelsor, 2001). For example, in systems with
a strong temporal component to resource availability (e.g.
water in Mediterranean-climate systems), there may be greater
opportunity for rare species to affect resource availability at
these sensitive times (e.g. Dukes, 2001; Zavaleta & Hulvey,
2004).

Negative interactions between NIPS and native plants may
also result from NIPS with novel weapons. Some NIPS have
biochemical root exudates that act as allelopathic agents or
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alter plant–soil microbial interactions in the introduced range
(Callaway & Ridenour, 2004). One mechanism through
which NIPS root exudates can negatively impact native plants
is through the disruption of beneficial relationships between
native plants and soil biota. In forests of the northeastern
USA, Allaria petiolata, an herbaceous mustard species, contains
a type of phytotoxic glucosinolate that appears to disrupt the
mutualism between arbuscular mycorrhizal fungi and
hardwood canopy trees. Because the success of these juvenile
hardwoods depends on the association with arbuscular
mycorrhizal fungi, the invasion of A. petiolata results in tree
mortality that favors further success of this invader because of
reduced competition with tree species (Stinson et al., 2006).

Resident species do not always suppress growth of NIPS,
and sometimes contribute to their success. Facilitation is less
studied in invasion biology and perhaps generally in ecology,
although recent studies suggest that it may be an important
local regulator of community assembly (but see Prieur-
Richard et al., 2000; Bruno et al., 2003). Facilitative rela-
tionships are most commonly observed in harsher abiotic
environments where neighboring plants ameliorate microclimatic
stressors (Bruno et al., 2005; Brooker, 2006), but facilitation
is not limited to these environments. Smith et al. (2004) found
that native dominants increased seedling establishment of the
invasive Melilotus officinalis in a relatively productive North
American grassland. Additionally, certain invasive species may
facilitate the success of other invaders, leading to invasional
meltdown (Simberloff & Von Holle, 1999). For example,
invasions of nitrogen fixers into communities without native
nitrogen fixers can increase the pool of soil nitrogen (Vitousek
& Walker, 1989; Hughes & Denslow, 2005), facilitating
the invasion of other NIPS previously limited by nitrogen
availability (Yelenik et al., 2004).

ii. Interactions with other trophic levels Herbivores, parasites,
pathogens, mutualistic soil biota, pollinators, and dispersal
agents also influence NIPS establishment. Escape from
herbivory or disease may increase growth rates, and the
chance of establishment in a new region. The enemy release
hypothesis (ERH) suggests that NIPS benefit from transport
outside the range of their natural enemies (Elton, 1958;
Maron & Vila, 2001; Keane & Crawley, 2002; Carpenter &
Cappuccino, 2005). Building on the ERH, the evolution of
increased competitive ability (EICA) hypothesis (Blossey &
Notzold, 1995) may also explain disproportionate success of
invasive plants in new ranges. The EICA hypothesis suggests
that, under reduced enemy pressure, selection may shift the
resource allocation of NIPS from enemy defense to faster
growth (Blossey & Notzold, 1995). Greater enemy pressure
on native species should shift the competitive balance to favor
NIPS (Keane & Crawley, 2002; Blumenthal, 2006).

There are mixed results for both the ERH and the EICA
hypothesis (Keane & Crawley, 2002; Daehler, 2003). Studies
show that some NIPS have longer life-spans, grow larger, and

achieve higher reproduction in invaded ranges than in native
ranges (Daehler, 2003; Leger & Rice, 2003). However, these
studies have not always found mechanistic explanations
linking increased NIPS growth to herbivory (Keane & Crawley,
2002). Covarying factors such as competition (Leger & Rice,
2003) and resource availability (Blumenthal, 2006) may also
complicate predictions of the relative importance of herbivory.
The Resource–ERH (Blumenthal, 2006) suggests that enemy
release in combination with areas of high resource availability
increases the success of fast-growing, ‘high resource use’ NIPS
in novel environments (Fig. 4).

Herbivores also influence interactions between NIPS and
the native plant community. For instance, intense grazing by
introduced ungulates can increase the invasibility of native
plant communities (D’Antonio et al., 2000). In a meta-
analysis of 63 studies, Parker et al. (2006) found that native
generalist herbivores suppressed introduced plants more than
they suppressed natives, while native specialist herbivores did
not suppress NIPS. Introduced generalist herbivores facilitated
NIPS through their negative impact on natives. These results
suggest that novel pressure from generalist herbivores may be
an important line of defense against NIPS, but, in ecosystems
heavily invaded by nonnative herbivores, native plants may
also suffer from novel herbivore damage. Specialist enemies
that switch from native hosts to NIPS, or that accompany
NIPS from other regions, can limit the degree of enemy
release. Although rare, host-switching has been observed
among native and NIPS congeners (Creed & Sheldon, 1995).

Plant–soil feedbacks can strongly regulate the diversity and
productivity of plant communities and affect NIPS success.
Plant–soil interactions may be positive or negative, although
negative feedbacks are most common (Reinhart & Callaway,
2006). Negative feedback is driven by soil pathogens,
herbivores and parasites. These organisms reduce plant growth,
provide density regulation and maintain higher degrees of
diversity within plant communities. Positive feedback results
from the presence of mycorrhizal fungi, nitrogen-fixing bacteria
and other beneficial soil biota. Positive feedback may dispro-
portionately facilitate the success of some species over others
(Reinhart & Callaway, 2006). In general, interactions between
native plants and soil communities tend to be negative, while
positive feedbacks often occur between NIPS and soil biota in
their introduced range (Klironomos, 2002).

Altered relationships and feedback with soil biota in the
introduced vs native range may partially explain why some
NIPS are so successful. Several studies have demonstrated that
soil communities favor NIPS over native species (Reinhart
et al., 2003, 2005; Callaway et al., 2004; Wolfe & Klironomos,
2005). In a California grassland, Klironomos (2002) found
that four out of five nonnative species experienced positive
soil feedbacks, while all five rare native plants experienced
negative feedback. Reinhart et al. (2003) found that invasion
of Prunus serotina (black cherry) was facilitated by soil com-
munities of north-western Europe, while soil communities in
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the native range of the species inhibited its survival and
growth. Reinhart & Callaway (2006) recently reviewed
available biogeographical comparison studies investigating
the effect of soil biota on NIPS in native and nonnative ranges.
In all six studies the direction of soil–plant feedback was

strongly negative in the native ranges of the NIPS. In the
introduced ranges, feedback was strongly negative in only one
case.

NIPS can directly affect the structure and function of soil
biota (Wolfe & Klironomos, 2005), with a variety of con-
sequences. In some cases, NIPS form novel mutualisms,
increasing establishment success and changing the availability
of soil nutrients (Richardson et al., 2000a; Callaway et al.,
2004). For example, many NIPS increase soil nitrogen by
forming associations with native nitrogen-fixing bacteria
(Richardson et al., 2000a; Callaway et al., 2004). Increases in
soil nitrogen resulting from these mutualisms may change
native community structure and increase the success of future
NIPS invasions (Vitousek et al., 1987; Vitousek & Walker,
1989; Yelenik et al., 2004). In other cases, NIPS may alter the
prevalence of disease in a community. In a model with
field-estimated parameters, Borer et al. (2007) showed that
invasive annual grasses in California may increase the presence
of generalist viral pathogens in native perennial communities.
Annual grasses are inferior competitors in this system, but
they may be able to successfully invade in part because of the
negative effect of increased viral pathogens on native perennial
grasses. Finally, as already discussed, NIPS may have biochemical
exudates that act as ‘novel weapons’ and may disrupt beneficial
mutualisms between native plants and soil fungi (Stinson
et al., 2006).

Mutualisms with pollinators and seed dispersal agents in
the introduced region are also necessary to ensure establish-
ment of some NIPS (Richardson et al., 2000a), although seed
dispersal agents are most important during spread. It is
unlikely that plants with very tightly coevolved pollinator or
disperser mutualisms will find replacements in their introduced
range. Plants that are pollinated by generalists, display vegetative
reproduction or are self-compatible may have significant
advantages (Richardson et al., 2000a). Competition for
pollination, similar to competition for resources, may occur
between natives and NIPS (Brown & Mitchell, 2001). Showy
NIPS may draw pollinators away from native species, reduc-
ing pollen quantity and seed set. Alternatively, these NIPS
may attract more pollinators to natives, facilitating increased
pollination (Brown et al., 2002).

iii. Lag phase A lag phase often takes place between
establishment and spread, when small populations of
established NIPS adapt to their new community. This phase
may correspond to a lack of genetic variation, which prevents
rapid adaptation to novel conditions, or the time necessary for
the population to reach a threshold size that allows it to spread
(Sakai et al., 2001; Barney, 2006). Lag time may also reflect
a lack of suitable local habitat, inclement environmental
conditions, or a statistical artifact (Pysek & Hulme, 2005).
During this period, multiple introductions, range expansion
and migration of NIPS, and gene flow between populations
of establishing NIPS may decrease the time spent in the lag

Fig. 4 The resource–enemy release hypothesis (Blumenthal, 2006) 
suggests that nonindigenous plant species (NIPS) that require the 
most resources for growth will benefit most from enemy release in 
their introduced range. (a) Enemy regulation may be highest for 
high-resource-use species in their native range. (b) In an introduced 
range, high-resource-use species may have greater potential to 
increase growth in response to enemy release (solid line) relative to 
native competition (dashed line). Low-resource-use NIPS will be less 
influenced overall. Figure redrawn from Blumenthal (2006).
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phase (Sakai et al., 2001; Lavergne & Molofsky, 2007). Rapid
evolution can sometimes produce new genotypes capable of
surviving in different climates, competing more successfully
with native species, or deterring enemies (Lee, 2002). For
example, Abultilon theophrasti (velvetleaf ) was originally
introduced before 1700 in the USA. This species has only
recently become an aggressive invader as a result of the
evolution of different life-history strategies based on the
nature of competition in its new environment (Weinig, 2000;
cited in Lee, 2002).

4. Landscape spread

NIPS spread occurs at the scale of the regional metacommunity:
a region containing groups of populations connected through
long-distance dispersal (Melbourne et al., 2007). While
transport occurs at an interregional scale, ‘spread’ refers to
dispersal within a region over significantly longer time periods
(Fig. 2). At the metacommunity scale the landscape is
heterogeneous, and NIPS populations exist as interacting
groups of species at different stages of colonization and
establishment. In this regard, spread incorporates all three of
the previous stages: regional spread rates of NIPS are influenced
by landscape heterogeneity, the size and distribution of
suitable habitat patches for colonization and establishment,
the distance between suitable patches, and the population
characteristics, growth rates, invasion history and dispersal
ability of NIPS (Fig. 1, Table 2). The mosaic of local
conditions or heterogeneity across the region will determine
the interaction of local-scale population dynamics with local
and long-distance spread. Heterogeneity includes both
environmental (geomorphology, resource availability and soil
types) and biotic (often measured as beta diversity) heterogeneity.
In general, larger landscapes contain a greater heterogeneity of
habitat patches and thus may maintain higher degrees of
diversity of both natives and NIPS (Huston, 1994; Davies
et al., 2005; Melbourne et al., 2007).

i. Invasion character, species traits, and dispersal The spread
rates of NIPS are primarily determined by landscape pattern
and barriers to dispersal. However, many other factors will
influence spread. For instance, at this scale, range expansion
is faster if it stems from many small foci with the same
aggregate area as a single large focus (Pysek & Hulme, 2005).
Regional spread results from slow and steady local spread
and rare long-distance dispersal (LDD) events. While local
dispersal may result in linear rates of expansion moving out
radially from the initial invasion foci, LDD tends to make
spread rates nonlinear (Lewis & Kareiva, 1993; Kot et al.,
1996; Neubert & Caswell, 2000; Hastings et al., 2005). Rates
of local spread vary among species depending on the dispersal
mechanism. Pysek & Hulme (2005) reported average local
dispersal rates ranging from 2 to 370 m yr–1. Intraspecific
variation can also be significant, suggesting that population

dynamics and rare LDD can strongly influence dispersal. In
Australia, Opuntia stricta invasions spread up to 18.5 km from
their origin with an average rate of 370 m yr–1. However, in the
first 2 yr, outlying populations were established up to 14 km
away as a result of LDD early in the invasion. LDD may lead
to aerial expansion of 3–500 km2 yr–1, allowing plants to
spread significantly more rapidly than average local dispersal
rates suggest (Pysek & Hulme, 2005). LDD is also largely
decoupled from landscape pattern (With, 2004).

Traits promoting dispersal are most important during the
spread stage of invasion (Lloret et al., 2005). Timing of flow-
ering, length of juvenile period, mode of dispersal, phenotypic
plasticity, and seed size may also affect spread (Kolar & Lodge,
2001; Garcia-Ramos & Rodriguez, 2002; Hamilton et al.,
2005; Lloret et al., 2005; Pysek & Hulme, 2005; Cadotte
et al., 2006; Dietz & Edwards, 2006). Pysek & Hulme (2005)
argued that the available literature does not support close
correlations between invasive traits and spread rates at the
landscape scale. Wind, water and animal-mediated dispersal
may be equally effective, although nonclonal species may
spread marginally more rapidly than clonal species. The lack
of correlation between dispersal-related traits may be a result
of variations in the local success of NIPS.

Dispersal vectors also influence spread. NIPS dispersed by
animals depend on the presence of these vectors (Richardson
et al., 2000a), which may also be affected by landscape pattern.
Dispersal agents and pollinators are unlikely to respond to the
same features of landscape pattern as plants. In a German
study conducted at landscape scales, the spread of invasive
P. serotina depended on the presence of roosting trees across
the landscape – locations where birds perch and defecate seeds
(Deckers et al., 2005). NIPS may also come into contact with
dispersal vectors more frequently in disturbance corridors
(see section 4. iv.; D’Antonio et al., 2000) or at the interface
of suburban and natural landscapes (Williams & Ward, 2006).
For instance, where suburbs abut forest in the eastern USA,
long-distance dispersal of NIPS by white-tailed deer (Odocoileus
virginianus) may promote NIPS success (Williams & Ward,
2006). Deer range throughout both habitats, often defecating
in areas of heavily browsed native vegetation. NIPS benefit
both from transport and from competitive advantages as a
result of reduced densities of native species. Humans also play
a large role in intraregional dispersal. For example, Macdonald
et al. (1989) and Lonsdale (1999) showed that the number of
visitors to national parks in North America and South Africa
is positively correlated with the number of exotic species in
the park. However, it is not clear whether this finding results
from higher propagule pressure or increased disturbances
caused by heavy foot traffic (Pysek & Hulme, 2005).

ii. Landscape pattern and the disturbance regime Landscape
pattern – or the spatial arrangement of different landscape
elements – affects the spread rate of NIPS (Neubert &
Caswell, 2000; Richardson et al., 2000b; With, 2002;
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Hastings et al., 2005). Landscape pattern arises from a variety
of geological and biological phenomena, and the disturbance
regime in a region. The disturbance regime describes the
frequency, spatial extent, severity, and intensity of killing
events over time. Natural disturbance regimes are often linked
to physical site characteristics, extrinsic factors (e.g. weather),
and the biotic community. Geomorphology, vegetation
patterns, and edge effects can influence the spread of
disturbances such as fire. Anthropogenic disturbance tends to
differ from natural disturbance, and may alter the regional
disturbance regime (D’Antonio et al., 2000). Variable spread
and timing of disturbance events create a mosaic of patches in
various stages of succession. This pattern strongly influences
the presence and persistence of different species across the
landscape (Mouquet et al., 2003). Changes to the natural
disturbance regime may dramatically alter landscape pattern,
facilitating invasive spread.

Both anthropogenic activities and plant invasions can
disrupt, intensify, or suppress the natural disturbance regime
(Hobbs & Huenneke, 1992; D’Antonio et al., 2000; Hobbs,
2000; D’Antonio & Hobbie, 2005). Alterations of the dis-
turbance regime that increase resource availability or change
landscape pattern can promote NIPS spread by creating
favorable patches for colonization and establishment (e.g. Hobbs
& Huenneke, 1992; Burke & Grime, 1996; D’Antonio et al.,
2000; Davis et al., 2000; Hobbs, 2000). Disturbances alter
resource availability in a local site by killing resident individuals
or by directly increasing resource supply (D’Antonio et al.,
2000; Davis et al., 2000). Disturbance can also interact with
other factors that influence NIPS success during colonization
and establishment. In a study comparing the response of
Centaurea solstialis (starthistle) to uniform disturbance treat-
ments in two invaded ranges and its home range, response to
disturbance was found to be significantly higher in both
invaded ranges than in its native range (Hierro et al., 2006).
The authors suggested that soil microbes may suppress the
response of C. solstialis to disturbance in its home range. In
the invaded range, escape from these microbes may allow the
weed to capitalize on disturbance events that eliminate
competitors (Hierro et al., 2006).

Alterations of natural landscapes may favor weedy NIPS
that have coevolved with human land use and disturbances
(Delcourt, 1987; Pyle, 1995; D’Antonio et al., 2000;
Parendes & Jones, 2000; Stohlgren et al., 2001; Teo et al.,
2003; Kim, 2005; Vermeij, 2005). For example, native
perennial grasses in Australia and North America may suffer
more damage from introduced ungulate grazing than from
introduced annual species, resulting in a shift to higher NIPS
abundance (D’Antonio et al., 2000). Both Kim (2005) and
Pyle (1995) found that human disturbance regimes promoted
NIPS invasion success, while natural disturbance regimes
either had no relationship with NIPS success (Kim, 2005) or
actually prevented invasion (Pyle, 1995). Similarly, in riparian
systems, natives tend to respond positively to the natural

disturbance regime, while disruptions to natural cycles favor
NIPS (D’Antonio et al., 2000). In some cases NIPS invasions
may lead to further land transformation, altering the natural
disturbance regime, landscape pattern, and ecosystem function
(Hobbs, 2000).

iii. Patch attributes and edge effects Increasingly, humans have
fragmented landscapes into habitat patches within a matrix of
human land use. Patch attributes, patch connectivity, and
dispersal corridors influence NIPS spread (Huston, 1994;
With, 2002; Davies et al., 2005; Knight & Reich, 2005;
Ohlemuller et al., 2006). The size, shape, and edge-to-interior
ratio of a patch may affect NIPS success. While large patches
often favor natives, smaller patches may promote NIPS
(Timmens & Williams, 1991; Harrison et al., 2001; Ohlemuller
et al., 2006). Edge effects are more pronounced in small
patches, and increased light, space, and soil moisture may
favor NIPS (Timmens & Williams, 1991; Parendes & Jones,
2000). Small patches may also experience a greater influx of
propagules from the surrounding landscape (Saunders et al.,
1991; Brothers & Spingarn, 1992; Trombulak & Frissell,
2000; Bartuszevige et al., 2006; Ohlemuller et al., 2006).
Similarly, the shape of patches can influence the rate of NIPS
introduction. Nature reserves with high edge-to-interior
ratios may experience a higher rate of NIPS invasions than
those of similar size that are more circular in shape (Timmens
& Williams, 1991).

Habitat patches near developed edges may contain more
NIPS than patches in interior habitat. In some cases, patches
near edge experience increased resource availability or altered
microclimate conditions. For example, forest sites abutting
agricultural fields may have more light and soil nutrients (as a
consequence of nearby fertilization), and less soil moisture (as
a consequence of higher evapotranspiration) (Brothers &
Spingarn, 1992; Trombulak & Frissell, 2000). Edge areas may
also experience higher propagule pressure. In human-
dominated systems, NIPS may be cultivated in gardens, or
weedy NIPS may grow in areas of frequent disturbance, providing
a source of propagules to neighboring natural areas (Esler,
1987; Timmens & Williams, 1991; Brothers & Spingarn,
1992; Rose, 1997; Searcy et al., 2006). For this reason, sites
closest to development are often most heavily invaded
(Gelbard & Harrison, 2003; Deckers et al., 2005; Knight &
Reich, 2005; Bartuszevige et al., 2006; Ohlemuller et al.,
2006) or differ significantly in composition from interior sites
(Brothers & Spingarn, 1992; Rose, 1997; McDonald &
Urban, 2006).

iv. Corridors, connectivity and metapopulation dynamics
Connectivity of suitable patches influences dispersal of NIPS,
movements of other species, and metapopulation dynamics of
NIPS populations. Metapopulation theory suggests that the
balance between local extinction and migration determines
the regional persistence of a species. Therefore, connectivity
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between NIPS populations may promote spread and persistence
across the landscape (Murphy et al., 2006). Corridors between
suitable patches provide transport for natives and NIPS
across unfavorable landscape matrix, encouraging spread and
facilitating interactions between local populations (With,
2002), although natives and NIPS may require different types
of corridors to disperse (Harrison et al., 2001; With, 2002;
Damschen et al., 2006).

Native plants often require wide undisturbed corridors of
intact habitat, while NIPS may disperse best through strips of
human-disturbed habitat or ‘disturbance corridors’ (D’Antonio
et al., 2000; Parendes & Jones, 2000; Rubino et al., 2002;
Searcy et al., 2006). Disturbance corridors include roads,
trails and power-line rights of way. These habitats can
facilitate rapid NIPS dispersal for two reasons. First, removal
of native vegetation from disturbance corridors leads to
disturbed soil, high light, altered hydrology, and destruction
of the native seed bank (D’Antonio et al., 2000; Trombulak &
Frissell, 2000). Thus, disturbance corridors often provide
favorable conditions for NIPS colonization and establishment.
Secondly, disturbance corridors may increase physical trans-
port of NIPS by providing pathways for dispersal vectors.
Humans and horses have been blamed for carrying NIPS
propagules along trails (MacDonald et al., 1988; Timmens &
Williams, 1991; Campbell & Gibson, 2001), and vehicles
transport weedy species along Australian roadsides (Lonsdale
& Lane, 1994). Deer and other small mammals may transport
large numbers of NIPS between disturbance corridors and
from suburban landscapes into forest interiors (Vellend, 2002;
Meyers et al., 2004; Williams & Ward, 2006). It is not clear
that disturbance corridors always facilitate invasion into the
adjacent habitat matrix; corridors may act solely as habitat
refugia for NIPS not able to establish in intact natural
habitat (Rubino et al., 2002). However, studies conducted
at landscape scales often reveal correlations between the
distance to disturbance corridors and NIPS presence or
abundance (Timmens & Williams, 1991; D’Antonio et al.,
2000; Parendes & Jones, 2000; Rubino et al., 2002; Gelbard
& Harrison, 2003; Watkins et al., 2003; Searcy et al., 2006).
D’Antonio et al. (2000) reviewed 14 studies of disturbance
corridors and found that half reported NIPS movement
into adjacent undisturbed habitat, while the other half
found that NIPS remained only in corridors. NIPS spread
from corridors into adjacent natural systems likely depends on
the nature of the ecosystem, the traits of the invader and the
time since invasion (D’Antonio et al., 2000; Rubino et al.,
2002).

Landscape structure and connectivity also affect gene flow,
influencing the ability of NIPS to adapt to novel conditions
(With, 2004; Taylor & Hastings, 2005). Isolation may be
particularly detrimental at the expanding edge of a population
where allee effects are most common as a result of patchy
dispersal and pollen limitation (Lewis & Kareiva, 1993; Kot
et al., 1996; Keitt et al., 2001; With, 2002; Davis et al.,

2004). Small population size and landscape boundaries that
limit connectivity among satellite populations may ultimately
prevent NIPS spread or increase the lag time between local
establishment and further spread (Lewis & Kareiva, 1993).
Reproductive isolation in spreading populations may also lead
to speciation events as a result of the interaction of a NIPS
genotype with the environment and subsequent adaptation,
or as a result of genetic drift (Lee, 2002).

v. Coexistence at landscape scales Positive correlations between
native and NIPS diversity at landscape scales have sometimes
been used to suggest that native diversity is not an important
barrier to invasion (e.g. Stohlgren et al., 1999). While native
diversity is only a small component of a complex ‘defense
system’ limiting invasion (Fig. 1), the importance of native
diversity can be underestimated at larger scales (Davies et al.,
2005; Smith & Shurin, 2006). Theory predicts that increasing
heterogeneity in resource availability and site conditions
should allow native species and NIPS with different
functional traits, competitive abilities and resource optima to
coexist at the regional metacommunity scale, resulting in high
diversity of both (Grime, 1974; Davies et al., 2005; Smith &
Shurin, 2006; Melbourne et al., 2007). Because resource
levels vary among local sites, one patch may have greater
resistance to invasion while another provides a niche
opportunity to the NIPS (Shea & Chesson, 2002). While
native diversity provides ‘biotic resistance’ at neighborhood
scales, at the landscape or regional scale the correlation
between native and NIPS diversity is merely indicative of high
heterogeneity which promotes diversity of both (Smith &
Shurin, 2006).

For these reasons, the potential impact of NIPS on native
species is more difficult to predict at regional scales (Stachowicz
& Tilman, 2005; Smith & Shurin, 2006). Evidence from
historic biotic exchange events, as well as ongoing NIPS inva-
sions, suggests that diversity almost always increases following
species introductions (Vermeij, 2005; Smith & Shurin, 2006),
especially in island ecosystems (Sax et al., 2002). However,
Smith & Shurin (2006) noted that patterns of species diversity
at regional scales may not reflect the impact of local biotic
interactions between natives and NIPS. Invasions initially
result in reduced local abundance, reproduction or range size
of natives and small changes may not be readily observed
(Levine et al., 2003; Miller & Gorchov, 2004). Melbourne
et al. (2007) suggested that heterogeneity at the scale of the
metacommunity reduces the impact of invasive NIPS on
natives by providing coexistence opportunities not present in
homogeneous environments. However, while native species
may maintain viable populations at regional scales, escape
from extinction may only be temporary (Tilman, 1994;
Harding et al., 2006). Studies documenting declines in beta
diversity (distinctness of species composition between local
sites) suggest that homogenization may be occurring regionally
(Smith & Shurin, 2006).
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III. A case for the four-stage framework: 
forecasting the response of nonindigenous plant 
species to climate change

Addressing invasion in four stages helps to identify the
different processes that affect NIPS success at each stage of
invasion, and provides a conceptual ‘map’ with which to
predict and test the effects of environmental changes on these
filters. Changes in climate and atmospheric CO2 are already
affecting plant communities at local and regional scales
(Dukes, 2000; Weltzin et al., 2003). NIPS have the potential
to benefit if climate change affects the filters that limit
invasion success (Table 3).

Climate change and increasing CO2 are unlikely to directly
alter transport of most NIPS, but may affect patterns of trade
and introduction success. Warming is likely to increase
horticultural imports into regions with cold winters. Similarly,
patterns of transport of agricultural species are likely to
change, and agricultural weeds may ‘hitchhike’ into new
environments. Concerns over climate change may also lead to
the intentional introduction of nonnative crops for biofuel
production. Many potential biofuel species possess similar
traits to established NIPS, suggesting that they could become
invasive (Raghu et al., 2006).

Colonization and survival of NIPS may also change with
changing climate. For many species, decreasing frequencies of
lethal cold temperatures will allow poleward range expansions
(Simberloff, 2000; Kriticos et al., 2003). Conversely, warming

may cause drying and dessication at warmer range margins,
decreasing colonization success (Kriticos et al., 2003; Brooker,
2006). In other cases, increased precipitation and/or increased
plant water-use efficiency (WUE) as a result of higher con-
centrations of atmospheric CO2 may expand the warmer
range boundaries of some species. Kriticos et al. (2003) modeled
the range of an invasive Acacia nilotica under climate change
scenarios and found that warming temperature increased the
range poleward, while higher precipitation and enhanced
WUE expanded the range inland.

Changes in resource availability resulting from climate
change and CO2 enrichment are likely to alter competitive
interactions during NIPS establishment. Potential effects of
elevated CO2 on NIPS establishment are discussed elsewhere
(Dukes, 2000; Weltzin et al., 2003). Increased moisture
resulting from precipitation changes or greater WUE may
favor some NIPS (Dukes & Mooney, 1999), especially in arid
communities and regions with strong seasonal patterns of
precipitation. For example, in years with high rainfall, exotic
annual grasses successfully invaded resource-limited California
serpentine grasslands that had previously repelled NIPS
(Hobbs & Mooney, 1991). Warming would reduce physio-
logical stress on some introduced NIPS. These NIPS might
then compete more effectively with native plants (Dukes &
Mooney, 1999; Shea & Chesson, 2002). Phenological shifts
in the timing of spring leaf-out may also allow certain NIPS
to compete more strongly (Brooker, 2006). Pathogen, mutualist
and herbivore ranges may also shift with unpredicted con-
sequences for NIPS and native plants.

Landscape spread may be influenced by shifts in the ranges
of species. NIPS that could once only survive in gardens or
disturbance corridors may be able to spread into natural areas
if the climate becomes more favorable for their survival and
growth. Plants that cannot shift ranges quickly enough to
maintain populations in suitable climates may decline, while
species that can may expand (Dukes & Mooney, 1999;
Higgins & Richardson, 1999; Simberloff, 2000). Thus, rapid
warming may disproportionately benefit NIPS with traits
such as rapid dispersal, short juvenile periods, high fecundity
and small seed mass (Rejmanek, 1996; Dukes & Mooney,
1999; Simberloff, 2000). Invasive NIPS with fast reproduction,
short life cycles, and high phenotypic plasticity may also
respond to change with rapid genetic or phenotypic adapta-
tion (Dukes & Mooney, 1999; Schweitzer & Larson, 1999).

IV. Conclusion

The four-stage framework acknowledges the multiscale
nature of the NIPS invasion process and attempts to integrate
invasion patterns and the mechanisms underlying these
patterns at the different stages. Future studies that approach
at least two different stages of invasion (e.g. Levine, 2000;
Davies et al., 2005; Knight & Reich, 2005) can provide
excellent insights into invasions. Where possible, we recommend

Table 3 The framework can help categorize consequences of climate 
change that may affect success of invasive plant species (see text for 
details)

Stage
Possible consequences of climate change that affect 
nonindigenous plant species (NIPS)

Transport Horticultural species imported to new areas
Crops imported to new areas (with associated 
weeds?)
New NIPS cultivated as biofuel?
Shifting commercial activities and shipping 
pathways

Colonization Climatic range restrictions will shift
Potential ranges may increase or decrease
Some ornamental species may become weedy
Some invasives may spread from disturbance 
corridors into natural areas
Many invasive species share advantageous traits?
Broad environmental tolerances
Rapid evolution
High phenotypic plasticity

Establishment Shifting resource availability alters competition
Reduced competition from natives?
Range shifts for herbivores, pathogens, mutualists

Spread Invasive NIPS propagules spread to newly suitable 
climatic zones more rapidly than many natives?
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adopting this approach. We also recommend that management
approaches explicitly consider the targeted stage, and enhance
natural filters in order to prevent invasion success (Table 4). It
is likely that managing multiple stages of the invasion process
simultaneously will be most effective.
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