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Plant metabolomics:  
A new frontier in phytochemical analysis

The primary and secondary metabolites found in plant cells are the final recipients of biological information 
flow. In turn, their levels can influence gene expression and protein stability. Qualitative and quantitative 
measurements of these metabolites reflect the cellular state under defined conditions, and yield critical insights 
into the cellular processes that control the biochemical phenotype of the cell, tissue or whole organism. 
Metabolomics differs from traditional targeted phytochemical analysis in various fundamental aspects; for 
example, it is a data-driven approach with predictive power that aims to assess all measurable metabolites 
without any pre-conception or pre-selection. As such, metabolomics is providing new dimensions in the 
study of systems biology, enabling the in-depth understanding of the intra- and extracellular interactions of 
plant cells. Metabolomics is also developing into a valuable tool that can be used to monitor and assess 
gene function, and to characterise post-genomic processes from a broad perspective. Here, we give an 
overview of the fundamental analytical technologies and subsequent multivariate data analyses involved in 
plant metabolomics as a research tool to study various aspects of plant biology. 

Introduction
An organism is an expression of its underlying molecular composition that reacts and responds to a variety of 
intra-, inter- and extracellular stimuli. Whereas genes and proteins are mostly involved in storing and unfolding 
information needed for actualisation of cellular functional processes, metabolite patterns reveal the actual dynamic 
cellular environment.1 In plants, the metabolome is a compilation of all primary and secondary metabolites, and 
can be regarded as the final recipient of genetic information (Figure 1) where levels of individual metabolites can 
influence gene expression, protein stability and metabolic fluxes.2–5 These constituents of the metabolome have a 
wide range of physiological roles in plants such as participating in basic functions of the living cell, contributing to 
cellular structural integrity, acting as mobile inter- and intracellular signals, and being involved in passive and active 
defence responses in plant cells.2,6,7 Hence, qualitative and quantitative measurements of intracellular metabolites 
yield critical insights into the cellular processes that control the biochemical phenotype of the cell, tissue or 
whole organism.1,8,9 

Metabolomics and systems biology
Metabolomics developed from metabolic profiling and is the most recent of the ‘-omics’ approaches to emerge. 
The word ‘metabolome’ was first suggested in 1998 by Stephen Oliver (University of Manchester, UK) to designate 
the set of all low molecular mass compounds synthesised by an organism. In 2002, Oliver Fiehn (Max Plank 
Institute, Golm, Germany) introduced the word ‘metabolomics’ to designate a comprehensive analysis in which all 
the metabolites of an organism were supposed to be identified and quantified.4 Metabolomics is generally defined 
as a holistic qualitative and quantitative analysis of all metabolites present within a biological system under specific 
conditions.1,3,8,9 It differs from the classical or traditional targeted phytochemical analysis in various fundamental 
aspects, such as being a data-driven approach with predictive power that aims to assess all measurable metabolites 
without any pre-conception or pre-selection. In order to attain this goal, advanced analytical tools that provide high 
degrees of sensitivity, selectivity and reproducibility are required.5,9–11 

Metabolomics has become a valuable tool for advancing our understanding of primary and secondary metabolism 
in plants and is revolutionising the field of plant biology.12 It is viewed as a complementary technique to other 
functional genomics approaches such as transcriptomics and proteomics. Furthermore, metabolomics is a 
cornerstone in the integration of the ‘-omics’ technologies that contribute to a systems biology overview.13 As such, 
it assists in providing a holistic understanding of the organisation principle of cellular functions at different levels, 
and in providing ways of monitoring all biological processes operating as an integrated system.1,4,6,14 Moreover, 
metabolomics as a post-genomics tool is often regarded as offering distinct advantages when compared to other 
‘-omics’ technologies. This point of view is based on the fact that changes in the transcriptome or proteome do not 
always correlate to biochemical phenotypes.1,11,15,16

Metabolomic approaches, on the other hand, monitor the ultimate products of gene expression – the metabolites 
– thus providing a phenotypic assessment of a biological system. Metabolites are organic compounds that may 
not be directly encoded in the genome, and their biosynthesis often involves a diversity of enzymes. Furthermore, 
metabolites are stoichiometrically interrelated, which results in more complex metabolic networks that do not 
exist in the case of transcripts or proteins. Thus, metabolomic strategies may actually offer the most valuable and 
functional information that is crucial in systems biology studies.1,4,6,13,17 

All metabolomic analyses are a snapshot (or a point-in-time chemistry) of a biological system (cell, tissue 
or whole organism), showing which metabolites are present and their levels at a given time point and under 
specific physiological conditions.3,9,11,14,18 Different metabolomic strategies have thus been developed for different 
applications, and are presented in Table 1.9,18–20
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Figure 1: Biological information flow from genome to metabolome. 
The metabolome is complementary to the transcriptome 
and proteome, captures the functional or physiological 
state of the cell, and provides a link between genotypes and 
phenotypes. Altered gene expression is ultimately reflected in 
changes in the pattern and/or concentration of metabolites. 
There are an estimated 200 000 plant metabolites and many 
remain unknown.4

The workflow for plant metabolomic analysis
Plant metabolomes can be very diverse. Because of the complexity 
and divergent physicochemical properties of the cellular metabolome, 
a combination of two or more metabolomic strategies (outlined in Table 
1) may be considered to achieve a comprehensive coverage of the 
plant metabolome. Furthermore, in any metabolomic approach, a broad 
metabolic picture is achieved through the combination of multiparallel 

and complementary analytical systems, including the use of various 
extraction protocols.5,6,9,18,21

A metabolomic analysis comprises three main experimental stages: (1) 
preparation of the sample, (2) acquisition of the data using analytical 
methods and (3) data mining using chemometric methods followed by 
compound identification. These steps are crucially interrelated, and as 
illustrated in Figure 2, may each consist of a series of sub-steps. The 
resulting analysed data from the various experimental phases form the 
basis for meaningful biochemical interpretation.15,22

Sample preparation is a critical step in transforming the sample into a 
solution that can be analysed to make a vital contribution in defining the 
array of metabolite classes to be covered. This step involves a series 
of different experimental stages: selection and harvesting of samples, 
drying or enzyme quenching procedures, extraction of metabolites and 
preparation of the samples for analysis. The selection of plant material 
depends mainly on the biological question that the researcher seeks to 
investigate.22,23 Throughout this step, care must be taken to avoid the 
introduction of any form of unwanted variability that would significantly 
affect the outcome of the analysis. Sample degradation (thermal, 
oxidative or enzymological) and contamination are major factors leading 
to variations during this step.8,10,24 Various enzyme quenching methods 
include drying, treatment with acid, use of enzyme inhibitors or high 
concentrations of organic solvents.4,22 

Plant metabolites are structurally diverse, forming a highly complex 
spectrum of compounds of different size, solubility, volatility, polarity, 
quantity and stability.1,19,25–27 Any extraction method would certainly 
produce an inherently multidimensional sample arising from the 
chemical and physical differences of the constituents.28,29 Several 
methods may be employed to extract metabolites; the choice of method 
depends on a variety of factors, such as the physicochemical properties 
of the target metabolites, the biochemical composition of the system 
under investigation and the properties of the solvent to be used. Some of 
the common extraction methods include solvent extraction, supercritical 
fluid extraction, sonication and solid phase extraction. However, no 
comprehensive extraction technique exists for the recovery of all classes 
of compounds with high reproducibility and robustness. Thus, for a 
comprehensive coverage of different classes of metabolites, extraction 
methods may be used in combination.5,10,18,19,22

Data acquisition (sample analysis) follows the sample preparation step 
and requires advanced analytical techniques as the ultracomplexity 
of samples for metabolomic analysis makes it impossible to 
technologically separate, quantify and identify every metabolite within 
a biological sample.1,9 A range of analytical platforms are employed in 
metabolomic studies (separately or in combination), and each platform 
has its own advantages and limitations, either in selectivity or sensitivity 
(Table 2). The choice of the analytical platform depends mainly on the 

Table 1: Strategies for metabolomic analysis

Term Description

Metabolomics Holistic quantification and identification of all metabolites within an organism or a biological system, under a given set of 
conditions. This state is currently unrealisable, with any single or combination of metabolomic approaches.

Metabonomics This term is normally used in non-plant systems and generally refers to the quantitative detection of endogenous metabolites 
that are dynamically altered within a living system in response to pathophysiological stimuli or genetic modification. Tissues and 
biofluids are commonly used for these analyses.

Metabolic/Metabolite profiling The identification and quantification of metabolites related through their metabolic pathway(s) or similarities in their chemistry.

Targeted metabolite analysis or 
metabolite target analysis

Qualitative and quantitative analysis of one or a few pre-defined metabolites related to a specific metabolic reaction. Such an 
approach relies on optimised metabolite extraction, separation and detection.

Metabolite fingerprinting Rapid and high-throughput methods where global metabolite profiles are obtained from crude samples or simple cellular 
extracts. In general, metabolites are neither quantified nor identified.

Metabolite footprinting The measurement of metabolites secreted from the intracellular complement of an organism (or biological system) into its 
extracellular medium or matrix. This approach is commonly used in microbial metabolomics.
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study at hand, taking into consideration the class of compounds, their 
chemical and physical properties, and their concentration levels. As 
such, the techniques most often used are nuclear magnetic resonance 
spectroscopy3,5,30 and chromatography coupled to MS.9,31 

Sample Preparation

Data Acquisition:              Sample analysis

Data Mining / Data Analysis

Harvesting, drying, enzyme quenching, extraction

(Preparation for analysis)

Data pre-processing (filtering, time alignment)

Data pre-treatment
(missing values, normalisation, scaling)

Statistical modelling (multivariate and univariate analysis:
algorithm selection, cross validation, model examination)

Peak annotation: Compund Identification

MS-based NMR-based

LC-MSGC-MS GCxGC-MS

Biochemical  
Interpretation

MS, mass spectrometry; NMR, nuclear magnetic resonance; GC, gas chromatography; LC, 
liquid chromatography.

Figure 2: Flowchart for plant metabolomic studies. The three main 
steps of a metabolomic analysis are sample preparation, 
data acquisition and data mining. A data handling 
pipeline is established from data acquisition to data 
mining. These three steps are interrelated and lead to the 
biochemical interpretations.22

Analytical platforms employed in metabolomics
A range of analytical technologies may be used in metabolomics, 
including gas chromatography-mass spectrometry (GC-MS), capillary 
electrophoresis-mass spectrometry (CE-MS), liquid chromatography-
mass spectrometry (LC-MS), liquid chromatography-electrochemistry-
mass spectrometry (LC-EC-MS), nuclear magnetic resonance (NMR) 
spectroscopy, LC-NMR, direct infusion mass spectrometry (DIMS), and 
Fourier-transform infrared (FT-IR)- and Raman spectroscopies.8,10,14,31,32 
Of these, chromatography-mass spectrometry (GC-MS and LC-MS) and 
NMR are the most widely applied.4,5,30,31 

The use of NMR-based fingerprinting marked the beginning of 
metabolomics as a tool in biochemistry and phytochemical analysis.19 
It is an unbiased, rapid, non-destructive technique that requires little 
sample preparation and thus lessens the chance of sample loss or the 
introduction of variability into the preparation.30 In an NMR analysis, 
there is no analyte separation process involved (as is the case in 
chromatographic analyses); NMR can thus provide selectivity without 
separation, is independent of analyte polarity, and does not require 
sample derivatisation prior to analysis. The magnetic properties of 
paramagnetic (e.g. 1H and 13C) nuclei allow for a powerful tool for 
observing the environments of such nuclei bonded all over a molecular 
skeleton. When samples in a deuterated solvent are placed in a strong 
magnetic field and irradiated with a radio frequency, the absorption of 
energy allows the nuclei to be promoted from low-energy to high-energy 

spin states. The subsequent emission of radiation during the relaxation 
process generates the resonances or signals recorded on an NMR 
spectrum as ‘chemical shifts’, representing frequencies from all NMR-
visible nuclei in the sample, relative to that of a reference proton present 
in a reference compound. Thus, an NMR spectrum of a multicomponent 
extract is the result of the superposition of the collective spectra of all 
NMR-visible individual compounds present in the sample under study. 
Hence, an NMR analysis would generally give a global view of all the 
metabolites (primary and secondary) in a sample, provided that they 
are NMR detectable.5,30 In NMR spectroscopy, the signal intensity for all 
compounds is dependent on the molar concentrations and reproducibility 
is high, even though the sensitivity is relatively low (micromolar range) 
and more sample is required.3,5 Following data acquisition, it is necessary 
to apply solvent suppression techniques, baseline or background 
correction, and integration and data normalisation methods.30

Table 2: Some standard techniques used in metabolomic analysis. 
In general, one technology is not sufficient for the analysis 
of all compounds, but any form of separation will inherently 
introduce a bias towards the analytes being detected. 

Technique Sensitivity Throughput Comprehensiveness

Nuclear Magnetic 
Resonance (NMR)

Low Low–high Low–high

Infrared Low High Low

Liquid 
Chromatography 
(LC)-NMR

Low Low High

LC-Mass 
Spectrometry (MS)

Medium High High

Gas 
Chromatography-MS

High High High

Capillary 
Electrophoresis 
(CE)-MS

High Medium High

LC- 
Electrochemistry-MS

High High High

LC-Ultraviolet
Medium–

high
High Very low

Sources: Sumner et al.1 and Weckwerth and Morgenthal32

Although NMR spectroscopy can yield detailed information on the 
quantities and identities of metabolites present in extracts, the chemical 
elucidation of NMR-detected compounds can be highly complex as a 
result of overlapping signals and shielding effects by neighbouring 
electrons. Moreover, the inherent low sensitivity of NMR, its sensitivity 
to the chemical environment (pH, ionic strength, temperature, etc.) 
of the sample and the differential sensitivity of metabolites to the 
chemical environment, hamper the quality of NMR analyses of complex 
samples.30,33 However, the disadvantages of low sensitivity and resolution 
are addressed by the development of cryogenic probes, higher strength 
superconducting magnets, miniaturised radio frequency coils and 
multidimensional (e.g. 2D-J-resolved and heteronuclear single quantum 
coherence) techniques.5,30,34 By using 2D-NMR that spreads the spectral 
content over a two-dimensional plane, the identification of compounds 
can be facilitated and minor compounds can be better observed, even 
allowing for structural elucidation in crude extracts.3,5,30

Column chromatographic techniques (GC/LC), on the other hand, have 
medium and high sensitivity, and provide separation of the sample 
components based on the partitioning of an analyte between stationary 
and mobile phases, according to its physicochemical properties. A better 
chromatographic separation of an inherently multidimensional sample 
can significantly enhance the quality of MS analysis and subsequent 
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compound identification by reducing the complexity of the mass spectra 
and the matrix effect. To optimise chromatographic separation of such 
complex samples, factors including column chemistry, the elution 
method for LC (gradient or isocratic) and the programmed-temperature 
method for GC are to be considered. Recent developments in enhancing 
chromatographic separation of complex samples include the use of 
multidimensional separation systems such as two-dimensional gas 
chromatography (GC×GC) and two-dimensional liquid chromatography 
(LC×LC). Separation involved in these techniques is based on the 
orthogonality of the two columns (of different chemistries) used. These 
techniques thus permit an improved chromatographic separation of 
complex samples by providing an expanded separation space, thereby 
minimising possible co-elution of an analyte or one-dimensional 
peak overlap.35-38  

Coupled to MS detection, these chromatographic techniques are more 
sensitive and capable of detecting metabolites in low abundance. 
GC-MS is a versatile, robust, technically reproducible and sensitive 
technique in the nano- to picomolar range. It is well suited to non-
targeted metabolite profiling of volatile and thermally stable non-polar 
or derivatised polar metabolites or the targeted analysis of derivatised 
primary metabolites.39 LC-MS, on the other hand, is technically more 
demanding, but caters well for metabolites that are non-volatile, polar 
or thermally labile. In plant metabolomics, LC-MS is frequently used to 
profile secondary metabolites. As chromatographic separation is based 
on the chemical nature of the analytes and that of the stationary and 
mobile phases of the column, more than one type of column chemistry 
might be needed to cover a wide range of analyte classes, especially 
for secondary metabolites. In combination with ESI-MS (electron spray 
ionisation-MS) it offers a powerful and sensitive technique in the pico- to 
femtomolar range.1,31 

Here, the detection of the mass-to-charge ratio (m/z) and abundance of 
the various analytes generated during ionisation is a key aspect of the 
analysis. The three main components in all types of MS instruments 
are (1) an ionisation source such as electron impact- (EI), electrospray- 
(ESI) and atmospheric pressure chemical (API) ionisations, (2) a mass 
analyser such as time-of-flight, quadrupole mass filters and quadrupole 
ion traps and (3) a detector such as an electron multiplier-based 
detector or a micro-channel plate linked to a time-to-digital converter. 
To optimise the transmission of ions to the analyser and detector, all 
three MS components are maintained under vacuum. The detected ions 
are recorded as pairs of m/z and abundance values, processed, and 
displayed in a mass spectral format.14,31 To enhance detection efficiency, 
mass resolving power and mass accuracy of MS, various technologies (in 
ionisation methods, mass analysers and detectors) have been developed 
for different applications and for use in multi-MS platforms.14,40-43 

In plant metabolomic analyses, MS is the key platform for compound 
identification, an essential step in the workflow of any metabolomic 
analysis. The mass spectral data provides a pattern that is most often 
compound specific. However, the degree of certainty in elucidating 
the structural and chemical identity of an MS-detected analyte relies 
on the efficiency and accuracy of the three principal processes of the 
MS (ionisation, m/z analysis/manipulation and ion detection) and on 
appropriate algorithms. The procedure in metabolite assignments from 
MS data consists of: (1) acquisition of sufficient and accurate structural 
information (such as accurate mass measurement and fragmentation 
patterns), (2) calculation of chemical combinations that fit the 
measured accurate mass (elemental composition formula), (3) spectral 
comparison (mostly for GC-MS instruments) or a database search and 
verification of the fragmentation pattern (for LC-MS instruments), (4) the 
use of other MS information available such as MSn and MSE data (the 
latter is a form of non-selective MSn where E is collision energy) and (5) 
the use of authentic pure standards (when commercially available) or 13C 
materials as internal standards.14,15,44,45

The usage of parallel analytical platforms can provide additional 
information or confirmation for a putatively identified metabolite. For 
example, EI ionisation is the most commonly used GC-MS ionisation 
technique that generates informative and characteristic mass spectra 
resulting from the relative high degree of fragmentation which aids in 

compound identification. In contrast, ESI-MS, used in LC-MS, usually 
generates [M+H]+ and [M-H]- ions as the main signals, and these ions 
are useful for reducing the candidate structures of detected compounds. 
GC-EI-MS is thus a good approach for targeted analysis of known 
primary metabolites, whereas LC-ESI-MS is good for untargeted analysis 
of secondary metabolites.14,15,34,44,45

Data mining and data processing
High-performance instrumentation as described generates extremely 
large volumes of data. In order to handle these large data sets and to 
comprehend the metabolome data, automated software is needed that 
can identify peaks from raw data, align the peaks among different samples 
and replicates, and identify and quantify each metabolite. Informatics 
and statistics are therefore essential tools for processing metabolomic 
data sets.33,46,47 Data mining comprises data pre-processing, data pre-
treatment and statistical modelling of the primary data (Figure 2). The 
statistical modelling (which is essential and central in data analysis) 
is briefly explained below and the reader is referred to more advanced 
discussions of the topic.46,47

Because metabolomic analyses reflect the cellular state under defined 
conditions, metabolomic experiments are designed in such a way as to 
measure the biological variation in the metabolome.5,18 However, the total 
variation in the metabolomic data is actually the sum of the pre-defined 
or induced biological variation and all other variations (non-induced 
biological, technical and analytical variation). Hence, in the data mining 
step the procedures of data pre-processing and data pre-treatment aid 
in ‘cleaning’ the data to focus on the biologically relevant information. 
Various software packages (which depend on the analytical technique 
employed for data acquisition) have been developed to aid with data 
mining in an automated manner.9,48 

Some of the data pre-treatment methods include centring, scaling and 
transformation. The centring procedure enables the conversion of all 
concentrations to fluctuate around the zero value of coordinates, by 
calculating the average of each variable and subtracting it from each 
observation. This process adjusts differences in the offset between 
high and low levels of compounds in samples. It thus simplifies the 
estimation of regression coefficients. Scaling, on the other hand, 
involves dividing each variable by a function related to its standard 
deviation (scaling factor) to adjust for the variation in fold differences 
between detected metabolites. Lastly, mathematical transformation 
processes are performed on the raw data because of the possibility 
of non-linearity in variables from a biological system. These methods 
transform the data into data matrices suitable for linear modelling 
techniques by converting multiplicative relations into additive relations, 
and correcting for heteroscedasticity (random variables with different 
variability).47-49 The cleaned data are then subjected to statistical analysis 
which provides model-based descriptions of the biological variation in 
the system under study. These statistical models specifically single out 
representatives of metabolites of interest (annotated peaks), which can 
further be chemically or structurally identified in a definitive manner. 

Statistical modelling and multivariate  
data analysis
Metabolomic studies generally generate high-dimensional and complex 
data sets that are difficult to analyse and interpret by visual inspection or 
any traditional univariate statistical analyses. Multivariate data analysis 
(MVDA) methods – mathematical modelling approaches – are therefore 
used to extract meaningful information from these large empirical 
data sets.4,49–51 These chemometric techniques provide models that 
are well suited to handle confounding and covariance patterns (both 
within and between variables) – analyses that are normally beyond the 
capacity of traditional univariate statistical methods.52–54 Table 3 lists a 
number of chemometric methods that are used for MVDA. Depending 
on the research objectives, the most appropriate method should be 
exploited. Detailed explanations of the mathematical algorithms on 
which these chemometric models are based, can be found in the cited 
literature. It may suffice to underline that most of these MVDA models 
are projection-based methods and apply, in an expanded manner, the 
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eigenvector/eigenvalues and kernel algebraic notions. Furthermore, 
these methods are based on the notion of latent variables (assuming 
that the system under consideration is driven by a definable number of 
latent variables) that assume a linear (or non-linear) relationship between 
the descriptor and response variables (see Figure 3: X and Y matrices: 
observed variables and pre-defined response outputs).53-55

The high-dimensional and complex metabolomic data can be 
chemometrically analysed in unsupervised and supervised ways 
(Table 3 and Figure 3). The unsupervised modelling of the data focuses 
on the intrinsic structure, relations and interconnectedness of the 
data and is sometimes referred to as descriptive models. Supervised 
modelling, on the other hand, seeks to transform the multivariate data 
from metabolite profiles into a representation of biological interest 
under the guidance of a ‘supervisor’. These models are often called 
predictive models. The basis of supervised modelling is that there are 
some patterns (such as metabolic fingerprints) in data that have pre-
defined responses (such as effects of a treatment or condition), and 
the goal of supervised methods is to find a model or mapping that will 
correctly associate the inputs with the responses.54 The data is thus 
algebraically represented in two types of matrices – the descriptor 

matrix X (observed variables) and the response matrix Y (the pre-defined 
traits). Geometrically, a multivariate modelling process defines a point 
in K-dimensional space with the descriptor values as coordinates.53,54,56 
The unsupervised methods are non-parametric analyses and generate 
models that are independent of the user. The input data, the descriptor 
matrix X, is presented into the system, which then simplifies and reduces 
the dimensionality of the data sets, grouping metabolites into different 
clusters with no loss of information. The supervised models, on the 
other hand, are mathematical transformations that correctly relate the 
descriptor matrix X with the response matrix Y.46,53,54,56

In many metabolomic studies, principal component analysis (PCA) – an 
unsupervised multivariate linear model – and orthogonal projection to 
latent structures-discriminant analysis (OPLS-DA) – a supervised model 
– are often used for data analysis. In all unsupervised chemometric 
methods, PCA remains the workhorse and gold standard model to deal 
with high-dimensional and complex data sets.46,53 PCA is a projection-
based method and a mathematically rigorous process that provides a 
global and qualitative visual representation of similarity or dissimilarity 
between and within samples (without using class information; e.g. 
treatment vs. control).46 

Table 3: Some of the chemometric methods used to analyse multivariate data sets. A ‘supervised’ method is one that requires training with known data 
sets in which the types of groups expected are pre-defined before being applied to experimental data. 

Type of model Abbreviation Term Linearity/non-linearity assumption

Generally ‘Unsupervised’ 

CCA Canonical Correlation Analysis Linear

CD-PCA Clustering and Disjoint-Principal Component Analysis Linear

HCA Hierarchical Clustering Analysis Linear

K-CCA Kernel-Canonical Correlation Analysis Non-linear

K-PCA Kernel-Principal Component Analysis Non-linear

KANN Kohonen Artificial Neural Networks Non-linear

MSCA Multilevel Simultaneous Component Analysis Linear

PCA Principal Component Analysis Linear

SCA Simultaneous Component Analysis Linear

W-PCA Weighted-Principal Component Analysis Linear

Generally ‘Supervised’ 

BANN Back-prop Artificial Neural Networks Non-linear

ASCA ANOVA-Simultaneous Component Analysis Linear

DA Discriminant Analysis Linear

K-OPLS-DA Kernel-Orthogonal Partial Least Squares-DA Non-linear

K-PLS-DA Kernel-Partial Least Squares-DA Non-linear

N-PLS-DA N-way PLS-DA Linear

OPLS-DA Orthogonal Partial Least Squares-DA Linear

O2PLS-DA Bidirectional Orthogonal PLS-DA Linear

OSC Orthogonal Signal Correction Linear

PCDA Principal Component Discriminant Analysis Linear

PLS Partial Least Squares Linear

SIMCA Soft Independent Modelling of Class Analogy Linear

PLS-DA Partial Least Square Discriminant Analysis Linear

Sources: Vichi and Saporta51, Bylesjö et al.52, Trygg et al.53, Fonville et al.55

Note: For a basic plant metabolomic analysis, PCA (score and loading plots) and OPLS-DA (S-plots) are most often used (see Figure 4).
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Figure 3: Chemometric analysis of metabolomics data. Multivariate 

data analysis models are classified into two groups: 
‘unsupervised’ and ‘supervised’ methods. The unsupervised 
methods use only the descriptor matrix X (N × K), wherein 
N is the number of samples and K is the number of variables 
(spectral measurements, peaks) in X, and cluster metabolites 
into groups, independently of the user (with no pre-defined 
parameters). The supervised models use both descriptor matrix 
X and the response matrix Y (N × M), wherein M denotes the 
number of variables (pre-defined traits) in Y.52,54

In PCA modelling, the variance in a data set is algebraically described 
in terms of underlying orthogonal variables, also called principal 
components (PCs). The original variables are thus expressed as linear 
combinations of these PCs (latent variables), each consisting of two parts 
– a score (ti) and loading (pi). All PCs are mutually linearly orthogonal to 
each other and each PC counts for a portion of the total variance in the 
data set, the first two or three PCs accounting for the largest part of the 
total variance. The descriptor matrix X is thus mathematically projected 
into a low-dimensional space, providing interpretable visualisation of the 
original complex data set thereby highlighting similarities or differences. 
The score plot gives information about relationships between objects 
(e.g. trends, groupings and outliers). The Y- and X-axes (e.g. PC1 vs. 
PC2) of a score plot illustrate the variation within and between groups, 
respectively. The loading plot illustrates the putative discriminating 
variables responsible for sample clustering and also explains the 
variation in scores.46,53,54 Figure 4a and 4b illustrate typical PCA-derived 
score and loading plots, respectively. 

OPLS-DA is a linear regression method, which has been successfully 
used for prediction modelling in metabolomics and biochemical 
applications.52,53,55 It is a supervised classification model that differs from 
PCA by the addition of grouping variables that indicate in which class the 
samples belong. Where PCA modelling is a descriptive method, OPLS-
DA method is an explicative or predictive analysis. The latter facilitates 
the identification of the metabolite ions responsible for the discrimination 
between groups.57,58

OPLS-DA is a modification of the PLS-DA (projection to latent 
structures-discriminant analysis) method, with an integral orthogonal 
signal correction filter. The OPLS-DA modelling aims at finding 
predictive components that simultaneously maximise the covariance 
and correlation between X and Y matrices.57 Algebraically, the 
model uses information in the response matrix Y to decompose the 
descriptor matrix X into correlated, orthogonal and residual structures 
of information, respectively. The power of this regression model lies 
in its ability to separate modelling of Y-predictive (response-related) 
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Figure 4: Graphical representations of multivariate data analysis. A principal components analysis (PCA) model reduces the dimensionality of a data table 
forming a low-dimensional model plane. (a) A PCA score plot permits the visualisation of the relation among the observations or samples, showing 
groupings, trends, or outliers. It shows differences between groups along the X-axis (PC1) and differences within groups along the Y-axis (PC2). 
(b) The PCA loading plot defines the influence of the variables in the model plane, and the relationship among them. (c) The orthogonal projection 
to latent structures-discriminant analysis (OPLS-DA) score plot, similar to the PCA plot, indicates differences in the molecular composition of 
samples while (d) the OPLS-DA S-plot identifies putative biomarkers (bottom left and upper right) responsible for the group separation.53 
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and systematic Y-orthogonal (response-orthogonal) variations in data, 
while simultaneously maximising the covariance between X and Y. The 
Y-orthogonal variation can be described as systematic effects needed to 
characterise the system but are unrelated to the model predictions.52,55,57 

OPLS-DA methods therefore model data according to a priori class 
information (such as treated vs. non-treated) assigned to samples 
before the analysis. This separation of Y-predictive (discriminating) 
variation and Y-orthogonal variation (that which does not contribute to 
the class separation) greatly facilitates the data interpretation. As such, 
the OPLS-DA model is a suitable tool to extract information on changes 
or differences in the molecular composition of samples (Figure 4c). 
While the OPLS-DA loading S-plot (Figure 4d) enables the extraction 
of statistically and potentially biochemically significant metabolites or 
biomarkers in the samples, the more advanced shared-and-unique-
structures plot (not shown) enables the identification of metabolites that 
are shared between groups or that are unique to a group.53,57,59

Compound identification
Compound identification, the last step in metabolomic analyses, is of 
great importance because biochemical interpretation of metabolomic 
data relies heavily on the availability of well-structured databases for the 
identification of metabolites. In putative identification some molecular 
properties (such as experimentally determined accurate mass) and mass 
spectral patterns are used to define molecular and empirical formulae from 
which metabolites can be derived or identified by comparative searches 
of available spectral, compound and metabolic pathway databases.15,34 
In such identification procedures, chemical standards are normally not 
used and the putatively identified metabolites are usually reported with 
a defined degree of certainty.14,15,57 Definitive identification, on the other 
hand, involves the use of more than two molecular properties (retention 
time, retention index, mass spectral fragmentation, NMR-spectral 
shifts), comparative searches of libraries (mass spectral, NMR-spectral, 
retention index), confirmation with authentic chemical standards and the 
use of in vivo labelling methods.15,18,60 In some instances, analytically 
detected entities of biological significance are reported as unknown 
with no structural identification.10,15,18,31 Figure 5 schematically illustrates 
typical information generated from different analytical methods, aiding 
the identification of compounds in a metabolomic analysis.
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GC, gas chromatography; LC, liquid chromatography; MS, mass spectrometry; NMR, nuclear 
magnetic resonance spectroscopy, UV/VIS, ultraviolet/visible range spectroscopy obtained 
by the photo diode array detector. 

Figure 5: The identification of a metabolite. Typical information generated 
by analytical technologies and knowledge resources that 
are used in the identification of a metabolite. Experimental 
validation is by means of standard compounds and information 
present in literature and databases. Resources such as 
species databases, literature, spectral databases and chemical 
databases help in narrowing the number of ambiguities for 
candidate metabolites.14

Applications of metabolomics in plant research
Despite present limitations, metabolomics has proved to be an 
indispensable tool for characterisation of post-genomic processes in 
plants with a broader perspective. The uniqueness of metabolomics, 
firstly, is that it is a data-driven approach with mathematically rigorous 
data analysis methods and, secondly, is that it has the ability to provide 
a (relatively) holistic analysis of the actual cellular dynamisms of a 
biological system under consideration. Metabolomic analyses offer 
ways of elucidating relationships that occur primarily through regulation 
at the metabolic level and reveal a direct link between a gene sequence 
and the function of the metabolic network.1,6,8,54,61

Plant metabolomics is still a relatively young field. Figure 6 shows the 
increase in publications in plant metabolomics relative to those related 
to genomics and proteomics. Metabolomic strategies have much to 
offer and are increasingly being applied in various areas of the plant 
sciences.62 This increase in publications is the result of a divergence in 
the use of the new technology where different metabolomic approaches 
(Table 1) is combined with one or more analytical platforms (Table 2). 
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Figure 6: Growth of plant metabolomics. The graph illustrates the 
increasing publication trends (and research activity) from 
the three plant ‘-omics’ approaches: (A) genomics, (B) 
proteomics and (C) metabolomics, expressed as the 
number of publications per year from 2000 to 2011. Plant 
metabolomics is increasingly providing functional information 
of novel content and value that complements the other plant 
‘-omics’ approaches. 

Broad research areas where metabolomics are applied include 
the interpretation of metabolic pathways and networks, biomarker 
discovery that can assist in the identification of novel molecular 
targets and bioactive metabolites,59,63–65 genotyping,1,8,16 gene function 
elucidation,66-68 plant breeding and crop quality assessment,18,20,69-71 
the discovery of metabolites involved in environmental adaptations, 
abiotic and biotic stress responses, host–pathogen interactions,72-79 
molecular biotechnology, and recombinant DNA technology, including 
risk assessment of genetically modified crops.34 

Metabolomics can be an effective approach for the comprehensive 
evaluation of the qualities of medicinal plants.80 The combination of NMR 
spectroscopy and MVDA was used in a chemotaxonomic study of Ilex 
paraguariensis (a tonic and medicinal plant) and other Ilex species.81 
Distinct discrimination of species was observed, based on a large 
number of metabolites present in organic and aqueous fractions. The 
major metabolites that contributed to the discrimination were identified 
as arbutin, caffeine, phenylpropanoids and theobromine. Among those 
metabolites, arbutin, which had not been reported as a constituent of Ilex 
species, was found to be a biomarker in 8 of the 11 species investigated. 
With regards to the mining of medicinal plants for the discovery of 
bioactive metabolites, metabolomics has so far been a valuable tool for 
high-throughput screening of bioactive substances in order to discover 
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new phytotherapeutic agents with high selectivity, unique modes of 
action and acceptable toxicological profiles.80

In the development of novel herbicides and pesticides, metabolomics is 
an invaluable tool because of its non-targeted nature. Modes of action of 
herbicides determine how plants respond to these chemicals and can be 
used to predict the suitability of new lead compounds. Here, applications 
of metabolomics in agroecosystems also include the investigation of 
ecotoxicological risk assessment of these bioactive compounds.82,83 

Ecometabolomic studies were the subject of a recent review 83 concerning 
investigation into the responses of some metabolic pathways in plants 
to changes in abiotic factors (such as temperature, water, nutrient 
availability and pollution) and the biotic interactions between two or more 
species, which provided new biochemical insights that can be useful for 
systems biology and metabolic or genetic engineering.

NMR-based and MS-based metabolic fingerprints allowed the 
investigation of a range of chemistries, adding insight into the metabolic 
changes associated with establishment of disease in Arabidopsis thaliana 
leaves infected with Pseudomonas syringae.76 Significant alterations in 
the levels of amino acids and other nitrogenous compounds, as well 
as specific classes of glucosinolates, disaccharides and molecules that 
influence the prevalence of reactive oxygen species involved in defence 
signalling were identified. The findings suggest that, superimposed on 
defence suppression, pathogens reconfigure host metabolism to provide 
the sustenance required to support exponentially growing populations of 
apoplastically localised bacteria. 

To obtain further insight into the interaction between plants and 
herbivores, the interaction between cabbage (Brassica oleracea) and 
small cabbage white caterpillars (Pieris rapae) was analysed by LC-
MS.69 This study revealed a high correlation in levels of three structurally 
related coumaroylquinic acids in both plants and caterpillars, which 
suggests that these compounds represent a ‘metabolic interface’ in the 
interaction between the plant and the caterpillars. 

Another NMR-based metabolomic analysis of the metabolome of tobacco 
plants treated with salt contributed to the understanding of the dosage 
and duration dependence of salinity effects on plant metabolism.73 The 
results showed that salinity causes alterations in widespread metabolic 
networks involving, inter alia, transamination, the tricarboxylic acid 
cycle, glutamate-mediated proline biosynthesis and shikimate-mediated 
secondary metabolism. These results evidenced the valuable insights 
provided by metabolomic approaches in understanding the osmotic 
effects on plant biochemistry. 

The composition of secondary metabolites greatly influences the quality 
and health potential of food and food products, in particular, flavonoids 
as a result of their antioxidant properties. Bovy and co-workers84 
highlighted the potential of GC-MS and LC-MS based metabolomics in 
profiling the metabolic changes in the flavonoid biosynthetic pathway 
of genetically engineered tomatoes and in monitoring the flux into 
newly introduced branches of the flavonoid pathway, such as stilbenes, 
aurones, chalcones, anthocyanins and flavones. 

Further selected examples (Table 4) illustrate the wide and divergent 
range of applications of metabolomics and metabolomic approaches in 
modern plant sciences.

Current limitations of metabolomics
One of the main challenges of plant metabolomic studies is the 
enormous complexity and diversity of the plant metabolome and the 
incomplete knowledge of plant metabolic pathways. Plant primary 
and secondary metabolites constitute a more heterogeneous group 
of molecules than the biomacromolecules in terms of physical 
and chemical properties.1,3,5,9,10,19 An analysis of the metabolome, 
with its divergent physicochemical properties and wide variation 
in concentration ranges, would thus require a wide spectrum of 
chemistries and instrumentation with wide dynamic ranges. Hence, 
it is currently technologically impossible to extract and analyse all 
metabolites in a cell or organism in a single analysis, and the currently 
characterised plant metabolites represent a very small fraction of the 
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whole metabolome. A second challenging task is the identification and/
or structural elucidation of molecules from analytical detector signals. 
The lack of universal metabolite-specific libraries and known reference 
compounds currently represents a major limitation to the definitive 
identification of metabolites.15,18,60 Fortunately, a number of strategies, 
such as advancement in and complementary use of technology (LC-
NMR-MS, GC×GC-TOF-MS, highly improved MS instrumentation, etc.) 
and metabolomic databases,12,85 are increasingly being brought forward 
to assist in metabolite annotations and compound identification.14,15,36 

Conclusion and outlook
The combination of the capabilities of different analytical instrumentation 
for the analyses of multicomplex samples and the integration of 
metabolomics with other ‘-omics’ approaches in the context of a high-
dimensional biological approach, is able to provide new insights into 
cellular function and regulation of metabolic networks. The ultimate aim 
of ‘-omics’ technologies is to understand and predict the behaviour of 
complex systems such as plants, through the use of results obtained 
from data mining tools for subsequent modelling and simulation. Plant 
metabolomics has developed to the point where it can be applied alone 
and/or in combination with other technologies of functional genomics. 
Even with its current limitations, plant metabolomics is an informative 
tool that is revolutionising plant biology.
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