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Abstract

Interest in “green nanotechnology” in nanoparticle biosynthesis is growing among researchers. Nanotechnologies,

due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery,

sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles

(AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further

explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to

100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction,

Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy.

AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied

for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by

phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs

with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
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Introduction

The utilization of nanotechnology for constructing nano-

scale products in research and development divisions is

growing [1]. Nanotechnology can be used to produce a

broad range of products applicable to an equally broad

array of scientific sectors. “Creation,” “exploitation,” and

“synthesis” are terms associated with nanotechnology,

which generally considers materials that measure less than

1 mm. “Nano” is derived from the Greek word “nanos”,

meaning “dwarf, tiny, or very small” [2]. Nanotechnologies

are generally classified as wet, dry, and computational.

Wet nanotechnology is associated with living organisms

such as enzymes, tissues, membranes, and other cellular

components. Dry nanotechnology is associated with phys-

ical chemistry and the production of inorganic items, such

as silicon and carbon. Computational nanotechnology is

associated with simulations of nanometer-sized structures

[3]. These three dimensions (wet, dry, and computational)

depend on each other for optimal functionality, repre-

sented in Fig. 1. Nanotechnology supports diverse unique

industries, such as electronics, pesticides, medicine, and

parasitology, and thus provides a platform for collabor-

ation [4]. Nanobiotechnology provides one such example,

wherein the study and development combine multiple sci-

entific sectors, including nanotechnology, biotechnology,

material science, physics, and chemistry [2, 5].

Biologically synthesized nanoparticles with antimicro-

bial, antioxidant, and anticancer properties are possible

through the collaboration of different natural science

sectors. These nanotechnologies may provide novel re-

sources for the evaluation and development of newer,

safer, and effective drug formulations [6].

Different Modes of Nanoparticle Synthesis

Nanoparticles, which have unique properties due to

their size, distribution, and morphology, are critical

components of any nanotechnology. In the late 1970s,

R.O. Becker et al. used silver particles to treat
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infections caused by microorganisms during the treat-

ment of orthopedic diseases, resulting in faster bone

recovery [7]. At present, varied physical, chemical,

biological, and hybrid methods (Fig. 2) are utilized to

synthesize distinct nanoparticles [8, 9]. The synthesis

of nanoparticles has traditionally relied on two approaches,

physical and chemical. These approaches include ion sput-

tering, solvothermal synthesis, reduction, and sol-gel tech-

niques. Nanoparticle synthesis methods can also be

classified as bottom-up and top-down. Chemical methods

involve the reduction of chemicals [10], electrochemical

procedures [11], and reduction of photochemicals [12].

Plant-based synthesis of nanoparticles is in contrast faster,

safer and lighter; works at low temperatures; and requires

only modest and environmentally safe components [13].

Plant-based nanoparticles have attracted more attention

due to growing interest in environmentally conscious prod-

ucts. In addition, the synthesis of nanoparticles using plants

offers other advantages, such as the utilization of safer sol-

vents, decreased use of dangerous reagents, milder re-

sponse conditions, feasibility, and their adaptability in use

for medicinal, surgical, and pharmaceutical applications.

[14]. Furthermore, physical requirements for their synthe-

sis, including pressure, energy, temperature, and constitu-

ent materials, are trivial.

Nanoparticles made of noble metals have also re-

ceived attention over the last few years, as they can be

used in medicine, biology, material science, physics,

and chemistry [15]. Among the several noble metal

nanoparticles, silver nanoparticles (AgNPs) have

attracted special attention due to their distinct proper-

ties, which include favorable electrical conductivity,

chemical stability, and catalytic and antibacterial activ-

ity [12]. Silver at the nanoscale also has different prop-

erties from bulk silver. Synthesis of AgNPs is an

emerging area and is much sought after [16]. The green

synthesis of AgNPs has been accomplished using

plants, microorganisms, and other biopolymers [12].

Wet chemical synthesis can be robustly scaled for the

large-scale synthesis of AgNPs of tunable shape and

size through optimization of synthesis conditions.

However, wet chemical methods use toxic chemicals,

which are hazardous for the environment and usually

result in the adsorption of toxic chemicals on to the

surface of synthesized AgNPs, making them unsuitable

for biomedical applications. In contrast, physical

methods are expensive and cumbersome for the large-

scale production of nanoparticles. Therefore, the devel-

opment of environmentally conscious, energy-efficient,

facile, and rapid green synthesis methods that avoid

toxic and hazardous chemicals has attracted significant

interest [17]. In addition, due to their potent antimicro-

bial activity, AgNPs have also been used in clothing

[18], foods [19], sunscreens, and cosmetics [20, 21].
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Synthesis of AgNPs

The use of plants for nanoparticle synthesis offers a wide

range of benefits over other biological synthesis methods

because it does not require the maintenance of cell cul-

tures and incorporates support for the large-scale syn-

thesis of nanoparticles [22]. Extracellular nanoparticle

synthesis, which utilizes extracts from individual leafs ra-

ther than entire plants, may prove to be more inexpen-

sive due to easier downstream processing (Fig. 3). Sastry

and his group are responsible for pioneering nanoparti-

cle synthesis using plant extracts [22–27].

Green synthesis of AgNPs using plant extracts con-

taining phytochemical agents has attracted considerable

interest (Table 1). This environmentally friendly ap-

proach is more biocompatible and cost-efficient and in-

cludes the capability of supporting larger synthesis [28,

29]. The synthesis of AgNPs via different “green”

chemico-physical conditions, as well as by numerous mi-

croorganisms, has been heavily investigated. When

AgNPs are chemically synthesized, three main compo-

nents are required: (1) silver salt (e.g., AgNO3), (2) a re-

ducing agent (e.g., NaBH4), and (3) a stabilizing or

capping agent (e.g., polyvinyl alcohol) for controlling the

size of nanoparticles and preventing their aggregation

[30]. AgNPs have applications in wound-healing, eye dis-

ease therapy, DNA processing, and pharmaceuticals in

addition to other relevant mainstream applications: elec-

tronics, optics, catalysis, and Raman scattering [31–35].

Lokini et al. [36] showed that AgNPs could destabilize

the outer membrane and rupture the plasma membrane,

thereby depleting intracellular ATP. Silver has a greater

affinity to react with sulfur or phosphorus-containing

biomolecules in the cell; therefore, sulfur-containing

proteins in the membrane or inside cells and phosphorus-

containing elements like DNA are likely to be preferen-

tial sites for binding AgNPs. The advantages of using

plants for the synthesis of nanoparticles include their

availability, safety in handling, and presence of a vari-

ability of metabolites that may aid in reducing silver.

The time required to reduce 90 % of silver ions is ap-

proximately 2 to 4 h [27]. Gericke and Pinches [37] re-

ported that the size of particles that form intracellularly

could be controlled by altering key factors such as pH,

temperature, substrate concentration, and time of ex-

posure to the substrate.

The biochemical and molecular mechanisms of AgNP

biosynthesis remain poorly characterized and should be

investigated to further optimize the process. For in-

stance, characterization of biochemical mechanisms

underscored the importance of phytochemicals, which

may mediate biosynthesis. Improvements in chemical

composition, size, shape, and dispersity of nanoparticles

would permit the use of nanobiotechnology in a variety

of other applications [38]. Plant crude extracts contain

novel secondary metabolites such as phenolic acid,

flavonoids, alkaloids, and terpenoids, which are mainly

responsible for the reduction of ionic metal into bulk

metallic nanoparticles [39]. Primary and secondary

metabolites are constantly involved in redox reactions

required to synthesize eco-friendly nanoparticles.
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Table 1 Green synthesis of silver nanoparticles using different plant extracts

Plants Plant parts Size (nm) Shape References

Prunus yedoensis Leaf 20–70 Circular, smooth edges [84]

Tephrosia tinctoria Stem 73 Spherical [111]

Grewia flaviscences Leaf 50–70 Spherical [128]

Skimmia laureola Leaf 46 Hexagonal [81]

Clerodendrum serratum Leaf 5–30 Spherical [129]

Averrhoa carambola Leaf 14 Spherical [130]

Rosmarinus officinalis Leaf 10–33 Spherical [85]

Carica papaya Leaf 50–250 Spherical [131]

Plukenetia volubilis Leaf 4–25 Optical [132]

Cucurbita maxima Petals 19 Crystalline [97]

Moringa oleifera Leaf 11 Rectangle [97]

Acorus calamus Rhizome 19 Spherical [97]

Aristolochia indica Leaf 30–55 Spherical or cubical [133]

Euphorbia helioscopia Leaf 2–14 Spherical [134]

Datura metel Leaf 40–60 Spherical [135]

Momordica cymbalaria Fruit 15.5 Spherical [136]

Hypnea musciformis Leaf 40–65 Spherical [137]

Potentilla fulgens Root 10–15 Spherical [29]

Annona muricata Leaf 20–53 Spherical [138]

Justicia adhatoda Leaf 5–50 Spherical [139]

Hemidesmus indicus Leaf 25.24 Spherical [140]

Emblica officinalis Leaf 15 Spherical [141]

Quercus brantii Leaf 6 Spherical and polydispersed [142]

Helicteres isora Root 30–40 Crystalline [143]

Saraca indica Leaf 23 Spherical [144]

Abutilon indicum Leaf 106 Crystalline [145]

Prosopis farcta Leaf 10.8 Spherical [146]

Mukia maderaspatana Leaf 13–34 Spherical [147]

Ficus carica Leaf 21 Crystalline [148]

Sinapis arvensis Seed 14 Spherical [149]

Ziziphus Jujuba Leaf 20–30 Crystalline [65]

Calotropis gigantea Latex 5–30 Spherical [150]

Nelumbo nucifera Root 16.7 Polydispersed [151]

Aerva lanata Leaf 18.62 Spherical [152]

Myrmecodia pendan Whole plant 10–20 Spherical [153]

Piper longum Fruit 46 Spherical [57]

Enteromorpha flexuosa Seaweed 2–32 Circular [154]

Lansium domesticum Fruit 10–30 Spherical [155]

Onosma dichroantha Root 5–65 Spherical [86]

Crataegus douglasii Fruit 29.28 Spherical [156]

Vitex negundo Leaf ≥20 Cubic [69]

Alstonia scholaris Bark 50 Spherical [157]

Lycopersicon esculentum Fruit 10–40 Spherical [158]

Musa balbisiana Leaf 50 Spherical [159]
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Biosynthesis reactions can be modulated to transform

the shape and size of nanoparticles by using different

metal concentrations and amounts of plant extract in

the reaction medium [27, 40].

Capsicum annuum leaf extracts contain a number of

biomolecules, such as proteins, enzymes, polysaccharides,

amino acids, and vitamins, which could act as bioreduc-

tants for metal ions or as scaffolds to direct the formation

of AgNPs in solution. In detail, the mechanism underlying

the bioreduction of silver was hypothesized to first involve

trapping of silver ions on the surface of proteins in the

extract via electrostatic interactions (i.e., recognition

process). Silver ions are then reduced by proteins, leading

to changes in their secondary structure and the formation

of silver nuclei. Silver nuclei subsequently grow by the fur-

ther reduction of silver ions and their accumulation at nu-

clei [41]. Callicarpa maingayi stem methanolic extracts

were used for the synthesis of AgNPs, leading to the for-

mation of [Ag (Callicarpa maingayi)]+ complex. Plant ex-

tracts contain aldehyde groups, which are responsible for

the reduction of silver ions into metallic AgNPs. The dif-

ferent functional group, –C = 0, C =N, indicates amide I

of polypeptides that are responsible for the capping of

ionic substances into metallic nanoparticles. Molecular

studies on the biosynthesis of silver crystals have revealed

a complex process, which is not fully understood yet [42].

Physical Requisites for the Synthesis of AgNPs

Easier, more reliable, and environmentally friendly

methods to synthesize nanoparticles accelerate their

widespread adoption, which would benefit humans and

the environment [43]. Silver disassembles into particles

following the addition of plant extract, which may lead

to a color change. Solutions of AgNPs appear dark,

yellow-brown in color because of the surface plasmon

resonance phenomenon [44]. Gardea-Torresdey et al.

[45] determined the influence of pH on the mass of

nanoparticles when using alfalfa biomass in the biosyn-

thesis of colloidal gold. Mock et al. [46] reached a simi-

lar conclusion that the unique pH conditions of different

extracts affect nanoparticle size and shape. Two extracts

from the same host plant may have a different pH, thus

highlighting the need for better synthesis methods for

nanoparticles. Large nanoparticles are most often

formed only at lower pH values, instead of higher pH

values, as has been previously reported [47, 48]. Dwivedi

and Gopal [49], utilizing extracts of Chenopodium

album, observed trivial variations in zeta potentials of

nanoparticles in pH conditions ranging from 2 to 10 and

determined that nanoparticles were more stable when

exposed to higher pH conditions. Veerasamy et al. [50]

demonstrated that mangosteen extracts induced the nu-

cleation of a cluster of AgNPs at pH values over 4. Fur-

thermore, nanoparticles grew rapidly, with their pH

values ranging from basic to neutral. These results dem-

onstrate the significant impact of pH on parameters of

nanoparticles. The formation and growth of nanoparti-

cles is retarded by acidic conditions, whereas basic

conditions promote nanoparticle assembly. Larger nano-

particles are formed in lower pH conditions (pH 4),

whereas significantly smaller nanoparticles are formed in

higher pH conditions (pH 8). Our results indicate that

the size of nanoparticles decreases when pH increases.

pH values in the range of 2–14 play an important role in

the synthesis of AgNPs. In plants, AgNP synthesis oc-

curs at various pH values depending on the plant species

[50]. However, previous studies have indicated that neu-

tral pH is optimal for AgNP synthesis. At this pH, little

or no assembly of AgNPs into particles of suitable size

and shape occurs [51].

Newly synthesized AgNPs, formed within 60 min of

incubation with leaf extracts of Eucalyptus chapmani-

ana, exhibited a UV-Vis peak at 413 nm [52]. The UV-

Vis spectra of AgNPs, synthesized with leaf extracts of

Desmodium gangeticum for an optimum incubation time

of 90 min, exhibited a peak at 450 nm [53]. Vilchis-

Nestor et al. [54] demonstrated a UV-Vis peak at

436 nm for AgNPs formed within 4 h of incubation with

Camellia sinensis extracts. Chandran et al. [27] synthe-

sized AgNPs with leaf extracts of Aloe vera incubated

for 24 h, which exhibited a UV-Vis peak at 410 nm. UV-

Vis absorption spectra reach a maximum when the

Table 1 Green synthesis of silver nanoparticles using different plant extracts (Continued)

Azadirachta indica Leaf 20 Triangular [159]

Ocimum tenuiflorum Leaf 50 Cuboidal [159]

Artocarpus heterophyllus Seed 10.78 Spherical and irregular [71]

Cocos nucifera Coir 22 Spherical [160]

Eucalyptus chapmaniana Leaf 60 Spherical [52]

Morinda citrifolia Root 30–55 Spherical [161]

Thuja occidentalis Whole plant 122 Spherical [162]

Hydrastis canadensis Whole plant 111 Spherical [162]

Phytolacca decandra Whole plant 90.87 Spherical [162]
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synthesis of nanoparticles (NPs) is complete, which re-

quires sufficient time for the nucleation and subsequent

stabilization of nanoparticles. Song and colleagues syn-

thesized stable AgNPs extracellularly, with average par-

ticle sizes ranging from 15 to 500 nm, with Pinus

densiflora, Diospyros kaki, Ginkgo biloba, Magnolia

kobus, and Platanus orientalis leaf extracts. The rate of

synthesis and final conversion to AgNPs was faster with

higher reaction temperatures. However, average particle

sizes of nanoparticles produced with D. kaki leaf extracts

decreased from 50 to 16 nm when the temperature of

synthesis was increased from 25 to 95 °C [16]. Ocimum

sanctum leaf extracts could reduce silver ions into crys-

talline AgNPs (4–30 nm) within 8 min of the reaction.

These nanoparticles were likely stable due to the pres-

ence of proteins, which may act as capping agents. O.

sanctum leaves contain ascorbic acid which was likely

important for the reduction of silver ions into metallic

AgNPs [55].

Monodisperse spherical AgNPs (~3 nm) were also syn-

thesized using gum kondagogu (nontoxic polysaccharide

derived as an exudate from the bark of Cochlospermum

gossypium) [56].

Characterization of Synthesized AgNPs

The synthesis of AgNPs using a 5:1 ratio of fruit extracts

of Piper longum was evident by a change in the color of

1 mM AgNO3 solution from colorless to brownish-

yellow, which resulted in a peak at 430 nm in UV-Vis

spectra [57]. Aqueous leaf extracts of Manilkara zapota

were used to synthesize AgNPs, which exhibited XRD

with 2θ values of 38.06°, 44.37°, 64.51°, and 77.31° sets of

lattice planes, which may be indexed to the (111), (200),

(220), and (311) face-centered cubic (fcc) structure of sil-

ver, respectively [58].

Fourier transform infrared (FTIR) spectroscopy, which

is used to evaluate chemical bonds in surface atoms and

functional atoms on the surface of nanoparticles, can be

used to characterize physical properties of nanomaterials

and their functions [59, 60]. Certain proteins and metab-

olites, such as terpenoids or flavonoids that are present

in leaf extracts of Prosopis juliflora, may be responsible

for the decay and pause of AgNPs synthesis [61]. The

FTIR spectra of AgNPs synthesized using either fresh or

dried Codium capitatum extracts exhibited a strong

transmission band at 1535 cm−1 corresponding to the

bending vibration of secondary amines of proteins. The

FTIR peak at 1637 cm−1 for AgNPs synthesized using

Andrographis paniculata extracts can be attributed to

the carbonyl stretch of amides and could be related to

proteins that potentially cap AgNPs [62]. In C. annuum

extracts, the formation of AgNPs is mediated by amine

groups or the secondary structure of proteins [63].

The hydroxyl and carbonyl groups present in carbohy-

drates, flavonoids, terpenoids, and phenolic compounds

are powerful reducing agents that may be responsible

for the bioreduction of Ag+ ions necessary for AgNP

synthesis. FTIR studies confirm that the carbonyl groups

of amino acids and peptides of proteins have a strong af-

finity to bind metal ions, and they may encapsulate

nanoparticles, forming a protective coat-like shell that

prevents their further aggregation and leading to their

stabilization in the medium [64].

A single-step method (biogenic) for the synthesis of

AgNPs utilizes Ziziphus jujuba leaf extract as a redu-

cing and stabilizing agent at room temperature. TEM

images revealed nanoparticles featuring differing

shapes and sizes, averaging 25 nm. These results were

confirmed by DLS analysis, which revealed a hydro-

dynamic radius of 28 nm [65]. Environmentally

friendly synthesis of AgNPs, which utilized Argemone

mexicana leaf extracts and were 20 nm in size, had

antimicrobial and antifungal activity against multiple

bacterial and fungal pathogens [66]. Extracts from the

Cycas leaf were utilized to prepare AgNPs measuring

2–6 nm [67]. AgNPs, measuring 14 nm and synthe-

sized using Solanum torvum extracts, exhibited a peak

at 434 nm in UV-Vis spectra. Using EDX analysis,

Arunachalam et al. [28] showed that AgNPs were crys-

talline in nature and observed strong signal energy

peaks for silver atoms in the range of 2–4 keV with

weaker signals for carbon, oxygen, and chloride, which

are prevalent biomolecules in Memecylon umbellatum.

The size, shape, and size distribution of nanoparticles

were observed by TEM and selected area electron dif-

fraction (SAED) patterns of TEM images [68]. The

crystalline nature of AgNPs was determined by SAED,

which revealed fcc silver.

A facile biosynthesis method utilizing methanolic

extracts of Vitex negundo, which can be performed at

room temperature, was used to successfully synthesize

spherical colloidal AgNPs of different sizes, although

it required different reaction times. The sizes of col-

loidal AgNPs prepared for 6, 24, and 48 h averaged

10.11 ± 3.98, 12.80 ± 4.97, and 18.23 ± 8.85 nm, re-

spectively [69]. The morphology and size of AgNPs

synthesized using Pulicaria glutinosa extracts were

examined by TEM, which revealed monodisperse

spherical nanoparticles between 40 and 60 nm [70].

AgNPs synthesized using seed extracts of Artocarpus

heterophyllus exhibited variance in their size, ranging

from 3 to 25 nm with an average of 10.78 nm [71].

AgNPs fabricated using Boerhaavia diffusa leaf ex-

tracts as the nontoxic reducing agent and examined

by TEM revealed AgNPs that were fcc structures of

spherical shape and an average particle size of

25 nm [72].
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Biomedical Applications of AgNPs

Antimicrobial Activity of AgNPs

The threat posed by the potential outbreak of antibiotic-

resistant microbes is growing globally and demands the

introduction and production of novel more advanced

platforms for the study and development of more potent

antimicrobial agents against multidrug-resistant strains

[73]. The antimicrobial activity of AgNPs is widely rec-

ognized, though their activity can change with physical

characteristics of the nanoparticle, such as its shape,

mass, size, and composition, and conditions of its syn-

thesis, such as by pH, ions, and macromolecules [74].

Their shapes can be relevant to their antibacterial activ-

ity [75]. Compared to larger AgNPs, smaller AgNPs have

a greater binding surface and show more bactericidal ac-

tivity [76]. Variation in the thickness and molecular

composition of the membrane structures of gram-

positive and gram-negative bacteria account for the dif-

ference in their sensitivities to AgNPs [77]. Bactericidal

activity is presumably due to changes in the structure of

the bacterial cell wall as a result of interactions with em-

bedded AgNPs, leading to increased membrane perme-

ability and consequently death [78]. AgNPs also interact

with sulfur- and phosphorus-rich biomaterials, which in-

clude intracellular components, such as proteins or

DNA, and extracellular components such as membrane

proteins. These components influence the respiration,

division, and ultimately survival of cells [79]. Upon com-

promising the bacterial cell wall, silver ions (as part of

AgNPs) can enter into cells, leading to the accumulation

of damaged DNA and effect on protein synthesis [80].

AgNPs synthesized with Skimmia laureola leaf ex-

tracts have antibacterial activity, with maximum growth

inhibition activity against Staphylococcus aureus

(14.67 mM), followed by Klebsiella pneumoniae, Pseudo-

monas aeruginosa (14.33 mM), and Escherichia coli

(11.67 mM) [81]. AgNPs synthesized with mangrove

plant Avicennia marina extracts exhibited highest inhib-

ition activity against E. coli (18.40 ± 0.97 mM) and lowest

against S. aureus (10.87 ± 1.33 mM). Its minimum in-

hibitory concentration (MIC) and minimum bactericidal

concentration (MBC) were 0.25 and 50.0 μg/mL, re-

spectively, against select bacteria [82]. Sankar et al. [83]

synthesized AgNPs with extracts of oregano (Origanum

vulgare), which exhibited antimicrobial activity against

human pathogens, including Escherichia coli, Aeromonas

hydrophila, Salmonella spp., Shigella dysenteriae, Sal-

monella paratyphi, and Shigella sonnei. Furthermore,

AgNPs were cytotoxic to human lung cancer lines (A549

cells), which killed 50 % of cells at 100 μg/mL. Sathish-

kumar et al. [84] evaluated the bactericidal activity of

AgNPs synthesized with Morinda citrifolia leaf extracts

against a wide range of human pathogens, such as

Escherichia coli, Pseudomonas aeruginosa, Klebsiella

pneumoniae, Enterobacter aerogenes (gram-negative),

Bacillus cereus, and Enterococcus sp. (gram-positive). The

antibacterial activity of AgNPs synthesized with Rosmarinus

officinalis extracts was tested against gram-positive bacteria,

and the maximum zones of inhibition at dosages of 20, 40,

and 80 mg/disk were 21.52, 30, and 31.2 mm, respectively,

against S. aureus and 13.4, 15.63, and 16.21 mm, re-

spectively, against Bacillus subtilis [85]. The antimicro-

bial activity of the medicinal plant Onosma dichroantha

and antimicrobial activity of silver chloride nanoparti-

cles suggest a novel approach to the development of

bactericides applicable to a wide range of applications,

such as the treatment of burn wounds and injuries [86].

AgNPs synthesized with Prunus yedoensis leaf extracts

exhibited significant antibacterial activity against two

skin pathogens, Propionibacterium acnes and Staphylo-

coccus epidermidis. Exhibited zone of inhibition (ZOI)

sustained greater levels of AgNPs (30 μg) after 48 h of

inhibition against two gram-positive bacteria; further-

more, tetracycline sulfate at volume of 100 μg/mL was

evaluated [87]. AgNPs synthesized with O. vulgare leaf

extracts have broad-spectrum antibacterial activity

against nine different human pathogens. Greater than

10-mm zones of inhibition were observed against

Escherichia coli (enteropathogenic, EP), Aeromonas

hydrophila, Salmonella paratyphi, Salmonella sp., Shi-

gella dysenteriae, and Shigella sonnei. This level of anti-

bacterial activity was comparable to the standard

antibiotic chloramphenicol [83]. Saxena et al. [88] syn-

thesized AgNPs using Ficus benghalensis leaf extracts,

and its bactericidal activity against E. coli was evaluated

by the broth microdilution method. The bactericidal ac-

tivity of AgNPs synthesized with B. diffusa plant extracts

was evaluated against three fish bacterial pathogens,

Aeromonas hydrophila, Pseudomonas fluorescens, and

Flavobacterium branchiophilum. Of these, F. branchio-

philum was more sensitive to AgNPs, and the other two

pathogens were equally sensitive [72]. Tripathi et al. [89]

evaluated bactericidal activity of silver nanoballs at a

concentration of 40 μg/mL against Escherichia coli, Sal-

monella typhimurium, Bacillus subtilis, and Pseudo-

monas aeruginosa by measuring colony-forming units

(CFU). Silver nanoballs prevented the growth of bacteria

and induced toxicity.

AgNPs, which are filled with polyphenolic compounds,

disrupt the cell walls of bacteria, which make gram-

negative bacteria specifically sensitive. Polyphenolic

compounds generate free radicals and other oxygen-

based reactive species, which can induce considerable

damage and toxicity [75]. Other damages may result as

membranes become disrupted, including the widespread

loss of K+ ions, leading to a decrease in membrane po-

tential. Significant membrane disruption results in cyto-

plasmic leakage, which includes the discharge of
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proteins and lipopolysaccharide molecules. The outer

membrane of bacteria is composed of lipopolysaccha-

rides and is fundamentally asymmetric, while the inner

membrane comprises tight chains of phospholipids,

which are semi-permeable [75]. The exact mechanism of

interaction between AgNPs and bacteria is not fully

understood. AgNPs may attach to the cell wall and thus

disrupt membrane permeability and ultimately cell res-

piration. AgNPs can also directly penetrate into cells

since they may bind to cell wall proteins that contain

sulfur and phosphorus-containing biomolecules such as

DNA [90, 91]. Thus, they can easily bind to constituents

of the bacterial cell and disturb normal functions of the

cell. Another possible mechanism is the release of Ag

cations, which are antibacterial, from AgNPs [92].

AgNPs in Cancer Control

AgNPs perform well as cancer therapeutics because they

can disrupt the mitochondrial respiratory chain, which

induces the generation of reactive oxygen species (ROS),

and ATP synthesis, which can induce DNA damage [93,

94]. AgNPs synthesized with Sesbania grandiflora leaf

extracts were demonstrated to be cytotoxic to MCF-7

cancer cells. Morphological characteristics, including the

disruption of membrane integrity, decreased cell growth,

cytoplasmic condensation, and cell clumping, were ob-

served in MCF-7 cells treated with AgNPs, whereas con-

trol cells remained active. In addition, apoptotic features,

such as cell shrinkage and nuclear condensation and

fragmentation, were also observed in MCF-7 tumor cells

48 h after treatment with 20 μg/mL of AgNPs. AgNPs

synthesized with S. grandiflora extracts induced the gen-

eration of free radicals, which resulted in oxidative dam-

age and caspase-mediated apoptosis [95].

AgNPs synthesized with Guignardia mangiferae ex-

tracts exhibited potent antifungal activity against plant

pathogenic fungi. IC50 values of AgNPs were 63.37,

27.54, and 23.84 μg/mL against normal African monkey

kidney (Vero), HeLa (cervical), and MCF-7 (breast) cells,

respectively, after a 24-h incubation period. Thus,

AgNPs synthesized with G. mangiferae extracts are

highly biocompatible, have potentially wider applicabil-

ity, and should be explored as promising candidates for

a variety of biomedical/pharmaceutical and agricultural

applications [96]. AgNPs were synthesized using extracts

from different plant origins: Cucurbita maxima (petals),

Moringa oleifera (leaves), and Acorus calamus (rhizome).

Among the three synthesized nanoparticles, AgNPs syn-

thesized with A. calamus rhizome extracts had enhanced

antimicrobial and anticancer activity, which were evalu-

ated through MTT assays against epidermoid A431 car-

cinoma cells. AgNPs synthesized with A. calamus

rhizome extracts were superior to AgNPs generated with

petal and leaf extracts in their antimicrobial and

anticancer activities [97]. Both treated (synthesized) and

untreated AgNPs induced DNA fragmentation at all

concentrations [98]. Compared to untreated cells, cells

treated with AgNPs synthesized using Phytolacca decan-

dra, Hydrastis canadensis, Gelsemium sempervirens, and

Thuja occidentalis extracts exhibited DNA laddering,

confirming the apoptotic effects of nanoparticles. Specif-

ically, AgNPs synthesized using P. decandra and G. sem-

pervirens extracts effectively induced DNA laddering

compared to AgNPs synthesized using H. canadensis

and T. occidentalis extracts [98].

The IC50 values of AgNPs synthesized using Potentilla

fulgens extracts were 4.91 and 8.23 μg/mL in MCF-7 and

U-87 cell lines, respectively. Furthermore, the cytotoxic

effects of nanoparticles were evaluated against cancerous

and normal cells using trypan blue assay and flow cyto-

metric analysis. In contrast to their effect on normal

cells, nanoparticles are capable of impairing or killing

cancerous cells [29]. AgNPs synthesized with Coleus

amboinicus extracts were cytotoxic to EAC cell lines.

AgNPs induced 50 and 70 % cytotoxicity at 30 and

50 μg/mL, respectively, indicating concentration-

dependent cytotoxicity [99]. AgNPs synthesized with al-

coholic flower extracts of Nyctanthes arbor-tristis can be

used for molecular imaging and drug delivery. Even at

the highest concentration tested (250 μg/mL), AgNPs

were only marginally toxic to L929 cells [100]. The anti-

cancer activity of AgNPs synthesized with unripe fruits

of Solanum trilobatum against a human breast cancer

cell line (MCF-7) was evaluated in vitro using MTT as-

says, nuclear morphological characteristics, and RT-PCR

and western blot analyses. MCF-7 cells treated with ei-

ther AgNPs or cisplatin exhibited decreased Bcl-2 ex-

pression and increased Bax expression, indicating the

involvement of mitochondria in the mechanism of death

induced by AgNPs [101].

Mitochondria function as critical centers of signaling;

their integrity can be compromised by various regulators

of apoptosis [102, 103]. The generation of ROS by

AgNPs may also require mitochondria, which may initi-

ate intrinsic caspase-dependent apoptotic pathways lead-

ing to cell death. Nanoparticles synthesized with Rosa

indica extracts have the potential to be used in a wide

range of therapeutic anticancer applications. AgNPs syn-

thesized with green petals of R. indica act as radical

scavengers and induce apoptosis in HCT-15 cells and

the generation of ROS [104].

Antioxidant Activity of AgNPs

AgNPs synthesized using Leptadenia reticulata leaf ex-

tracts, at a concentration of 500 μg/mL, have the highest

recorded radical scavenging activity of 64.81 % [105].

Plant extracts promote DPPH radical scavenging activity

of AgNPs, which is dose dependent. The ability of
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antioxidants to scavenge DPPH radicals is likely due to

their ability to donate hydrogens and easily incorporate

electrons; the latter is possible due to the presence of

host lipophilic radicals. A change of color from purple to

yellow was observed at 517 nm [106]. The DPPH radical

scavenging activity of HAuCl4 and AgNO3 was trivial

compared to nanoparticles, which may be due to salt

conditions or weaker solubility of metal oxides [107].

A sophisticated reaction can be observed between

phenolic compounds and phosphotungstic and phospho-

molybdic acids in Folin-Ciocalteu reagents [108]. Phen-

olic compounds present in plant extracts exhibited high

antioxidant and reduction activities, which are important

for the synthesis of AgNPs [109]. The higher total phen-

olic content of Eclipta prostrata leaf extracts supports

the assembly of silver ions into smaller AgNPs, because

of the donation of electrons by these compounds [110].

Antidiabetic Activity of AgNPs

The ability of AgNPs synthesized using stem extracts of

Tephrosia tinctoria to control blood sugar levels was

evaluated. AgNPs scavenged free radicals, decreased

levels of enzymes that catalyze the hydrolysis of complex

carbohydrates (α-glucosidase and α-amylase), and in-

creased the consumption rate of glucose [111]. Due to

the adverse effects of methylene blue (MB) on the envir-

onment, the removal of MB from wastewater is an im-

portant area of research and a key challenge for

researchers. AgNPs synthesized with aqueous stem ex-

tracts of Salvadora persica were able to degrade MB in a

light-dependent manner; by converting hazardous mate-

rials into nonhazardous ones, AgNPs potentially have

significant applications in water purification [112]. MB

exhibits characteristic absorption peaks at 663 and

614 nm, which were used to monitor the photo-

degradation of MB. Higher concentrations induce the

aggregation of AgNPs, leading to an increase in particle

size and a decrease in specific surface area and surface

active sites of particles [113]. The most effective concen-

tration of AgNPs for the photo-degradation of MB was

8 mg.

Different Field Applications of AgNPs

Nanotechnology applications are highly suited for bio-

logical molecules because of their unique properties.

Nanotechnology is a growing area of research in the

fields of material science and biological science [114].

Silver nanoparticles have attracted the attention of re-

searchers because of their broad applications in diverse

areas, such as integrated circuits [115], sensors [116],

biolabeling, filters, antimicrobial deodorant fibers [117],

cell electrodes [43], low-cost paper batteries (silver

nano-wires) [118], and antimicrobials [119]. AgNPs have

been used extensively as antimicrobial agents in the

health industry, food storage, textile coatings, and a

number of environmental applications [120], few of

which are shown in Fig. 4. Antimicrobial properties of

AgNPs are beneficial for different fields of medicine,

various industries, animal husbandry, packaging, acces-

sories, cosmetics, health, and the military. In general,

therapeutic effects of silver particles (in suspension) de-

pend on different parameters, including particle size

(surface area and energy), particle shape (catalytic activ-

ity), particle concentration (therapeutic index), and par-

ticle charge (oligodynamic quality) [121].

The viability of A549 cells treated for 6 h with 10 and

50 μg/mL of AgNPs synthesized with Albizia adianthi-

folia leaf extracts was 21 and 73 %, respectively, and

that of normal peripheral lymphocytes was 117 and

109 %, respectively, indicating that AgNPs are nontoxic

to normal PLs cells [122]. AgNPs synthesized with Indi-

gofera aspalathoides extracts were tested in wound-

Fig. 3 Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications
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healing applications following excision in animal

models [28]. AgNPs synthesized with Chrysanthemum

morifolium extracts were added to clinical ultrasound

gels, which are used with an ultrasound probe, and

were found to have bactericidal activity, contributing to

the sterility of the instrument [123]. AgNPs synthesized

with M. zapota leaf extracts exhibited acaricidal activity

against Rhipicephalus (Boophilus) microplus (LC50 =

3.44 mg/L) [58]. The IC50 values of AgNPs synthesized

using aqueous extracts of Ashoka or neem leaves

against Plasmodium falciparum were 8 and 30 μg/mL,

respectively [124]. Appreciable larvicidal activity of

AgNPs synthesized with aqueous extracts of E. pros-

trata was observed against Anopheles subpictus and

Culex tritaeniorhynchus [125]. The population of bac-

teria decreased after 6 h when 10 mg of AgNPs synthe-

sized using P. juliflora leaf extracts was used to treat

100 mL of sewage and increased over time [56]. AgNPs

synthesized with Acacia nilotica pod extracts were used

to treat glassy carbon electrodes, which exhibited

greater catalytic activity in reducing benzyl chloride

than glassy carbon and metallic Ag electrodes [126].

AgNPs synthesized using Gloriosa superba extracts act

through the electron relay effect and influence the deg-

radation of MB after 30 min [127].

Conclusions

In summary, silver nanoparticles (AgNPs) exhibit re-

markable physical, mixture, optical, and natural proper-

ties compared to other biomedical nanomaterials, which

make them ideal in various stages of diverse biomedical

applications. Nanoparticles synthesized with plant con-

centrates have yielded promising results in biomedical

applications. Comprehensive examination further con-

templated that repercussions of nanoparticles give essen-

tially the same number of preferences and purposes of

enthusiasm for remedial applications in examination to

standard medicines and antidotes to poisons. The use of

AgNPs in medicinal transport systems may also be uti-

lized in the future in the field of arrangement. AgNPs

have the potential to function as therapeutics with di-

verse clinical and pharmacological properties. They may

be used in broad applications, including as anticancer

agents or bactericidal agents during surgery or recovery.

In this way, the green synthesis of AgNPs as novel re-

medial authorities will be significant in various biomed-

ical applications. Notwithstanding their potential in

restorative applications, the impact of AgNPs on human

welfare (both positive and negative) should be com-

pletely considered before their widespread use. The

adaptability of manufacturing techniques for AgNPs and

their easy reconstitution into distinct media have

prompted further research into the hypothetical impact

of nanoparticles as antimicrobial, antiviral, and mitigat-

ing agents. The shape, size, and size distribution of

AgNPs can be controlled by modifying synthesis condi-

tions, such as with specialists, stabilizers, or distinct en-

gineering techniques. The productive translation of

silver into nanotechnology applications requires safe,

creative, and eco-conscious strategies and greater con-

trol over their biodistribution and pharmacokinetics in

clinical applications.
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