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Abstract 

Leaf area expansion of wheat {Triticum aestivum L.) and maize (Zea mays L.) plants, as contrasting 

representatives of the Gramineae family, was analysed. Seven variables were identified that together 

completely determine leaf area expansion of the plant: leaf appearance rate per tiller, specific site 

usage (fraction of buds that ultimately develop into a visible tiller at a specific site), Haun Stage-

delay (indicating the timing of tiller appearance relative to the parent tiller), leaf elongation rate, leaf 

elongation duration, maximum leaf width and a leaf shape variable. 

Experiments with spaced plants in growth chambers yielded equations in which the effects of leaf 

and tiller position, temperature and photosynthetic photon flux density (PPFD) were quantified for 

each leaf area variable. In non-tillering species maize, leaf appearance rate and leaf elongation rate 

were higher, and leaf elongation duration was shorter at higher temperatures. At higher PPFD 

values, leaf appearance rate and maximum leaf width were higher and leaf elongation rate was lower. 

In wheat, the effects of temperature and PPFD were qualitatively equal to those in maize, except that 

there was no effect of PPFD on maximum leaf width. In the tillering species wheat, specific site 

usage was higher at lower temperatures and higher PPFD values. Equations were developed for the 

effects of leaf position on leaf elongation rate and maximum leaf width. 

This knowledge was used in the analysis of effects of plant density in growth chamber and field 

experiments. Plant density mainly affected leaf appearance rate in maize and specific site usage in 

wheat. For both species, the effects of plant density on these variables seemed well related to local 

assimilate availability. 

Based upon the morphological framework presented, a simulation model was developed for 

wheat using the principles of object orientation. Plant related processes were strictly simulated at 

organ level. The simulation results showed clear differences in leaf area expansion for leaves at 

different positions in the plant. 

The morphological framework can be used for experimental analysis of leaf area growth, 

revealing mechanisms regulating leaf area growth of plants. The simulation model is flexible and can 

be easily extended for different environmental conditions and plant species. 

Key words: leaf area, wheat, maize, photosynthetic photon flux density, temperature, plant density, 

modelling, object orientation. 
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Chapter 1 

General introduction 

Importance of plant leaf area for plant growth 

The production of crops can be described by the product of two factors: 

i) the amount of intercepted radiation; 

ii) radiation use efficiency, i.e. the increase in dry matter per amount of intercepted radiation. 

The first component, the amount of intercepted radiation, is determined by incoming radiation 

characteristics, and by canopy characteristics such as leaf area index and the spatial arrangement of 

leaves. Leaf characteristics are important factors in understanding plant and crop growth, as they 

determine the amount of intercepted radiation at given radiation characteristics. 

Gramineae species: importance and morphological aspects 

In this thesis, analysis of plant leaf area expansion is limited to an important monocot plant family: 

Gramineae. Gramineae species comprise the most important crops in agriculture. Rice, wheat, 

sorghum and maize are examples of major food crops in the world from this family. Also livestock 

production is heavily dependent on Gramineae species such as perennial ryegrass and (forage) 

maize. 

Gramineae species differ in their morphology from most other species. The first leaf of a tiller is a 

prophyll, a small non-photosynthesizing leaf. Every leaf, including the prophyll, has an axillary bud 

which can grow out into a new tiller. Based on these morphological rules, Klepper et al. (1982) have 

made an identification method which uniquely identifies every leaf and tiller on a Gramineae plant 

(Fig. 1). Full-grown leaves consist of a tube-shaped sheath and a blade, which are separated by the 

ligule. New leaves develop within the encircling sheath bundle, which means that emerging leaf parts 

are full-grown when pushed out of the enveloping sheath bundle. Leaves are therefore elongating in 

a relatively dark and humid environment, which is clearly different from dicot leaves, that elongate in 

the free air with its rapidly changing light, temperature and humidity environment. These aspects are 

important in the analysis of plant leaf area expansion of Gramineae species. 
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Figure 1. Morphological representation of a Gramineae seedling (redrawn from Klepper et al, 1982). If = leaf, t 

= tiller, ms = main stem. 

Simulation of leaf area expansion 

While crop growth is the result of a complex interaction between genotype, soil, climate, and cultural 

practices, computer simulation models are used to explain these interactions (Van Keulen and 

Seligman, 1987). Models are also quantitative summaries of the understanding of crop functioning. 

The more accurately insights are incorporated in the model, the more likely the information can be 

used to solve practical problems. 

Leaf area expansion is a crucial factor for understanding plant and crop growth, but it is simulated 

in very different ways. These include the exponential growth method, a method in which leaf area 

expansion depends on assimilate availability and a third approach which takes account of the specific 

morphology of each species. These three methods are described in detail below. 



Simulation based on exponential growth 

The most simple assumption is that plant leaf area expansion is an exponential function of 

accumulated degree days above a threshold temperature (Goudriaan and Van Laar, 1994). In this 

method, there is no effect of assimilates, nutrients or water on plant leaf area expansion. Therefore, it 

can only be used when assimilates, nutrients or water do not limit plant leaf area expansion. The 

advantage of this method is that only three parameters need to be estimated: (i) the initial plant leaf 

area at emergence, (ii) the base temperature for leaf area expansion, and (iii) releative growth rate of 

leaf area, expressed in degree days. The method is suitable for models that predict yield of 

homogeneous crops with only one plant species involved. However, while the method is descriptive 

and does not include vertical or horizontal distribution of leaves or characterisation of individual 

leaves, the method is not suitable for heterogeneous crops, canopies with more than one species, or 

for crops with special management practices (e.g. cutting). The only way to deal with stresses is by 

inserting reduction factors on the relative growth rate of leaf area. 

Assimilate-based simulation 

When growth is source-limited, the availability of assimilates (partly) determines plant leaf area 

expansion. In SUCROS (Goudriaan and Van Laar, 1994), it is assumed that the expansion of leaf 

area is a function of the plant growth rate, the fraction of the dry matter that is allocated to the leaves 

and the specific leaf weight (SLW). The plant growth rate depends on the rate of photosynthesis and 

respiration. The fraction of the dry matter that is allocated to the leaves is assumed to depend on the 

plant development stage, while the SLW is assumed to be constant or to depend on LAI or plant 

development stage. The method fits in easily in a model that is based upon dry matter production and 

distribution. However, plant SLW is difficult to use as an input variable, while SLW of individual 

leaves depends on leaf position on the plant. Also, environmental factors have effects on dry matter 

growth of leaves on the plant which are different from those on plant leaf area expansion. 

Furthermore, plant leaf area expansion is a very complex process, because plant leaf area expansion 

is determined by tillering, leaf appearance rate per tiller, and individual leaf area expansion. These 

underlying processes are affected by environmental factors in very different ways. Therefore, the 

method is suited for simulation of plant growth under relatively stable environmental conditions, 

using descriptive empirical functions of the change of plant SLW in time. 

Morphology-based simulation 

Morphological models include some degree of morphological information (tillers, individual leaves). 

Number of leaves can be calculated from leaf appearance rate and site filling (Davies, 1974; 

Neuteboom and Lantinga, 1989). To calculate leaf area with the site filling method (Van Loo, 1993), 

it must be assumed that leaf area expansion per tiller is constant, because the site filling method does 

not differentiate between different tiller types. Other morphological models (e.g. Amir and Sinclair, 



1991; Wilhelm et ah, 1993) also include processes of tillering and individual leaf growth. The lack of 

good experimental data on leaf area expansion of individual leaves on separate tillers necessitates 

some crude assumptions in the model, making it less suitable for good predictions. However, to a 

certain degree these models give a better insight in the mechanisms that control leaf area expansion. 

These models have the potential to analyse more complex problems, such as the expansion of leaf 

area in mixed species (Lotz et ah, 1996), because these models can simulate area expansion of leaves 

situated at different positions in the canopy. A general morphological framework for leaf area 

expansion is lacking and more and better experimental data are needed, for example on timing of 

appearance of individual tillers and expansion of individual leaves at different positions on a plant. In 

this thesis data will be collected with the aim to arrive at a general morphology-based simulation 

model, applicable to different Gramineae species. 

Objectives and basic approach in this thesis 

Experimental research on the analysis of plant and crop leaf area characteristics is scarce. Most 

experimental research has been devoted to the analysis of growth of a few individual leaves, or to 

measurement of the increase of leaf area of the whole plant or crop. Therefore, in this thesis the 

mechanisms of leaf area expansion in Gramineae species will be analysed. The approach for the 

analysis is the following: 

1. determine general morphological variables for leaf area expansion of Gramineae species; 

2. in experiments, compare two Gramineae species that clearly differ in their morphology (wheat: 

tillering plant; maize: non- or rarely-tillering plant); 

3. perform the first basic experiments at constant environmental conditions (growth chambers, 

spaced plants), to avoid complexity in the basic analysis; 

4. analyse the effects of some important environmental conditions (temperature, radiation, and plant 

density) on the morphological variables; 

5. summarise the knowledge in a simulation model, which should be easily extendable to other 

species or environmental conditions. 

Outline of this thesis 

The thesis has been divided into four parts. 

In Part I the general morphological variables for leaf area expansion of Gramineae species are 

determined. Furthermore, effects of temperature and photon flux density on spaced wheat and maize 



plants are analysed in a growth chamber environment. 

In Part II the effects of plant density are analysed, using the variables derived in Part I. The factors 

that are responsible for the effects of plant density effects on wheat and maize are also identified. 

In Part III a simulation model is developed based upon the morphological variables of part I. 

In the general discussion the results obtained in the current study are discussed. Possible applications 

and limitations of the approach followed are evaluated and conclusions are drawn. 



Parti 

Effects of temperature and photosynthetic photon flux density 

on spaced plants 



Chapter 2 

Morphological analysis of leaf and tiller number dynamics 

of wheat {Triticum aestivum L.): 

responses to temperature and 

photosynthetic photon flux density 

with J. H. Neuteboom 

Abstract 

In recent literature on Gramineae species, leaf and tiller number dynamics have been studied by 

analysing site filling and the phyllochron of the main stem. However, site filling is influenced by three 

components: (i) the phyllochron of the main stem and daughter tillers, (ii) specific site usage (i.e. 

fraction of buds that ultimately develop into a visible tiller at a specific site) and (iii) HS-delay (i.e. 

difference in Haun Stage (HS) between the parent tiller and daughter tiller above the point where the 

daughter tiller appears). These three morphological components affecting site filling were studied 

under different environmental conditions in a growth chamber experiment with spring and winter 

wheat (Triticum aestivum L). Treatments were temperature (daily average 10.5, 15.5 or 20.5 °C) 

and photosynthetic photon flux density (PPFD) (111, 191 or 286 umol m"2 s"1). Effects of 

temperature and PPFD on phyllochron were well described by equations already reported in 

literature. Specific site usage was higher at lower temperatures and higher PPFD values and was 

related to tiller position. It is proposed that these effects on specific site usage reflect differences in 

availability of local assimilate for tiller appearance. HS-delay of a tiller was lower if the expected 

tiller appearance was later and was only slightly affected by PPFD or temperature. This new concept, 

combining HS-delay and specific site usage, can be useful in the construction of more general models 

of the effects of environmental factors on the dynamics of leaf number and leaf area of Gramineae 

species. 



Introduction 

For the modelling of crop growth and potential dry matter production an adequate simulation of leaf 

area dynamics is a prerequisite (Goudriaan and Van Laar, 1994), particularly in the early stages of 

crop development when the canopy is still open. An adequate simulation of leaf area dynamics is also 

needed for realistic simulation of crop-weed competition (Kropff, 1993; Lotz etai, 1996), since 

especially during early development, the rate of leaf area increase can be very decisive for 

establishment and growth of weeds. 

Leaf number dynamics are determined by the birth and death rates of leaves (Harper, 1989). In 

early crop growth, leaf number dynamics are determined predominantly by the appearance of new 

leaves, which is a function of tiller appearance and leaf appearance per tiller. To model leaf 

production successfully, both processes should be analysed. 

In some models for cereal crop growth, tillering has been calculated from the leaf appearance rate 

of the main stem, using a fixed pattern of tiller production, based on the Fibonacci series (Porter, 

1985; Boone et al., 1990). However, in recent literature on grasses for productive grassland (Van 

Loo, 1992), tillering is calculated from leaf appearance rate and site filling (Davies, 1974; 

Neuteboom and Lantinga, 1989). Site filling, expressed in tillers per tiller per day, varies under the 

influence of environmental conditions and is therefore more appropriate for dynamic simulation. 

Since, in this approach, leaf appearance rate is measured on the main stem only, and site filling is 

calculated from the total tiller number increase per plant, a third, and even more detailed approach is 

possible and, for some applications, also desirable. In this approach the presence, appearance time 

and leaf appearance rate should be measured for each individual tiller. 

This paper presents data on tillering and leaf number dynamics of wheat from an experiment with 

spaced plants at different combinations of temperature and photosynthetic photon flux density 

(PPFD) (in a companion paper (Chapter 3) areas of individual leaves are analysed). The time of 

appearance, length and width of every leaf on a plant were recorded and the data were used to 

determine the time course of leaf and tiller numbers per plant according to (i) a fixed pattern 

according to the Fibonacci series, (ii) the site filling approach, and (iii) a detailed approach for 

tillering based on the presence, time of appearance and leaf appearance rate of individual tillers. 

Temperature effects were analysed because temperature has large effects on both phyllochron and 

tillering (Mitchell, 1953; Cao and Moss, 1989) and it varies greatly under field conditions. Effects of 

PPFD were analysed because a reduction in PPFD below the saturation level for photosynthesis 

reduces the rate of dry matter production per time interval, and relatively low PPFD values could 

also be responsible for variation in tillering when plants are competing for light. The focus of this 

study was on spring wheat. Since the initiation of reproductive development of spring wheat could 

possibly reduce tillering, some unvernalized winter wheat plants were also examined. 
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Materials and methods 

Spring and winter wheat plants were grown in three growth chambers, each with a different 

temperature (T) regime. Within each growth chamber, three compartments were created with 

different light levels (L). 

Plant material and growing conditions 

Spring wheat cv. Minaret (average seed weight 0.045 g) and winter wheat cv. Ritmo (average seed 

weight 0.042 g) were sown at 3 cm depth in square 18x18 cm (4.5 1) pots filled with a mixture of 33 

% sandy soil and 67 % quartz sand. Three seeds were sown per pot. The pots (540 for spring wheat; 

108 for winter wheat) were placed on trolleys in three growth chambers (constant relative humidity 

70 %; daily photoperiod 7.00-21.00 h; day temperature (9.00 - 21.00 h) 18 °C, night temperature 13 

°C). 

One day after 50 % emergence, plant number per pot and pot number were reduced to obtain a 

homogeneous population of plants (one plant per pot; 120 pots of spring wheat and 24 of winter 

wheat per growth chamber). Using white curtains, each growth chamber was divided into three equal 

compartments (3.20x1.50 m) for the L treatments. Each compartment contained 40 spring wheat 

and 8 winter wheat plants, chosen randomly, and arranged uniformly, resulting in an initial plant 

density of 31 m'2. T and L treatments were started on the same day, but the photoperiod and relative 

humidity remained the same as in the pre-emergence period. 

During growth, trolleys were rotated within a compartment at intervals of approximately 0.75 

main stem phyllochrons to minimize variation in conditions for individual plants. The pots were 

irrigated with tap water at least once a day and a Steiner's nutrient solution (Steiner, 1984) was 

supplied at intervals of two main stem phyllochrons in quantities sufficient to meet the expected 

growth rate and desired high nutrient concentration in the plant material. 

Treatments 

The following temperature (T) treatments were imposed at the intermediate PPFD (L2): 

Tl:day: 13 °C, night: 8 °C; 

T2:day: 18 °C, night: 13 °C; 

T3:day:23 °C, night: 18 °C. 

These temperatures ensured large differences in the rate of increase of leaf area. The change-over 

from day to night temperature and vice versa occurred within half an hour. 

Light treatments (L) were established as follows (values with s.e.): 

LI: 111±7 umol m"2 s'1 = 5.6±0.35 mol m"2 d'1; 

L2: 191±10 umol m"2 s1 = 9.6±0.50 mol m"2 d'1; 

L3: 286±12 umol in2 s"1 = 14±0.60 mol m"2 d"1. 
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In each compartment, the light ceiling contained 6 metal halide (Philips HPI400 W) and 6 high 

pressure sodium (Philips AGROSON-T 400 W) lamps. For L3, all lamps were switched on, for L2, 8 

lamps, and for LI, 4 lamps. The metal halide lamp/high pressure sodium lamp ratio was 1:1 for every 

L treatment. Photosynthetic photon flux density was measured using a LI-190 SA Quantum Sensor 

at nine points per compartment, just above the pots. The heights of the trolleys were adjusted to 

ensure the required PPFD values. 

On average, the air temperature was 0.5 °C higher in L3 and 0.5 °C lower in LI than in L2 

during the light period. During the dark period air temperatures were the same. 

Measurements 

Destructive measurements were done only on spring wheat plants. Eight plants per treatment were 

harvested at intervals of one main stem phyllochron, starting from tip appearance of leaf 4 up to tip 

appearance of leaf 8 (five harvests). After each harvest, the remaining pots were rearranged to 

minimize interplant competition (plant density at last harvest 10 m"2). At each harvest, 7 plants were 

separated into roots and shoots, the shoot into individual tillers, and each tiller into separate visible 

leaves and internodes/sheaths. The dry weight of each component was measured after drying to 

constant weight at 70 °C. 

For winter wheat, the number of leaves and the length of the youngest and second youngest 

visible leaves were measured non-destructively for each tiller in the T2 treatments on the same day 

that the spring wheat plants were harvested in that treatment (five times). Unintentionally, these 

measurements were not made at the first harvest of treatment T2L2, and, in the Tl and T3 

treatments, they were made only at the last harvest of the spring wheat plants. 

Definitions and calculations 

General outline of calculations. To compare the tiller numbers per plant according to the three 

models, leaf stages have to be defined, and a leaf- and tiller-identification system is needed. The leaf 

stage of a tiller was measured as the Haun Stage (Haun, 1973) and tillers and leaves were identified 

according to the system of Klepper et al. (1982). The equation of Volk and Bugbee (1991) was used 

to calculate the effects of PPFD on the interval between the appearance of successive leaves on a 

tiller (the phyllochron). For the site filling model, the maximum number of tillers can be calculated, 

and the theoretical total leaf number per plant (all stems) can be calculated from an equation 

developed by Neuteboom and Lantinga (1989) and amplified by Van Loo (1992). In discussing leaf 

and tiller identification, two patterns of tillering (plant types 1 and 2) are referred to (see below). 
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Leaf stage. The leaf stage of tiller t, measured as Haun Stage (HS,), is: 

HS, = Number of visible leaves on tiller / - 1 + W » of youngest visible leaf ( ] ) 

Length of 2
nd

 youngest visible leaf 

Tiller and leaf identification. Tillers and leaves were identified according to the system of Klepper et 

al. (1982), by counting the leaves acropetally, the coleoptile or prophyll being named lfO and the first 

foliar leaf lfl. The seedling stem was the main stem (ms). Other tillers were named after their parent 

leaf, e.g. tO was the tiller from the axil of lfO. Higher-order tillers were indicated by additional digits; 

for example, tl.O was the tiller from the axil of lfl.0, the prophyll of tl (Fig. 1; plant types 1 and 2 

are discussed below). Tiller tl.O was the "daughter" tiller of t l , which in turn was its "parent" tiller. 

This system identifies each tiller specifically, but can only be used to analyse effects of tiller type as a 

qualitative parameter. To analyse effects of tiller type as a quantitative parameter, five parameters 

were calculated for every tiller type (Table 1). The leaf stage of the main stem (HSm) at tiller 

appearance, according to plant type 1 or 2 (Fig. 1), was used to test whether effects of tiller type 

were related to plant development stage. Tiller order (i.e. primary, secondary, tertiary etc.), tiller 

position on parent tiller and summed tiller position (i.e. sum of all numbers in the designation of the 

tiller, e.g. for tl.3.0 this is 1+3+0=4) were calculated to test whether effects of tiller type were 

related to position on a plant. 

Plant type 1 

ms 

ti X
 t10 

x
 \1 

/ 
t2 

tO.O 

V 
/to.o.o - * * 

to 

s 

Plant type 2 

ms 

tl 
\ A to 

* 

S 
Figure 1. Potential tillering pattern according to plant type 1 or 2 during the elongation of 

the fourth main stem leaf. Details of each pattern are explained in the text. Dashed lines 

indicate leaf sheaths, solid lines visible leaf blades, and brackets prophylls. 
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Phyllochron. Phyllochron for each tiller was expressed in degree days using a base temperature of 0 

°C, and was calculated by linear regression of thermal time vs. HSt. The effects of PPFD were 

evaluated using the equation (Volk and Bugbee, 1991): 

{PPFD., + PPFD - 2 x PPFD.) 
Phyllochron = Phyllochron • * £ — (2) 

™" (PPFD - PPFD.) 

where PPFD is the daily photosynthetic photon flux (mol m"2 d"1), PPFD,^ the minimum PPFD for 

leaf appearance (= 2 mol m"2 d"1 (Volk and Bugbee, 1991)), PPFTV the PPFD for half-saturation of 

leaf appearance rate (mol m"2 d"1) and Phyllochron^ is the minimum phyllochron for PPFD^°° (°C 

d). PPFDM and Phyllochron^ were estimated by non-linear regression. 

Site filling method. The total number of tillers per plant was estimated from the leaf appearance rate 

of the main stem, and site filling, which is defined as the number of new tillers per tiller per 

phyllochron (Davies, 1974). Since Neuteboom and Lantinga (1989) showed that a minimum of one 

phyllochron separates the appearance of a tiller and its first daughter tiller, maximum site filling is 

0.69. Such a maximally-tillering plant is illustrated in Fig. 1 (plant type 1). Site filling was calculated 

by linear regression of ln(number of tillers per plant) vs. HSm. 

Leaf number per plant (Lp) can be calculated from site filling (F8) and Haun Stage of the main 

stem (HS,™) using the equation (Neuteboom and Lantinga, 1989): 

where n is the mean number of inhibited buds per tiller and Tp0 and Lp0 are the numbers of tillers and 

leaves, respectively, per plant at day = 0. Van Loo (1992) has shown that n depends on F s: 

F. 

F 
(4) 

Combining eqns. 3 and 4 yields a new equation: 

Lr-e'--""'-">Tp,>ie--'.-i).Lp0 (5) 
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Fibonacci series method. This method assumes that tiller number increases with leaf number on the 

main stem according to the Fibonacci series (1, 1,2, 3, 5, 8 etc.), because two phyllochrons separate 

the appearance of a tiller and its first daughter tiller. Site filling for such a plant is 0.49 (Neuteboom 

and Lantinga, 1989). Plant type 2 in Fig. 1 shows such a plant schematically. 

Detailed method. This method requires estimates of the phyllochron of individual tillers, the presence 

of tillers, and the timing of appearance of tillers. Presence of tillers was expressed as 'specific site 

usage', defined as the fraction of the buds in a specific axil that have ultimately grown out into visible 

tillers, and was calculated as the number of plants that possessed this tiller divided by the number of 

plants that possessed its parent tiller, determined at least one phyllochron after the tiller was 

expected to appear. Data of specific site usage were transformed using a logistic link function, 

assuming a binomial distribution (McCullagh and Nelder, 1989). To analyse quantitative effects of 

tiller type for each individual treatment, one of the five quantitative parameters for tiller type (Table 

1) was used as independent variable in the regression with the transformed specific site usage as 

dependent variable. 

The timing of appearance of a tiller t was expressed as 'HS-delay', which is the difference 

between the HS of tiller t and the HS of its parent tiller above the leaf from which axil tiller t appears 

1 
7 cm j 

ms —> 

lf2 

lf4 

lf3 

10 cm 

fc\ If 1.1 

8 cm \ \ ju 

ti 

V" 

HS = 4-1+ 7/10 = 3.70 
ms 

HSms above point where tl appeals = 2.70 

If 1.2 

2 cm 

HS„ = 2-1+ 2/8 = 1.25 

HS-delay oftl = 2.70-1.25 = 1.45 

Point where tl appears 

Figure 2. Illustration of the calculation of HS, and HS-delay. Leaf sheaths are indicated by 

dashed lines, leaf blades by solid lines and the lengths of the two youngest leaf blades per 

tiller are given. 
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(= 'NLAT' in Skinner and Nelson, 1992) (Fig. 2). HS-delay of tiller t was determined between HS, 1 

and 2. The observed values were compared with the values for plant type 1 and 2 (HS-delay is 1 and 

2 respectively (Neuteboom and Lantinga, 1989)). To analyse quantitative effects of tiller type on HS-

delay, a simple equation was assumed: 

HS-delay = HS-delay^ + (HS-delayQ - HS-delay^) e"RDR x x (6) 

where x is one of the five quantitative parameters for tiller type (Table 1), HS-delay,^ the HS-delay 

for x-°°, HS-delay0 the HS-delay for x=0 and RDR the relative decline rate. Two values of HS-

delay,^ were evaluated: 1 (plant type 1) and 2 (plant type 2). This equation assumes that HS-delay 

declines with x, which is based on indications from literature (Ito et al., 1987). HS-delay0 and RDR 

were estimated by non-linear regression. 

In the detailed method, leaf number per plant was calculated simply by daily summation of the 

number of leaves of all tillers present. 

Results 

Leaf death 

Under the particular conditions of this experiment (relatively low irradiance; no competition between 

plants), there was no leaf death under any treatment by the time of appearance of the tip of leaf 8. 

Phyllochron 

For spring wheat, the phyllochron of the main stem was well fitted by eqn. 2 (P<0.05), using values 

of 91±5 °C d for Phyllochron^, and 3.5±0.3 mol in2 d"1 for PPFD^ (values with s.e.m.) (Fig. 3). 

Temperature did not have a significant effect on this relationship. The phyllochrons of tillers tO, tl 

and t2, also well fitted by eqn. 2, were between 0 and 14 % longer than the main stem phyllochron. 

However, the phyllochron of tO.O could not be fitted by eqn. 2, and the observed values were very 

high, between 150 and 350 °C d. The phyllochron of the winter wheat main stem was, on average, 

17 % longer than that of spring wheat (data not shown). 

Site filling 

In spring wheat, site filling was always below the value for plant type 2 (Fig. 4a) and linear, quadratic 

or interaction terms of temperature and PPFD did not change site filling significantly (PO.05). The 

standard error of the individual points in Fig. 4a is relatively large, owing to the irregular increase of 

tiller number per plant with HS^, as illustrated for four treatments in Fig. 4b. In winter wheat, site 

filling values reached 0.67, which is close to the value for plant type 1. 
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PPFD(molm2d') 

Figure 3. The phyllochron of the main stem of 

spring wheat as a function of PPFD, for the three 

temperature treatments (•: Tl; O: T2; A: T3). 

Dashed lines indicate asymptotes, and the vertical 

bar indicates twice the mean standard error of the 

phyllochron values. 

(a) (b) 

Plant type 1 / p l a n t type 2 

5 10 

PPFD(molm-2d') 

Figure 4. (a) Site filling in spring wheat (symbols as in Fig. 3) and winter wheat (• : T2) as 

a function of PPFD. (b) Number of tillers per plant (log scale) as a function of HS^ for 

treatments T1L1 (•) , T1L3 (•) , T3L1 (A) and T3L3 (A) in spring wheat.The maximum 

tillering patterns of plant type 1 and 2 are indicated, and the vertical and horizontal bars 

indicate twice the mean standard error of the data points. 
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Figure 5. Specific site usage of different tiller types (primary, secondary and tertiary) for the nine treatments in 

spring wheat. The proportional filling of each box represents the specific site usage, e.g. specific site usage of tO 

is 0 for T2L1 and 1 for T1L3. Asterisks indicate that specific site usage could not be calculated (parent tiller not 

present). 

Detailed method: specific site usage 

Tiller type, temperature and PPFD each had a significant and important effect on specific site usage 

in spring wheat (Fig. 5) and in winter wheat (data not shown). In general, a high specific site usage 

was observed for low temperatures, high PPFD values, high tiller position on the ms (t3 > t2 > tl > 

tO) and low tiller order (primary > secondary > tertiary). The five parameters in Table 1 were used as 

independent variables to quantify tiller type effects per treatment. For each of the nine treatments, 

one of the 'position' parameters (tiller order, tiller position on parent tiller or summed tiller position) 

accounted for most of the variation. For winter wheat, specific site usage of tO, tO.O, tO.l and tl was 

lower than for spring wheat, while for the other tillers specific site usage was higher or equal. 
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Figure 6. HS-delay as a function of the quantitative tiller 

parameter 'HS^ at tiller appearance (plant type 1)' calculated for 

tillers tO, t0.0, tl and t2 (spring wheat: upper line) or tillers tl, 

tl.0, t2 and t3 (winter wheat: lower line) for the nine treatments. 

Symbols for the three temperature treatments are as in Fig. 3, and 

PPFD treatments are represented by marker colour: LI = black; 

L2 = grey; L3 = white. Vertical bars indicate twice the mean 

standard error of the data points. 

Detailed method: HS-delay 

There was a large and significant effect of tiller type on HS-delay for both spring and winter wheat 

with a clear trend of a reduction in HS-delay with higher placement of the tiller on the main stem, 

and with higher tiller order. Of the five tiller parameters tested (Table 1), HS^ at the time the tiller 

appears (plant type 1) with a HS-delay,,^ = 1 accounted best for most of the variation in HS-delay 

using eqn. 6 (HS-delay = 2.2±0.05 and RDR = 0.31±0.038 (spring, PO.05); 2.5±0.32 and 1.2±0.17 

(winter, P<0.05)) (Fig. 6). RDR was much higher for winter wheat than for spring wheat, indicating 

a quick decline of HS-delay to 1 for winter wheat. Most of the data in Fig. 6 fell below HS-delay = 

2, the absolute minimum for plant type 2. 

For spring wheat, temperature and PPFD showed small but significant effects on HS-delay. These 

effects were due to three clearly deviating data points, i.e. T3L3 for tiller tO, T2L1 for tiller tl and 

T3L1 for tiller t2. 
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Days after emergence 
Figure 7. Increase in number of leaves per plant (log scale) of spring wheat 

observed for treatments T1L1 (•), T1L3 (•), T3L1 (A) and T3L3 (A), and 

predicted by the site filling (dashed line) and the detailed methods (solid line) 

(see text). The first harvest was taken as starting point. The vertical bar 

indicates twice the mean standard error of the data points. 

Leaf number per plant 

To calculate leaf number per plant of spring wheat by the site filling method, eqns. 2 and 5 were used 

with Phyllochron.ni,, = 91 °C d, PPFDM = 3.5 mol m"2 d"1 and the measured site filling values for each 

treatment (Fig. 4a). In the detailed method, leaf number per plant was calculated using eqns. 2 and 6, 

with Phyllochron,^ = 91 °C d and PPFDM = 3.5 mol m2
 d

1 for all tillers, RDR = 1.22 , HS-delay,,^ = 

1, HS-delay0 = 2.15, and specific site use values as observed for each treatment and tiller type (Fig. 

5). Initial values were taken from the first harvest for each treatment. 

Fig. 7 compares the resulting lines for each method with experimental data on leaf number per 

plant on a log scale. The site filling method gives a smooth curve with a decreasing slope for 

treatments T1L1, T1L3 and T3L3. For treatment T3L1 the slope increases owing to a relatively low 

initial number of tillers compared with initial number of leaves (eqn. 5). The detailed method shows a 
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discontinuous increase, reflecting the discrete events (leaf and tiller appearance) that are included in 

this method. 

Discussion 

Differences between spring and winter wheat 

Both spring and winter wheat plants formed new tillers up to the end of the observation period, and 

showed an increased specific site usage with higher placement of tillers on their parent tiller. It is, 

therefore, unlikely that the initiation of reproductive development in spring wheat affected the 

tillering process. However, there were clear differences between the two wheat types: spring wheat 

had shorter phyllochrons, a higher HS-delay and a lower specific site usage, except for the tO tiller 

and its daughter tillers. This shows that genotype effects on leaf and tiller number parameters can be 

substantial. 

Does the Fibonacci series represent the maximum tillering pattern? 

This research has shown that plant type 2 (Fibonacci series; HS-delay = 2) does not represent the 

type with the maximum possible number of tillers. Spring wheat and, more clearly, winter wheat 

showed much lower HS-delay values, down to 1 (Fig. 6). Therefore, as in perennial ryegrass 

(Neuteboom and Lantinga, 1989) plant type 1 is more representative of the maximum tillering 

pattern for wheat. This conclusion seems to conflict with a site filling for spring wheat that was never 

higher than 0.49 (plant type 2) (Fig. 4a), but site filling is affected by tiller type effects on 

phyllochron, specific site usage and HS-delay. For example, a decrease of site filling from 0.69 to 

0.49 can be due to (i) a rise in HS-delay from 1 to 2, (ii) a decrease of specific site usage of all buds 

from 1 to 0.63, or (iii) an increase from 1 to 2 in the phyllochron of tillers relative to the main stem. 

It was shown that tiller type indeed has an effect on all these three parameters. These confounding 

effects of tiller type on phyllochron, specific site usage and HS-delay, all three affecting site filling, 

may have led to the incorrect conclusion that the Fibonacci series represent the maximum site filling 

pattern for wheat (Boone et al., 1990). 

Comparison between the site filling and detailed methods 

Both the site filling and detailed methods described the trend of the experimental data on number of 

leaves per plant well (Fig. 7) and both methods can deal with an increasing and a decreasing relative 

growth rate of leaf number in time. Compared with the detailed method, site filling has the strong 

advantage that the effects of environmental factors need only be measured for two parameters: 

phyllochron of the main stem and site filling. However, the site filling method has a number of 

limitations: (i) site filling is not constant (Fig. 4b); (ii) differences in site filling are difficult to 
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interpret, since they can be due to effects on the phyllochron of tillers relative to the main stem, 

specific site usage and HS-delay of appearing tillers; and (iii) because the site filling method does not 

give information on which tiller types appear, leaf area growth can be included only if leaf area 

growth is equal for every tiller. Since this is certainly not true (Chapter 3), the detailed method is 

preferred if the regulation of the parameters involved in this method is sufficiently understood. 

Regulation of phyllochron 

The degree-day concept, adjusted for PPFD effects (eqn. 2), fitted the data on phyllochron well, and 

estimates of Phyllochron^ and PPFDM were close to what has previously been found (Volk and 

Bugbee, 1991; McMaster et a!., 1991). At higher temperatures, the degree-day concept will fail and 

other equations (e.g. Volk and Bugbee (1991), Yin et al. (1995)) should be used. Tillers tO, t l , t2 

had longer phyllochrons than the main stem, although differences were small, but tiller tO.O had a 

much longer phyllochron, which could be related to the unfavourable positions of prophyll and 

coleoptile tillers, as also found by Kirby et al. (1985) and Skinner and Nelson (1992). 

Regulation of specific site usage 

Specific site usage increased significantly with higher primary tiller position, as also observed for 

wheat by Rickman et al. (1985), for barley by Cannell (1969) and for ryegrass by Mitchell (1953). 

Lower PPFD values reduced specific site usage of lower primary tillers in the current experiment, as 

was also found by Mitchell (1953) and Rickman et al. (1985), and higher temperatures reduced site 

usage, in agreement with the findings of Mitchell (1953) and Cannell (1969). It appears that 

environmental factors have their greatest impact on specific site usage during early growth. 

Generally, the following factors have been found to reduce specific site usage: (i) low nutrient 

availability (Van Loo et al., 1992); (ii) low carbohydrate availability (Davies, 1965); and (iii) a low 

red/far-red ratio (Casal et al., 1990). In the current experiment, nutrients were adequately supplied at 

fixed HS^, and the red/far-red ratio was high (>2). Carbohydrate availability could therefore have 

been responsible for the observed differences between light and temperature treatments. 

Since one of the three 'position' parameters (Table 1) always accounted for most of the variation 

in specific site usage, plant carbohydrate availability can not explain differences in specific site usage 

between different tiller types. If carbohydrate availability is the key factor involved, two mechanisms 

could be responsible for tiller type effects on specific site usage: (i) sinks (e.g. tiller buds) close to the 

source for carbohydrates (visible leaf blades) have highest priority; (ii) the amount of carbohydrates 

needed for a bud to grow out into a visible tiller differs between buds. 

There is evidence that, in wheat, assimilates are translocated preferentially to the sink closest to 

the assimilating leaf (Rawson and Hofstra, 1969; Cook and Evans, 1978). Based on this evidence, 

the following simple hypothesis is proposed: only the parent tiller supplies carbohydrates for the 

appearance of its daughter tiller, and the relative sink strength of the tiller bud (i.e. the sink strength 
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Figure 8. Specific site usage of four daughter tillers as a function of the total dry matter 

increase of the parent tiller per phyllochron (see text). For a given tiller, one data point 

represents a treatment. (•) t0.0; (O) tO.l; (•) tl.0; (•) t2. Fitted logistic curves are shown 

for each tiller type. 

of the tiller bud divided by the sum of the sink strengths on the parent tiller) is independent of 

temperature and PPFD. If so, a positive relation must exist between the dry matter increase of the 

parent tiller per phyllochron at the time of appearance of the daughter tiller and the specific site 

usage of that daughter tiller. In the current experiment root weight per tiller was not measured, but 

was calculated by assuming that each tiller type had a share in root weight proportional to its above-

ground weight. Fig. 8 shows that there is a positive relation between the specific site usage and the 

dry matter production (leaves, sheaths and roots) per phyllochron of the parent tiller. The 

relationship varied with tiller type: e.g. tO.O appeared at a lower dry matter production per 

phyllochron of its parent tiller than the other tillers. 

This mechanism of carbohydrate availability could explain differences in specific site usage 

between different PPFD and temperature conditions. Differences between tiller types could occur 

owing to bud size: e.g. tO.O buds are relatively small and need a smaller amount of assimilates to 

grow out, as reflected in the small size of the first leaves of this tiller compared with other tillers 

(Chapter 3). 
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Figure 9. Published values of HS-delay as a function of quantitative tiller 

parameter 'HS^ at tiller appearance (plant type 1)' for several Gramineae 

species: (•) winter wheat (Klepper et al., 1982, their table 1 (field)); (•) 

winter wheat (Masle-Meynard and Sebillotte, 1981, their figure 1: pots 

treatment (growth chamber)); (A) winter wheat (Rickman et al, 1985, their 

figure 5 (growth chamber)); (A) ryegrass (Mitchell, 1953, his figure 6, 

treatment S.R. 2000-50 (growth chamber)); (V) orchardgrass (Ito et al. (1987), 

their table 1 (growth chamber)); (0) tall fescue (Ito et al. (1987), their table 1 

(growth chamber)). Data were fitted with eqn. 6; each curve starts within the 

marker of the matching data set. 

Regulation of HS-delay 

The HS-delay of both spring and winter wheat depended mainly on the tiller timing parameter: 'HS,,^ 

calculated from plant type 1', and much less on tiller position parameters, PPFD or temperature. This 

implies that HS-delay does not depend primarily on specific effects of light or temperature, nor on 

assimilate availability of the whole plant or at the tillering site. Apparently, HS-delay is determined 

principally by stage of plant development. 

Spring and winter wheat showed large difference in HS-delay for equal tiller positions. Fig. 9 

shows values of HS-delay for primary tillers of grasses and cereals, which could be calculated from 

literature. In two experiments, the HS-delay was as low as 1, for ryegrass (Lolium spp.) (Mitchell, 

1953) and tall fescue (Festuca arundinacea Schreb.) (Ito et al., 1987), indicating that variation in 

HS-delay among species of Gramineae is large. 
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Fig. 6 and 9 show a clearly decreasing HS-delay with plant development stage, which is at 

variance with the constant HS-delay often assumed (Davies, 1974; Masle-Meynard and Sebilotte, 

1981; Neuteboom and Lantinga, 1989). Why tillers are delayed at an early plant development stage 

independent of environmental conditions is unknown. At later stages plants seem to reach a more 

constant HS-delay. 

PPFD showed little effect on HS-delay, as also shown by data for orchardgrass (Dactylis 

glomerata L.) and tall fescue (Ito et al., 1987), and winter wheat for tiller tO (Peterson et al., 1982); 

temperature had a small effect on HS-delay. Tillers with a specific site usage of less than 1 showed a 

markedly higher HS-delay (Fig. 5 and 6), indicating that the HS-delay increases with higher 

temperatures or lower PPFD values only when conditions are only just satisfactory for tiller 

appearance. 

Towards a dynamic mechanistic model 

Phyllochron has been studied extensively, and existing models (e.g. Volk and Bugbee, 1991) can be 

used for simulation. In a dynamic model, the HS-delay can be seen as a 'window of opportunity', 

which opens after the parent tiller has reached a certain HS. Then the assimilate production of the 

parent tiller, the relative sink strength of the tiller bud, and the amount of assimilate needed to grow 

out into a visible tiller, determine whether the bud develops into a visible tiller (specific site usage). 

As can be seen in Fig. 10, phyllochron, HS-delay, and specific site usage have an important effect on 

leaf number per plant. This concept could be the basis for modelling leaf and tiller dynamics of 

Gramineae species in which effects of PPFD and temperature, and probably also other factors (C02, 

plant density) could be included. We are currently developing such a model. 
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Figure 10. Effect of a 20 % reduction in phyllochron, HS-delay or specific site usage of each tiller on the 

number of leaves per plant relative to the original values for treatment T1L3. Day 21 (first harvest) was 

considered as starting point. 
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Chapter 3 

Growth of individual leaves of spring wheat (Triticum aestivum L.) as 

influenced by temperature and photosynthetic photon flux density 

with J. H. Neuteboom 

Abstract 

Existing models of leaf area expansion of Gramineae species based on individual leaf growth are 

descriptive and assume that there is no effect of tiller type on individual leaf area. However, sound 

experimental data on the growth of individual leaves on a plant are lacking. A growth chamber 

experiment was carried out with young spring wheat {Triticum aestivum L.) plants, and individual 

leaf area variables were measured. Treatments were temperature (daily mean 10.5, 15.5 and 20.5 °C) 

and photosynthetic photon flux density (PPFD) (111, 191 and 286 umol m2 s"1). Effects of leaf 

position and tiller type on maximum leaf width and leaf elongation rate (LER) could be explained by 

a new assumption, that maximum leaf width, and LER, of a leaf depend on the values for the 

previous foliar leaf on the same tiller, or on the parent tiller. LER increased linearly with temperature 

and was not affected by PPFD, whereas maximum leaf width was not influenced by temperature or 

PPFD. Leaf elongation duration was closely related to phyllochron expressed in days, although this 

relation was slightly modified by PPFD. Equations formulated for each leaf area variable accounted 

for 90% of the variation in leaf area between different leaf types, temperatures and PPFD values. The 

results give a better general understanding of individual leaf growth of Gramineae species and can be 

used in the development of more mechanistic models for the simulation of leaf area expansion. 
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Introduction 

In the early stages of development, leaf area largely determines the rate of crop growth (Goudriaan 

and Van Laar, 1994). Therefore, an accurate simulation of leaf area is a prerequisite for the 

modelling of dry matter production. In a companion paper, the leaf number dynamics of spaced 

wheat (Triticum aestivum L.) plants from an experiment involving the variation of temperature and 

light conditions were discussed (Chapter 2). The current paper discusses data, from the same 

experiment, on area expansion of individual leaves at different leaf positions. 

The expanding leaf blades of dicotyledonous species increase both in length and width, whereas 

the visible leaf of monocotyledonous species increases only in length, because the width remains 

unchanged once it has emerged from the sheath bundle (Dale, 1988). Consequently, four variables 

must be estimated to analyse the area expansion of individual leaves of monocotyledonous species: 

(i) leaf elongation rate (LER; a list of abbreviations is given in Appendix I), (ii) leaf elongation 

duration (LED), (iii) maximum leaf width, and (iv) a constant, k, relating fully-expanded leaf length 

and maximum leaf width to fully-expanded leaf area. 

In the literature, LER, LED, maximum leaf width and k have been assessed for one or more 

leaves of the main tiller (e.g. Kirby, 1973; Schnyder and Nelson, 1989). The interactions with tiller 

type and environmental factors are largely unknown, and rough generalisations have been made in 

the construction of simulation models of leaf area expansion based on the growth of individual leaves 

and tillers (e.g. Amir and Sinclair, 1991; Wilhelm et al, 1993). In the current experiment, these 

interactions are quantified with the objective of providing a better basis for the simulation of leaf area 

expansion of Gramineae species. 

In the experiment, temperature was varied because it has large effects on the rate of leaf area 

expansion (Hay and Tunnicliffe Wilson, 1982; Reid et al, 1990) and it varies greatly under field 

conditions. Effects of photosynthetic photon flux density (PPFD) were studied because reduction in 

PPFD below the saturation level for photosynthesis reduces the rate of dry matter production and 

relatively low PPFD values could also cause differences in area expansion between individual leaves 

when plants compete for light. Spaced plants were used, to keep the measured effects of temperature 

and PPFD free from interactions with crop shading. Spring wheat was chosen as a representative of 

the Gramineae, because it is easy to grow and to measure. Moreover, it is a well-documented 

species, cultivated world-wide. 
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Materials and methods 

Experimental setup 

The design of the experiment has been described in Chapter 2. In brief, spaced spring wheat plants 

were grown in pots, filled with sand, in growth chambers differing in day (12 h) / night (12 h) 

temperature (Tl: 13/8 °C; T2: 18/13 °C;T3: 23/18 °C). Sufficient nutrients and water were 

supplied to meet growth requirements. Within each growth chamber, three compartments were 

established, with photosynthetic photon flux densities of 111 (LI), 191 (L2), and 286 (L3) umol ni"2 

s"1 immediately above the plants. Daylength was set at 14 h d"1. 

Tiller and leaf identification 

Tillers and leaves were identified using the system of Klepper et al. (1982), counting the leaves 

acropetally, with the coleoptile or prophyll named lfO and the first foliar leaf lfl. The seedling stem 

was the main stem (ms). Other tillers were named after their parent leaf, e.g. tO was the tiller from 

the axil of lfO. Higher-order tillers were indicated by additional digits; for example, tl.O was the tiller 

from the axil of lfl.0 (i.e. the prophyll of tl). Tiller tl.O was the "daughter" tiller of t l , which in turn 

was its "parent" tiller. 

Measurements and calculation of variables 

Plants were harvested at consecutive Haun stages (HS; Haun, 1973) of the main stem: i.e. eight 

plants per treatment at mean HS^ of 3.2,4.2, 5.2, 6.2 and 7.2. The lengths and maximum widths of 

the emerged part of all leaves, and the lengths of the fully-expanded sheaths of seven plants were 

measured and the dry weights of the various organs were obtained, after drying at 70 °C to constant 

weight. The eighth plant of each sample was used to measure the length, maximum width, and width 

at six or seven equidistant places over the entire length of each new fully-expanded leaf. Leaf area 

was calculated from leaf length and leaf widths using numerical rectangular integration, and the leaf 

shape factor k was calculated for each leaf using: 

k = Leaf area „ . 
Leaf length x Maximum leaf width 

For the analysis of final leaf area and maximum leaf width, data were used from leaves, from the 

destructive harvests, which had just reached full expansion. 

Plants reserved for the last harvest were used throughout growth for the collection of data on 

LER and LED by measuring the visible lengths (i.e. from the tip to the youngest visible ligule) of all 

growing leaves at a fixed time of the day four times per phyllochron. According to Gallagher (1979), 
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Figure 1. Estimation of time of leaf appearance, leaf elongation rate (LER), leaf elongation duration (LED), 

phyllochron and Dv The number of data points used in fitting the two lines for leaf A. was varied, and the 

solution with the least residual sum of squares was chosen. Data points of a representative leaf are given; in this 

case, a fit of the first line using the first four data points and the second line using the remaining two data points 

yielded the best solution. 

the LER of visible leaf blades is relatively constant for wheat until it abruptly drops to zero. 

Therefore, these data could be used to estimate LER, LED and the time of leaf appearance from a 

two-fold regression as shown in Fig. 1. 

Data analysis 

Three hypotheses which give quantitative expression of the effects of leaf type on LER and 

maximum leaf width were tested for each treatment. Hypothesis A assumes that LER, or maximum 

width, of a leaf is determined by leaf appearance day (Kemp, 1981b). Hypothesis B assumes that 

LER, or maximum width, is determined by leaf position on the tiller (Amir and Sinclair, 1991; 

McMaster et al, 1991; Van Loo, 1993). A new hypothesis, C, assumes that LER, or maximum 

width, of a leaf is determined by the value of the previous foliar leaf on the same tiller, or on the 

parent tiller. To test hypothesis C, a new parameter 'summed leaf position' was used as a quantifier 

for leaf type effects. Summed leaf position is equal to the sum of all the numbers in the designation of 
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Table 1. Three quantitative parameters calculated for seven selected leaf types. 

Leaf type Leaf appearance day1 

(see text) (Hypothesis A) 

Leaf position on tiller Summed leaf position 

(Hypothesis B) (Hypothesis C) 

lfl 

1£2 

lfi 

lfO.l 

lfl.3 

lf2.1 

lfi.0.2 

= observed values were used 

the leaf (e.g. for 10.0.1 this is 3+0+1=4; Table 1). C is quite different from the other two hypotheses: 

e.g. 1£2 appears at an early plant stage (hypothesis A), and both its position on the tiller (hypothesis 

B) and its summed leaf position (hypothesis C) are equal to 2, whereas lfl.0.0.1 appears at a later 

plant stage, its position on the tiller is equal to 1 but its summed leaf position is equal to 2. Observed 

appearance day (hypothesis A), leaf position on the tiller (hypothesis B) and summed leaf position 

(hypothesis C) were used as independent parameters, and the best independent variable was selected 

which accounted for the most variation in LER, or maximum leaf width, using a biologically realistic 

equation (Appendix II). 

Since LED is strongly related to phyllochron (Van Loo, 1993; Yin and Kropff, 1996), it was 

evaluated using the following equation (see Fig. 1): 

LED leaf X = (Time of appearance leaf (A. +1) - Time of appearance leaf X) * Dx (2) 

where X is the acropetally counted position of a leaf on a tiller, and Dx the LED of leaf A expressed 

in phyllochrons. 

Linear, quadratic and interactive effects of temperature and PPFD were analysed by a stepwise 

regression (McCullagh and Nelder, 1989). The term which accounted for most of the variation was 

included if its contribution was significant (P < 0.05). The percentage of variance accounted for was 

expressed as the adjusted R2 statistic: 

Residual mean square 
R

2
 = 100 x (1 -

adj Total mean square 
) (3) 

33 



Results 

LER 

For six out of the nine treatments, summed leaf position (Table 1) accounted for most of the 

variation in LER. Since careful examination of the data showed that leaves which had appeared after 

FES™, = 4.7 always had lower LER than fitted (e.g. Fig. 2a), the analysis was repeated for leaves that 

had appeared before HS™ = 4.7 only. For eight treatments, summed leaf position accounted for most 

of the variation, and only LER in treatment T3L1 was better predicted using leaf position on the 

tiller. Averaging over all treatments, R2^ was 69% using summed leaf position as the independent 

variable (hypothesis C), and 37% for both leaf appearance day (hypothesis A) or leaf position on a 

tiller (hypothesis B) as independent variables. Averaging over all treatments, with summed leaf 

position as the independent variable, the negative exponential function (eqn. a, Appendix II) 

accounted for most of the variation. 

(a) (b) (c) 

70 

60 

£- 50 
•b 

§ 40 

a 30 
J 20 

1 2 3 4 5 6 

Summed leaf position 

0 5 10 15 20 

Daily average temperature (°C) 

1 2 3 4 5 

Summed leaf position 

Figure 2. (a) LER in treatment T1L3 as a function of summed leaf position. The negative exponential equation 

(eqn. a, Appendix II) was fitted to data of leaves that appeared before HS™, = 4.7 (circles) (R2
adj = 90%). Data of 

leaves that appeared after HS,,,, = 4.7 are also drawn (squares). Filled symbols indicate main stem leaves, open 

symbols on other tillers, (b) LER, (D; i.e. LER at summed leaf position = 1 as fitted by the negative exponential 

equation), LER3 (o) and LER5 (A) for each treatment as linear functions of temperature with base temperature = 

0 °C, including only leaves appearing before HS^ = 4.7 (R2^ = 97%). (c) LER as a function of summed leaf 

position for leaves appearing before HSms= 4.7 fitted by equation 4 (R2
dJ = 83%). Data points are means of leaf 

type for each treatment (Tl: (D); T2: (O); T3: (A)). The vertical bar indicates twice the mean standard error. 
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The effects of variation in temperature and PPFD on fitted LER, (LER at summed leaf position = 

1; explained in Appendix II), LER3 (LER at summed leaf position = 3), and LER, (LER at summed 

leaf position = 5) were examined. Stepwise regression showed for all three leaf variables, only a 

linear effect of temperature was significant, and there were no significant PPFD, quadratic or 

interaction effects. Since the estimated intercept with the temperature-axis did not vary significantly 

between leaf positions, and was not significantly different from 0 °C, a base temperature of 0 °C was 

used and the slopes estimated for LER^ LER3 and LER5 (Fig. 2b). Combining the linear effects of 

temperature on LER^ LER3 and LER, with a base temperature of 0 °C, and the effects of summed 

leaf position on LER, yielded the following equation: 

LER = (gTd - fTd) (1 - e-ciSum^d leaf position - 1)) + JJ^ ^ 

where LER is in mm d"1, c is a fitted constant, Td is the mean daily temperature, fTd is the LER for 

summed leaf position = 1, and gTd is the LER for summed leaf position - °°. This three-parameter 

(c, f and g) equation predicts LER in terms of leaf position and temperature before HS^ = 4.7. The 

full data set (all treatments and leaf types appearing before HS™ = 4.7) was used to estimate c, f and 

g, and the results are shown in Fig. 2c (c = 0.60±0.055; f = 1.7±0.04 mm °C d"1; g = 3.4±0.07 mm 

°C d"1; values with s.e.). 

LED 

LED was closely correlated with phyllochron (expressed in days; Fig. 1). Careful examination of the 

data showed that the relation between LED and phyllochron was different for main stem leaf 1. For 

this leaf, temperature and PPFD had no significant effect on the relationship (Fig. 3a). For the other 

leaves, increase in PPFD caused a significant increase in Dx (Fig. 3bcd), although the differences 

were not large. The following equation set was obtained (values with s.e): 

LED = 0.96±0.013 x Phyllochron for leaf 1 on the ms 
LED = (1.10±0.01 + 0.0071 ±0.00142 x PPFD) x Phyllochron for other leaves

 (i) 

where LED and phyllochron are in days and PPFD in mol m"2 d"1. Combining the relationship 

between phyllochron (expressed in thermal time with base temperature of 0 °C) and PPFD in 

Chapter 2 with eqn. 5 in the current paper gives LED values of 147, 127 and 123 °C d for treatments 

LI, L2 and L3 respectively. 
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Figure 3. LED as linear function of phyllochron (eqn. 5). Data points are per leaf (not means per treatment): (a) 

relationship independent of temperature and PPFD for main stem leaf 1 (R2^ = 86%); and relationships 

dependent on PPFD (eqn. 5) for all other leaves combined: (b) LI; (c) L2; (d) L3 (R2^ = 84%). 
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Maximum width 

Summed leaf position (Table 1) accounted for most of the variation in maximum leaf width, except 

for treatment T3L1. Since examination of the data showed that most of the unaccounted variation 

was caused by leaves that had appeared after H S ^ = 4.7 (e.g. Fig. 4a), the data were reanalysed 

including only those leaves that had appeared before HS™ = 4.7. Again, summed leaf position 

accounted for most of the variation except for treatment T3L1. Averaging over all treatments, R2^ 

was 86% using summed leaf position as the independent variable (hypothesis C), and 60 and 63% 

using leaf appearance day (hypothesis A) or leaf position on a tiller (hypothesis B) respectively; the 

logistic function (eqn. c, Appendix II), using summed leaf position, accounted for most of the 

variation. Maximum widths of leaves appearing after H S ^ = 4.7 were larger than predicted by the 

fitted equation if the leaf position on a tiller was greater than 1 and lower than predicted if leaf 

position on a tiller was equal to 1. 

(a) (b) 
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in .3 1£2.3 

lfl.0.2 
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O 
1£2.1 (T3L1) 

1 2 3 4 5 6 

Summed leaf position 

1 2 3 4 5 

Summed leaf position 

Figure 4. (a) Maximum leaf width in treatment T1L3 as a function of summed leaf position. The logistic 

equation (eqn. c, Appendix II) was fitted to data of leaves that appeared before HS^ = 4.7 (circles) (R^ = 

92%). Data of leaves that appeared after HSras= 4.7 are also given (squares). Filled symbols indicate main stem 

leaves, open symbols on other tillers, (b) Maximum width as a function of summed leaf position of leaves 

appearing before HS,,,, = 4.7 fitted using the logistic function (eqn. 6; R2^ = 84%). Data points are means of leaf 

type for each treatment. The vertical bars indicate twice the mean standard error. 
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The effects of variation in temperature and PPFD on fitted maximum width at summed leaf 

position =1 ,3 and 5 were examined (explained in Appendix II). Linear, quadratic and interaction 

terms of temperature and PPFD had no significant effect on any of the three variables. Therefore, the 

full data set (all treatments and leaf types appearing before HS,,,, = 4.7) was used to give a single 

logistic equation (values with s.e): 

Maximum leaf width = 
22 ±2.5 

,2.1 ±0.09 - 0.45±0.03 x Summed leaf position 
(6) 

where maximum leaf width is in mm. The widths two leaf types (i.e. If 2.1 and If 2.2 in treatment 

T3L1 (Fig. 4b)) were clearly underestimated using this model. 

10 20 30 40 50 

Measured leaf area (cm2) 

Figure 5. Predicted (using equations 4, 5, 6 and 7) vs. measured areas of individual leaves. Each data point 

represents the mean area for each leaf type and treatment for leaves appearing before HS^ = 4.7. R2^ of the 1:1 

line was 90%. The horizontal bar indicates twice the mean standard error. 
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Value ofk 

The leaf shape factor k (eqn. 1) was slightly dependent on temperature, but not on PPFD (values 

with s.e.): 

k = 0.77±0.02 + 0.003±0.0011 x Td (R
2 = 4%) (7) 

where Td is daily mean temperature (°C). 

Leaf area 

Equations 4, 5, 6 and 7 were used to predict the fully-expanded area of leaves appearing before HSra 

= 4.7 in terms of tiller type, leaf position on the tiller, temperature and PPFD. Fig. 5 shows that this 

set of equations accounted for 90% of the total variation in individual leaf area. 

Discussion 

Calculation ofLER and LED 

Lengths of visible leaf blades were measured four times per phyllochron and subsequently LER and 

LED were calculated (Fig. 1). In this way, all elongating leaves on a plant could be measured rapidly. 

However, before leaf appearance, the blade elongates within the encircling sheaths and the last phase 

of visible elongation of the blade is caused by elongation of the sheath (Skinner and Nelson, 1995). 

Thus, LER as measured in this research consists of the last part of blade elongation followed by 

sheath elongation. This should be kept in mind when this data set is compared with real blade 

elongation rates, for example measured with a radial position transducer (Volenec and Nelson, 1982; 

Skinner and Simmons, 1993). 

Usually elongation of a single leaf in time is well described using a logistic function (Kemp, 

1981a; Skinner and Nelson, 1995). The exponential phase of the logistic curve occurs within the 

encircling sheaths and was therefore not measured in this research. The exponential decrease in the 

rate of blade elongation at the end of the elongation phase was probably compensated by the 

exponential increase in the rate of elongation of the sheath, thus obtaining a growth curve as shown 

in Fig. 1. 

Regulation of LER 

At an early stage of development, LER increased with main stem leaf position, as also found by 

Kirby (1973) and Robson (1973). The decrease in LER after HS^ = 4.7, observed in all treatments, 

is not likely to be caused by nutrient limitation, because all treatments received the same amount of 

nutrients per main stem phyllochron, while biomass accumulation and tillering per main stem 
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phyllochron varied between treatments. Borill (1959) found strong effects of inflorescence initiation 

on leaf length. Inflorescence inititation was not determined here but, since stem elongation started at 

approximately HS^s
= 5, it is possible that reproductive development was associated with the 

decrease in LER. 

In the new approach advanced here, not only the main stem leaves, but all leaves on a plant, were 

considered. Kemp (1981b) suggested that the plant is physiologically integrated and that the LER of 

all simultaneously-growing leaves are equal. This might be true at later stages of plant growth, but at 

earlier stages, this hypothesis did not account for most of the variation. Others have assumed that 

leaf position on a tiller determines LER (Amir and Sinclair, 1991; McMaster et al., 1991; Van Loo, 

1993), but this hypothesis did not account for most of the variation either. Instead, a new hypothesis 

proved to be the most valuable: leaf types should be quantified in terms of summed leaf position 

(Table 1). Using summed leaf position as an independent variable means that the LER of a leaf 

depends on the LER of the previous foliar leaf on the same tiller or on the parent tiller (prophylls are 

omitted). Thus the LER of main stem leaf 3 depends on the LER of main stem leaf 2 and the LER of 

leaf 1 on tiller t3.0 depends on the LER of main stem leaf 3. 

A possible morphological explanation for the close relationship between summed leaf position and 

LER is that LER, as well as other leaf dimensions, depend on the size of the apex (Abbe et al, 1941; 

Pieters and Van den Noort, 1988; Pieters and Van den Noort, 1990) which increases with each 

appearing leaf. 

LER increased linearly with temperature up to 20.5 °C (Fig. 2b), while effects of PPFD were not 

significant. Detailed studies have revealed that LER was reduced only at very low carbohydrate 

concentrations (Kemp and Blacklow, 1980; Kemp, 1981a; Sambo, 1983), and that water potential 

(Sambo, 1983), sucrose-metabolising enzymes (Kalt-Torres and Huber, 1987), length of the 

elongation zone (Schnyder and Nelson, 1989) and temperature (Hay and TunniclifFe Wilson, 1982) 

have much larger effects on LER. It has been reported that shading can increase the length of the 

elongation zone, and LER (Schnyder and Nelson, 1989; Kemp, 1981a), but this effect was not 

observed in this research. 

Regulation of LED 

LED and phyllochron, expressed in days, were closely related (Fig. 3). This supports the proposition 

of Tesafova et al. (1992) and Skinner and Nelson (1995), that consecutive leaves are synchronized in 

their growth and development. For main stem leaf 1, LED was shorter than the phyllochron (D^ < 1; 

Fig. 3a), which means that there was a short period when main stem leaf 1 had stopped elongating 

but main stem leaf 2 had not yet appeared. For the other leaves on a plant, there is a period during 

which two leaves on one tiller are elongating at the same time (D^ > 1; Fig. 3bcd). For these other 

leaves, increase in PPFD was associated with an increase in Dk (eqn. 5). This effect of PPFD on DA 

may result from the negative effects of PPFD on sheath lengths, since a rapidly increasing sheath 
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length could delay leaf appearance, thereby increasing the phyllochron (eqn. 2). To test this 

hypothesis, instead of leaf appearance day, leaf initiation day was calculated, following Skinner and 

Nelson (1994): 

Initiation day leaf X = Appearance day leaf X - £• ^ - (8) 
LER leaf X 

where the sheath length of leaf (X-2) is the length of sheath that leaf A has to traverse before 

appearing. Using initiation day instead of appearance day in eqn. 2, the value of D^ still increased 

significantly with PPFD. However, since eqn. 8 assumes that the LER of the unappeared leaf is equal 

to the LER after appearance (which is certainly not true (Skinner and Nelson, 1995)), effects of 

PPFD on D ,̂ acting through effects on sheath length, can, therefore, not be ruled out. 

Regulation of maximum leaf width 

In the early stages of plant development, maximum leaf width increased with main stem leaf position 

as found by Friend et al. (1962) and Wilson and Cooper (1969a). After HS^ = 4.7, maximum widths 

of the youngest leaves on a tiller were larger than predicted, whereas the first leaf on a tiller had a 

smaller maximum leaf width (Fig. 4a). Inflorescence initiation may have taken place around HS^ = 

4.7. After inflorescence initiation, apical dominance increases such that leaves on existing tillers 

might become broader, while leaves on new emerging tillers could become narrower than expected. 

As found for LER, summed leaf position (Table 1) accounted for most of the variation in 

maximum leaf width, in contrast to previous hypotheses (Kemp, 1981b; Amir and Sinclair, 1991; 

McMaster et al., 1991; Van Loo, 1993). A possible explanation is that leaf dimensions depend on the 

size of the apex (Abbe et al, 1941; Pieters and Van den Noort, 1988; Pieters and Van den Noort, 

1990) which increases with the appearance of each new leaf. A logistic curve accounted for most of 

the variation, but the part of this curve with decreasing slope could not be evaluated (Fig. 4b). 

However, there is other evidence that the relation between maximum leaf width and leaf position on 

the main stem is logistic (Borrill, 1959). 

There were no statistically significant effects of temperature or PPFD on maximum leaf width, 

confirming other results (Forde, 1966; Friend and Pomeroy, 1970; Wilson and Cooper, 1969b; 

Allard et al., 1991). Friend et al. (1962) found that only in more extreme conditions (average 

temperature above 20 °C or PPFD values below 106 umol m"2 s"1) was maximum leaf width reduced. 

These conditions are outside the ranges studied here. 

Regulation ofk 

The value ofk was only slightly influenced by temperature (eqn. 7). For maize (Zea mays L.) leaves, 

only small effects of genotype, plant density or leaf position on k were found (Van Arkel, 1978; 
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Sanderson et al, 1981). It appears, therefore that length and maximum width are good estimators of 

leaf area, as they are largely independent of environmental conditions and leaf type. 

Towards a dynamic mechanistic model 

Models of leaf area growth of Gramineae species can be divided into two types: (i) leaf area is 

calculated from the leaf weight/shoot weight ratio and specific leaf weight (e.g. SUCROS models 

(Spitters et al, 1989)) and (ii) leaf area is calculated from the increase in leaf and tiller numbers and 

area expansion of individual leaves. Results of models of the first type are not satisfactory, because 

they ignore that the dynamics of leaf area and leaf dry weight are controlled by different 

physiological processes. Models of the second type have the capability to simulate the area expansion 

more adequately, because variables such as leaf appearance and elongation are more directly 

governed by physiological and morphogenetic processes. However, existing models of the second 

type are descriptive. Final leaf lengths and maximum leaf widths are usually not predicted but 

empirical (Porter, 1984; Van Loo, 1993) or derived from a fitted descriptive function (Wilhelm et 

al, 1993; Carberry et al, 1993). Leaf length and width at certain leaf positions of different tillers are 

assumed to be equal (Porter, 1984; Van Loo, 1993) or slightly different (Wilhelm etal, 1993). The 

current analysis introduces a method to calculate effects of all possible leaf types on leaf variables. 

Eqns. 4, 5, 6 and 7 provide a sounder basis for a mechanistic morphological model of growth of 

leaf area at early plant stages. Together with the equations developed for the dynamics of leaf 

number (Chapter 2), leaf area per plant can be simulated in principle. These relationships can also be 

developed for other Gramineae species and effects of factors such as plant density and nitrogen 

supply can also be included. 

Appendix I: List of abbreviations 

c, f, g fitted constants (eqn. 4) 

k leaf shape factor relating leaf length and maximum width with area 

If leaf position on a plant counted acropetally 

ms main stem 

t tiller type 

D^ parameter relating phyllochron and LED of leaf A (eqn. 2) 

HS Haun Stage 

L Light treatment 

LED Leaf Elongation Duration (d) 

LER Leaf Elongation Rate (mm d"1) 

LERx LER fitted with the negative exponential equation at summed leaf position = x 
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PPFD Photosynthetic Photon Flux Density 

R2^ Percentage of variance accounted for (eqn. 3) 

T Temperature treatment 

Td Daily mean temperature (°C) 

X leaf position on a tiller counted acropetally 

Appendix II: Use of biologically realistic equations for data analysis 

Leaf appearance day (hypothesis A), leaf position on a tiller (hypothesis B) or summed leaf position 

(hypothesis C) (Table 1) were used as independent variables (x) to account for variation in the 

dependent variables (y), maximum leaf width or LER. Biologically-realistic relations between y and x 

were fitted to test which hypothesis accounted for most of the variation. The following equations 

were evaluated: i) the negative exponential equation, often used for the photosynthesis-light response 

(Goudriaan and Van Laar, 1994); three S-shaped curves (Cao et al, 1988): (ii) the Gompertz 

function, (iii) the logistic equation and (iv) the Richards function; (v) a bell-shaped curve (Stewart 

and Dwyer, 1994). R2^ was determined for each of the 15 hypothesis-equation combinations. The 

hypothesis-equation combination with the highest R2^ was selected. 

Effects of temperature and PPFD on the standard variables of the selected equation were not 

directly analysed, because the data range was limited and variables such as maximum asymptotic y-

value are, therefore, estimated with a large standard error. For a three-parameter equation and x 

ranging from 1 to 5, three new parameters were calculated that: (i) fully determine the equation, (ii) 

have a low standard error and are not closely correlated, and (iii) cover the data range. These new 

parameters are y! (the fitted y value for x=l), y3 (the fitted y value for x=3) and y5 (the fitted y value 

for x=5) (y=LER or maximum leaf width; x=summed leaf position). 

The negative exponential equation is: 

y
 = ^max - yx) * Q -

e
 ~

c x}
)
 +

 y\ (?) 

where y is LER or maximum width, x is leaf appearance day, leaf position on a tiller or summed leaf 

position, y,^ the maximum asymptotic y value, y, the y value at x=l and c a fitted constant. Three S-

shaped curves were evaluated (Cao et al, 1988), (i) the Gompertz function: 

y = y^eC'e (b) 

with Cj and Cj fitted constants; (ii) the logistic function: 
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(c) 

and (iii) the Richards function: 

1 + e "(c< + c > x ) 

y = ^ 2 2 (d) 

(1 + e
 Ci

 ) '
3 

When c3 = 1, this equation equals the logistic function and when c3 - °° this equation equals the 

Gompertz function. Finally, a bell-shaped curve developed by Stewart and Dwyer (1994) was 

evaluated: 

c,(x~c7)
2
 + c-Xx-c~f , N 

All constants were estimated with non-linear regression. The equation which explained most 

variation (highest R2^) was selected. 
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Chapter 4 

Morphological analysis of leaf growth of maize: responses to 

temperature and photosynthetic photon flux density 

withH. Tijani-Eniola and P.C. Struik 

Abstract 

Existing models of leaf area expansion otGramineae species are empirical and species-specific. To 

increase understanding of the mechanisms involved in leaf area expansion, effects of environmental 

factors on leaf growth of the non-tillering species maize (Zea mays L.) were analysed quantitatively. 

A growth chamber experiment was carried out with the cultivar Luna including different 

combinations of temperature (daily average 10.5, 15.5, 20.5 or 25.5 °C) and photosynthetic photon 

flux density (PPFD) (104,185 or 277 umol m"2 s"1); leaf appearance rate and leaf growth variables 

were measured. At 10.5 °C, a high proportion of the plants died due to prolonged exposure to cold 

stress. Both high temperatures and high PPFD values increased leaf appearance rate. Maximum leaf 

width was highest at intermediate temperatures and high PPFD values, and was strongly related to 

specific leaf weight (R2^ = 0.88). At higher temperatures leaf elongation rate was greater and leaf 

elongation duration was lower, resulting in a maximum final leaf length at 20.5 °C. At lower PPFD 

values leaves were slightly longer, caused by a prolonged leaf elongation. Leaf shape was described 

with a new function and was different for Leaves 1 and 2 than for higher-positioned leaves. The 

observed relationships are useful for dynamic simulation of leaf area based on plant morphology. 
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Introduction 

In previous studies (Chapters 2 and 3), effects of temperature and photosynthetic photon flux density 

(PPFD) on the morphological components of leaf area dynamics of wheat were studied. It was 

shown that temperature and PPFD mainly affected the rate of increase in number of leaves and 

hardly the size of the leaves. Number of leaves was largely determined by tiller formation. When a 

plant lacks this tillering response to environmental conditions, growth of the main stem fully 

determines plant adaptation to environmental conditions. A study into the effects of environmental 

factors on the morphological development of such a different plant type could lead to a better 

understanding of mechanisms involved in the increase of leaf area. Modern maize hybrids only rarely 

form tillers and are therefore suitable for such a study. 

In Gramineae species visible leaf parts are full-grown, because cell division and elongation take 

place within the sheath bundle (Dale, 1988). Therefore, the width of leaf parts does not change after 

emergence of that part. Increase in leaf area of a maize plant can thus be divided into five 

morphological components: (i) leaf appearance rate, (ii) leaf elongation rate (LER), (iii) leaf 

elongation duration (LED), (iv) maximum leaf width, and (v) leaf shape parameters. For growing 

leaves, the exact shape of the full-grown leaf is needed to calculate the light-exposed leaf area as a 

function of the fraction of the length that has appeared (Sanderson et al, 1981). 

In maize, especially effects of temperature on leaf appearance rate have been studied extensively 

(Tollenaar et al, 1979; Thiagarajah and Hunt, 1982; Warrington and Kanemasu, 1983), while 

studies on the effects of leaf position and environmental factors on the four other components are 

relatively scarce. Therefore, simulation models of growth in leaf area of maize plants are descriptive 

(Keating and Wafula, 1992; Stewart and Dwyer, 1994). In the current research the effects of leaf 

position, temperature and PPFD on these five morphological components are quantified with the 

objective to improve future modelling efforts on leaf area expansion of maize plants and to arrive at a 

more general morphological model for Gramineae plants. To avoid changes of environmental factors 

in time, experiments were done in growth chambers. 

Materials and methods 

Maize plants (silage maize hybrid 'Luna') were grown in four growth chambers, each with a different 

temperature regime. Within a growth chamber, three compartments with different PPFD values were 

created. Treatments started one day after plant emergence. Plant density was kept low throughout 

the experimental period. 
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Plant material and growing conditions 

Maize seeds were sown 3 cm deep in 5 1 pots filled with a mixture of 33 % sandy soil and 67 % 

quartz sand. Three seeds were sown per pot. A total of 540 pots were placed on trolleys in four 

growth chambers (daily photoperiod 7.00-21.00 h; relative humidity 70 %; temperature 23 °C from 

9.00-21.00 h and 18 °C from 21.00-9.00 h). 

One day after 50 % emergence, plant number per pot and pot number were reduced to obtain a 

homogeneous population of plants (one plant per pot; 90 pots per growth chamber). Using white 

curtains, the growth chambers were divided into three compartments (3.20* 1.50 m) for the PPFD 

treatments. Pots were distributed over the three compartments, each containing 30 plants, resulting 

in an initial plant density of 19 m"2. Photoperiod and relative humidity remained the same as in the 

pre-emergence period. 

During growth, trolleys were rotated within a compartment approximately every 0.75 ligule 

appearance interval (this is the period between the visible appearance of two consecutive ligules) to 

minimize the variation between plants. Pots were watered at least once a day. Nutrient solution was 

supplied every two ligule appearance intervals based on the expected growth rate and desired high 

nutrient concentration in the plant material (Scholte, 1987). Trolleys were lowered during growth to 

obtain a constant PPFD at the top of the plants. The experiment was terminated at ligule appearance 

of the seventh leaf. 

Treatments 

The different PPFD treatments were established per compartment. Every compartment ceiling 

contained 6 metal halide (Philips HPI400 W) and 6 high pressure sodium (Philips AGROSON-T 400 

W) lamps. At nine points per compartment, PPFD was measured just above the pots. For the highest 

PPFD (277 umol m"2 s"1) all lamps were switched on, for the middle PPFD 8 lamps (185 umol m'2 

s"1), and for the lowest PPFD 4 lamps (104 umol m"2 s"1). The metal halide lamp/high pressure 

sodium lamp ratio was 1:1 for every treatment. 

Temperature treatments (day/night: 13/8, 18/13, 23/18 or 28/23 °C) were established per growth 

chamber and were set for the 185 umol m2 s"1 compartments. This range of temperatures assured 

large differences in the increase in leaf area. Day temperature started at 9.00 h, night temperature at 

21.00 h. The change-over from day to night temperature and vice versa occurred within half an hour. 

On average, during the PPFD period air temperature was 0.5 °C higher at 277 umol m"2 s"1 and 0.5 

°C lower at 104 umol m"2 s"1 than at 185 umol m"2 s"1. 

Measurements 

Six plants per treatment were harvested every ligule appearance interval, starting from ligule 

appearance of Leaf 3 up to ligule appearance of Leaf 7 (5 harvests). After every harvest, the 

remaining pots were rearranged to minimize inter-plant competition (plant density at last harvest 3.9 
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m"2). At each harvest, length and maximum width of all leaves were measured with a ruler. On one 

plant, leaf width of full-grown leaves was measured at six or seven equidistant places covering the 

whole leaf length to determine leaf shape parameters. After this, plants were dissected into roots and 

shoots, and the shoot into separate visible leaves and internodes/sheaths. Dry weight was measured 

after drying the material at 70 °C until constant weight. 

To determine LER and LED, throughout the experimental period the length (i.e. from the leaf tip 

to the last visible ligule) of growing leaves (except Leaf 1) was measured with a ruler until the leaf 

was full-grown. These measurements were done approximately four times per ligule appearance 

interval at a fixed time on a day on six plants which were used for the last harvest. 

Definitions and calculations 

Leaf positions were counted acropetally. Leaf appearance was defined as the moment the tip of a leaf 

blade reached above the uppermost visible ligule. Number of growing leaves was defined as the 

number of leaves that had appeared with their ligule not yet visible. 

Leaf elongation rate (LER) was assumed to be constant until the leaf was full-grown. Leaf 

elongation rate and LED were estimated with a two-step regression as was done in Chapter 3. Data 

of recently full-grown leaves in the destructive harvests were used to analyse full-grown leaf length, 

maximum leaf width, dry weight and specific leaf weight (SLW). Shape of full-grown leaves was 

evaluated with the Sanderson model (Sanderson et al, 1981): 

Z. = sina ( — — ) (1) 
W 2 a X 

where w is the leaf width at distance x from the leaf tip, Wthe maximum leaf width, Xthe full-grown 

leaf length, a the ratio of x/Jf at the position of maximum leaf width and a a constant that allows for 

differences in leaf shape. Values for a and a are limited: 

0.5 < a s 1 
a > 0 

because wlW > 0 and maximum width does not occur at the leaf base for maize leaves. For full-

grown leaves, leaf area can be directly derived from leaf length and maximum leaf width: 

Full-grown leaf area = k * Maximum leaf width * Full-grown leaf length (2) 

The variable k was calculated by numerical integration of Eq. 1. 
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Statistical analysis 

It was assumed that effects on plants due to differences in growth chambers could be attributed to 

temperature, because the growth chambers were of the same type, the conditions could be controlled 

very well and the difference in temperatures between growth chambers were large. Although we 

realize that replicates are actually subsamples, we feel that it is justified to use each plant as a 

replicate. An analysis of variance was carried out for significance of treatment effects and to 

calculate the least significant difference (LSD) (P=0.05). Effects on leaf area per plant were analysed 

with a stepwise-regression method (Montgomery and Peck, 1982). Linear, quadratic and interaction 

terms of the quantitative variables number of appeared leaves (N^), temperature (T) and PPFD (L) 

were used as independent variables. The analysis started with the fit of an empty model. One by one 

terms were added that gave the greatest improvement of R2
adj, until six terms were added. 

Results 

Due to continuous exposure to cold stress, a large portion of the plants grown at 13/8 °C died in an 

early stage, especially at 104 umol m"2 s"1. We therefore decided to stop the 13/8 °C treatment 

before 7 leaves were full-grown. The remaining data are shown in the graphs, but were not part of 

the statistical analyses and calculation of main effects of PPFD. Death of leaves was negligible in the 

other growth chambers with higher temperatures. 

Leaf area and number of leaves per plant 

The leaf area per plant increased almost exponentially in time (Fig. 1, Quadrant I). Relative growth 

rate of leaf area (RGRLA= the slope of ln(leaf area) vs. days after emergence (DAE)) was greater at 

higher temperatures but similar at 23/18 and 28/23 °C (Table 1). Photosynthetic photon flux density 

affected RGR^ less; RGRLA was highest at 185 umol m"2 s"1. The lower RGR^ at 277 umol m"2 s"1 

was caused by a lower RGR,^ in the last harvest interval. 

Number of leaves increased linearly in time up to Harvest 4 (Fig. 1, Quadrant III). In Harvest 5, 

tassels had appeared for most treatments and this harvest was therefore excluded from calculations 

of leaf appearance rate. Leaf appearance rate (i.e. slope of number of leaves vs. DAE) was greater at 

higher temperatures, although less pronounced above 23/18 °C (Table 2). To a lesser extent also 

PPFD increased leaf appearance rate. 
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Figure 1. Leaf area per plant in relation to days after emergence and number of appeared leaves. Quadrant I: 

increase of leaf area per plant (log scale) with days after emergence.The bar indicates average LSD (P=0.05). 

Quadrant II: relation between leaf area per plant (log scale) and number of appeared leaves. The result of the 

stepwise regression (see text) with independent variables number of appeared leaves (NLF), temperature (T) and 

PPFD (L) is given (13/8 °C treatments excluded). The fitted line represents the regression model with only the 

first two terms (N^ and N2^) included. Quadrant III: increase of number of appeared leaves with days after 

emergence. The bar indicates average LSD (P=0.05). Open symbols: PPFD=277 umol m"2 s"1; Symbols in grey: 

PPFD=185 umol m"2 S1; Black symbols: PPFD=104 umol'Tn"1 s . The shape of the symbols indicates the 

temperature treatment: 13/8 °C: 0; 18/13 °C: Q; 23/18 °C: o; 28/23 °C: A. 
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Table 1. RGR^ (d1) calculated from Figure 1, Quadrant I 

by linear regression. 

PPFD 

(umol m"2 s"1) 

104 

185 

277 

Temperature (°C] 

13/8 

-

0.022 

0.019 

18/13 

0.060 

0.068 

0.061 

23/18 

0.096 

0.110 

0.109 

28/23 

0.095 

0.108 

0.101 

LSD (P=0.05) = 0.007 

Table 2. Leaf appearance rate (d1) calculated from Figure 1, 

Quadrant III by linear regression (last harvest excluded). 

PPFD 

(umol m"2 s"1) 

104 

185 

277 

Temperature (°C 

13/8 

-

0.08 

0.05 

18/13 

0.19 

0.21 

0.24 

23/18 

0.30 

0.31 

0.35 

28/23 

0.34 

0.39 

0.40 

LSD (P=0.05) = 0.03 

The number of appeared leaves was strongly related to ln(leaf area per plant) (Fig. 1, Quadrant 

II). The stepwise regression showed that for temperatures above 13/8 °C a second order polynomial 

of number of appeared leaves accounted for 95.6 % of the variation in ln(leaf area per plant) (N u 

and N ^ terms, Fig. 1, Quadrant II). Effects of temperature and PPFD were larger at higher leaf 

number per plant (T and L interacted with Ny,). At comparable numbers of appeared leaves, leaf 

area per plant was greater at 23/18 than at 18/13 or 28/23 °C (N^.T and N^ .T 2 terms) and plants 

grown at 104 umol m"2 s"1 had a lower leaf area than at 185 or 277 umol m"2 s'1, an effect that 

increased slightly with an increase in temperature (N^.TlL and N^.T^L2 terms). Using predictions 

of the full 6-term regression model with 1^=14, leaf area per plant ranged between 17.5 dm2 for the 

[28/23 °C, 104 umol rn2 s"1] treatment and 32.7 dm2 for the [23/18 °C, 185 umol m"2 s"1] treatment. 

This shows that treatments had large effects on leaf sizes at later stages of development. 
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Area, length and maximum width of full-grown leaves 

Figure 2 shows the separate effects of temperature and PPFD on full-grown area, length and 

maximum width of Leaves 1 to 7. For all treatments, the increase of length with leaf position was 

sigmoidal, while the maximum width was almost constant for Leaf positions 1 to 3 and increased 

linearly for higher leaf positions. As a result, the increase of area with leaf position was exponential-

linear. 

Interactions between effects of temperature and PPFD were not significant for most leaves and 

are not shown. Leaf area was smaller at 18/13 °C than at 23/18 °C, mainly because leaves were 

shorter (Fig. 2). Area of leaves grown at 28/23 °C were smaller than at 23/18 °C mainly caused by a 

lower maximum leaf width. The effect of PPFD on leaf area depended on leaf position. Leaf area was 

slightly larger for low PPFD values at Leaf position 2 caused by longer leaves. However, for Leaf 

positions 4 to 7 the effect reversed, because the negative effect of low PPFD on maximum leaf width 

became more important than its positive effect on leaf length. 

Dry weight of leaves and SLW 

Comparable to leaf area (Fig. 2), dry weight per leaf increased expolinearly with leaf position (Fig. 

3). Since the linear increase of dry weight was faster than that of leaf area, SLW increased from Leaf 

4 onwards (Fig. 3). 

Interactions between temperature and PPFD effects are not shown in the graphs. Effects of 

temperature on dry weight were qualitatively equal to effects on area (23/18 > 18/13 > 28/23 > 13/8 

°C). The resultant SLW decreased with temperature above 18/13 °C. More pronounced than leaf 

area (Fig. 2), dry weight of leaves at 104 umol m2 s"1 was less than at 185 or 277 umol m2 s"1 (Fig. 

3). The resultant SLW was significantly greater for higher PPFD values on all leaf positions. For 

Leaves 4, 6 and 7, interactions between effects of temperature and PPFD on SLW were significant, 

because temperature effects were stronger at low PPFD values. 
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Figure 2. Full-grown length, maximum width and area of Leaves 1-7, (a) averaged per 

temperature treatment (°C) and (b) averaged per PPFD treatment. Bars indicate the LSD 

(P=0.05). 
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Figure 3. Dry weight and SLW of Leaves 1-7, (a) averaged per temperature treatment and (b) averaged per 

PPFD treatment. Markers as in Fig. 2. Bars indicate the LSD (P=0.05). 
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Leaf elongation 

Rate of leaf elongation increased with leaf position up to Leaf 5 and then decreased, an effect that 

was more pronounced for high temperatures (Fig. 4). Leaf elongation rate increased linearly with leaf 

position. 

Interactions between effects of temperature and PPFD were not significant for most leaves and 

are not shown. Leaf elongation rate was significantly greater and LED was significantly shorter for 

higher temperatures. The shorter Leaves 5 and 6 at 28/23 °C compared with 23/18 °C (Fig. 2) were 

related to the sharp decrease of LER with leaf position at 28/23 °C (Fig. 4a). Leaves grown under 

high PPFD values showed a significantly higher LER compared with leaves grown in low PPFD 

values for Leaf positions 2 to 5, but differences were small. Duration of leaf elongation was 

significantly longer at low PPFD values than at high PPFD values for all leaves, and differences were 

slightly larger than for LER. Therefore, longer leaves in lower PPFD values (Fig. 2) were related to a 

longer LED. 

Leaf shape 

The Sanderson model (Eq. 1) did not fit Leaf positions 1 and 2 well, because the maximum width 

occurred close to the leaf tip. Therefore, another two-parameter model was developed, which 

accounted for a maximum width that can occur from leaf base to leaf tip and was very similar to the 

Sanderson model: 

»L = sin( — ( - ) 1 ) (3) 

where b is the value of xlX where the maximum width occurs and 13 a constant which allows for 

differences in leaf shape. For low values of 13 the leaves tend to be wider towards the leaf tip relative 

to the maximum leaf width. Also for this new model, the values of b and P are limited: 

0 < b < 1 

o < p , JfLM 
In b 
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Figure 4. LER and LED of Leaves 2-7, (a) averaged per temperature treatment and (b) averaged per PPFD 

treatment. Markers as in Fig. 3. Bars indicate the LSD (P=0.05). 
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Figure 5 shows an example of a fit of the Sanderson model and the new model on a representative 

Leaf 2 and 6. The Sanderson model assumes that leaves have an axis of symmetry through the point 

where maximum leaf width occurs, which is unrealistic especially for lower leaves. The maximum 

leaf width for Leaf 2 in Fig. 5a occurred clearly below x/X= 0.5, which was outside the range of the 

Sanderson model. The maximum width for Leaf 6 occurred above xlX= 0.5,and both models gave a 

similar fit (Fig. 5b). Both models were fitted through leaf length and width data of recently full-

grown Leaves 1-7 (13/8 °C treatments excluded). The new model accounted for a greater 

proportion of the variation for Leaves 1 and 2, while for Leaves 3 to 7 the models performed 

similarly (Fig. 6). The parameters of the new model b and P increased with leaf position for lower 

leaves, but remained fairly stable from Leaf 4 to 7 (Fig. 6), and were not influenced by temperature 

or PPFD. The variable k (Eq. 2) decreased from 0.80 for Leaf 1 and 2 to 0.70 for Leaf 4 to 7. 

(a) 

(top) 

(b) 

(base) (top) 

0.00 

(base) 

0.40 0.60 0.80 0.00 0.20 

X/X 

Figure 5. w/JVas a function of x/Xfor a representative Leaf 2 (a) and 6 (b). The dashed line represents the non-

linear fit of the Sanderson model (Eq. 1), the solid line the fit of the new model (Eq. 3). R2^ and parameter 

estimates are shown in the rectangles. The bars indicate the measuring error of the ruler that was used (+/- 0.5 

mm). 
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Figure 6. Estimated parameter values of the new model and R2^ of the two 

models for Leaf positions 1 to 7. Data points are averages of the 9 treatment 
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appear. 

Discussion 

Limitations of the current experiment 

The current experiment was carried out in growth chambers. The PPFD level is therefore low. 

However, the data on rate of leaf appearance, leaf growth and dry weight are comparable with those 

found under field conditions, at least at lower temperatures. We are therefore confident that the 

results obtained are meaningful. The inter-plant competition was kept low due to frequent sampling 

and even possible changes in the ratio of red/far-red of the photon flux caused by the continuous 

adaptation of the plant density during the experiment will not have affected the outcome of the 

experiment. 

Dynamics of leaf number 

Leaf appearance rate was faster at higher temperatures and to a lesser extent at higher PPFD values. 

The current data set is compared with growth chamber data from Tollenaar et al. (1979) (PPFD = 

500 umol m"2 s"1; daylength = 15 h d"1) and Thiagarajah and Hunt (1982) (PPFD = 620 umol m"2 s"1; 

daylength = 15 h d"1) (Fig. 7). Generally leaf appearance rates were very similar, but at 25.5 °C 

somewhat lower for the current data set. This difference could be due to the lower PPFD values of 
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the current experiment compared to the other experiments, or to cultivar effects, which can be 

strong, especially at higher temperatures (Ellis et al, 1992). 

Positive effects of PPFD on leaf appearance rate of maize have also been found by Gmelig 

Meyling (1973) and Struik (1983) and could be due to the slight increase of temperature of the 

growing point with PPFD. 

Individual leaf growth 

In the current research, area growth of individual leaves has been separated into maximum leaf 

width, LER and LED. Temperature and PPFD affected these three components in different ways, 

which confirms earlier findings with small cereals and grasses (Friend et al., 1962; Allard et al, 

1991) and maize (Hesketh and Warrington, 1989). 

The width of leaves has received little attention in literature and it is unknown how the width is 

related to other plant variables. However, for a mechanistic model it is necessary to find simple 

relationships with physiological background. In the current research, effects of leaf position, 

temperature and PPFD on leaf width (Fig. 2) were similar to effects on SLW (Fig. 3) and a good 

correlation between the two existed (Fig. 8). A possible physiological explanation for this relation is 

that not only SLW is determined by carbohydrate availability (Thiagarajah and Hunt, 1982; Van Loo, 

1993; Grant and Hesketh, 1992), but also maximum leaf width. Leaf width is well related to the 

number of cell rows across the width (Borrill, 1961; Forde, 1966; Jewiss, 1966) and accordingly to 

the basal circumference of the shoot apex when the primordium is initiated (Abbe et al, 1941; 

Robson et al, 1988). The size of the shoot apex is related with the growth rate of the shoot (Pieters, 
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Figure 7. Comparison of leaf appearance rate at different 

temperatures from the current data set at 277 umol m"2 s'1 with data 

from Tollenaar et al. (1979) and Thiagarajah and Hunt (1982). 
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Figure 8. Relation between maximum width and SLW of Leaves 1 to 7. Every 

data point represents the average value per leaf position per treatment. Markers 

as in Fig. 1. 

1986), and thus with carbohydrate availability. 

Leaf elongation rate increased with leaf position up to a maximum, after which it remained stable 

or declined (Fig. 3). This was also found for reproductive barley plants (Kirby, 1973), vegetative 

perennial ryegrass (Robson, 1973), tall fescue (Skinner and Nelson, 1994) and maize (Grant and 

Hesketh, 1992) plants. As for wheat plants (Chapter 3), effects of PPFD on LER were small. This 

confirms studies on temperate species by Kemp and Blacklow (1980), Kemp (1981a) and Sambo 

(1983), who showed that LER only depends on carbohydrate supply at very low levels. The longer 

leaves formed at lower PPFD values were related to a longer LED, which was also found for wheat 

(Chapter 3) and tall fescue (Allard et al, 1991). 

For grasses and small cereals the development of successive leaves is related (Skinner and Nelson, 

1995; Tesafova et al, 1992) and in all these species the number of growing leaves on one stem 

remains constant. However, in the current study with maize, leaf appearance rate remained rather 

constant (Fig. 1), while the LED increased with leaf position (Fig. 3). Figure 9 shows that as a result 

of both, the number of growing leaves increased with number of full-grown leaves, especially 

between 5 and 6 full-grown leaves. Temperature did not significantly change this relation, which 

confirms earlier findings of Thiagarajah and Hunt (1982) and Hesketh and Warrington (1989). Low 

PPFD values significantly decreased the number of growing leaves as a function of number of full-

grown leaves (Fig. 9). Apparently, as maize plants develop, the number of growing leaves on one 

stem increases, while for grasses and small cereals the number of growing leaves increases by the 

formation of tillers. 
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Figure 9. Number of growing leaves in relation to number of full-grown leaves. 
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Leaf shape 

The new two parameter model (Eq. 3) described leaf shape of Leaf positions 1 and 2 much better 

than the Sanderson model (Eq. 1), because in the new model the maximum width can occur at any 

point along the whole length of the leaf. Data for higher leaf positions fitted equally well to both 

models. Sanderson et al. (1981) validated their model on higher Leaf positions 6 to 14. The new 

model appeared to be more flexible in describing the shape of lower positioned leaves and is 

therefore wider applicable than the Sanderson model. 
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Leaf positions 1 and 2 showed clearly different values for b and 13 than higher leaf positions. It is a 

common finding that the first leaves of a seedling plant have a different shape and internal structure 

than higher positioned leaves (Eames, 1961). 

Towards a dynamic mechanistic model 

Both the range of temperatures (13/8-28/23 °C) and PPFD values (104-277 umol m"2 s'1) changed 

the increase of leaf area per plant in time profoundly, as a result of differences in leaf appearance rate 

and, especially for higher leaf positions, leaf size (Fig. 1). This is at variance with the proposition of 

Dwyer and Stewart (1986), that under non-drought conditions the full-grown leaf area of maize is 

only a function of leaf position. In dynamic mechanistic models, leaf appearance rate, LER, LED and 

maximum leaf width should be incorporated separately, because temperature and PPFD affect these 

variables in a different way. Such models will be more accurate and wider applicable than current 

models for Gramineae species. At our Department we are in the process of developing such a 

model. 
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Part II 

Analysis of plant density effects 
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Chapter 5 

Morphological analysis of plant density effects on 

leaf area growth in wheat 

with J. Vos 

Abstract 

Effects of temperature and photosynthetic photon flux density (PPFD) on leaf area growth of 

Gramineae species were separated into effects on seven morphological variables (Chapters 2 and 3): 

(i) specific site usage (SSU), i.e. fraction of existing leaf-axil buds that grow out into a visible tiller, 

(ii) leaf appearance rate per tiller, (iii) relative time of tiller emergence, (iv) leaf elongation rate, (v) 

leaf elongation duration, (vi) maximum leaf width, and (vii) a leaf shape factor. In this paper we 

analyse for wheat (a) the effects of plant density on these seven variables and (b) the mechanisms 

explaining plant density effects (through effects on temperature, plant growth rate and/or red/far-red 

ratio (R/FR)). Spring wheat plants were grown in different plant densities (0 - 494 m'2) in the field 

and in growth chambers. Ratios of R/FR were manipulated by using different combinations of lamps 

(growth chamber) or adding red light to the base of the plant with diodes (experiments outdoors). 

Initially, leaf properties and tillering were not affected by plant density. However, SSU of later-

appearing tillers was reduced at higher plant densities. For late tillers, leaf appearance rate was 

slower and relative time of tiller appearance was longer at higher plant densities. Furthermore, 

maximum leaf width and full-grown leaf length of high-positioned leaves on the main stem were 

significantly smaller. Plant density effects occurred at lower leaf and tiller number the higher the plant 

density. A dynamic model was used to evaluate the relative importance of effects of plant density on 

the seven variables with respect to leaf area per plant. The model analysis showed that the effect of 

plant density on SSU was by far the strongest determinant of density-dependent changes in leaf area 

per plant during early growth of wheat. 

The effects of plant density on SSU could not be fully explained by temperature differences, plant 

growth rate or R/FR effects. The parameter SSU appeared to be well related to the specific leaf 

weight (SLW) of the parent leaf (i.e. the leaf from which the tiller is appearing) at the time of tiller 

appearance, independent of R/FR ratio. While SLW of a single leaf depends on local assimilate 

supply, we surmise that SSU is regulated by local assimilate supply. 
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Introduction 

After crop emergence, the rate of increase in soil cover and radiation interception are strong 

determinants of crop production (Goudriaan and Van Laar, 1994). However, present simulation 

models of leaf area development are descriptive and do not predict leaf area increase well (Lotz et 

al., 1996). In Chapters 2 and 3 the following distinctions were made between several developmental 

and growth processes that determine leaf area increase of Gramineae species. The dynamics of leaf 

number, i.e. development, is completely defined by: (i) specific site usage (SSU; list of abbreviations 

in Appendix 1), i.e. fraction of existing leaf-axil buds that grows out into a visible tiller, (ii) leaf 

appearance rate (L/J of individual tillers, (iii) relative time of tiller appearance, expressed as Haun 

Stage-delay (HS-delay). Growth of individual leaves can be calculated from (iv) leaf elongation rate 

(LER), (v) leaf elongation duration (LED), (vi) maximum leaf width and (vii) shape factor: k, a 

variable that relates full-grown length and maximum width to individual leaf area. 

Mechanistic modelling of foliar development becomes possible if effects of environmental 

conditions on these seven variables are quantified. For spaced wheat plants, in Chapters 2 and 3 it 

was found that the effects of photosynthetic photon flux density (PPFD) and temperature on leaf 

area were mainly due to effects on SSU, LA, LER and LED. These effects depended on the position 

of leaves and tillers on the plant. Plant density is also an important factor affecting the increase in leaf 

area in the initial stages of crop growth. The objectives of this paper are to (i) analyse the effects of 

plant density on the seven component variables of leaf area growth mentioned, (ii) determine the 

quantitative significance of effects of plant density on these variables with respect to leaf area per 

plant and (iii) discuss which mechanisms cause the changes in these variables with higher plant 

densities. Three of such possible mechanisms will be examined: (i) decrease in temperature due to 

increased leaf shading (Peacock, 1975), (ii) source limitation, i.e. decrease in radiation interception 

and in carbohydrate production per plant per day; this mechanism is used in most simulation models, 

e.g. SUCROS (Goudriaan and Van Laar, 1994), and (iii) a photomorphogenic effect induced by a 

decrease of red/far-red (R/FR) ratio with increase in plant density (Smith, 1982). 

Plant density effects were studied in a series of experiments, under controlled conditions (growth 

chamber) and in outdoor conditions. A dynamic model of foliar growth and development was used 

to evaluate the quantitative effects of plant density on the seven component processes. Effects of 

R/FR ratio were examined by selecting suitable combinations of lamps (controlled conditions) or 

using diodes (outdoor conditions). 
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Materials and methods 

General 

Four experiments were conducted under different natural and controlled conditions. In all trials, 

spring wheat cv. Minaret was sown by hand at equal distances to create the desired plant density 

(designated as Dx, with x the number of plants per m2). Water and nutrients were sufficiently 

supplied throughout the experimental periods. The plots were regularly sampled. Leaves and tillers 

were identified with the system of Klepper et al. (1982). In this system, a daughter tiller (e.g. tl) is 

the outgrowth of the axillary bud of its parent leaf (e.g. Leaf 1 on the main stem). Haun stage (HS; 

Haun, 1973) was taken as a measure of leaf stage. The seven component variables (LA, HS-delay (a 

measure for relative time of tiller appearance), SSU, LER, LED, maximum leaf width and k) were 

measured as described in Chapters 2 and 3. Dissected material was oven-dried at 70 °C to constant 

weight. Spectral light measurements were performed with a LiCor-1800 spectroradiometer every 2 

nm from 400 to 800 nm. An outline of treatments and special measurements of the different 

experiments is given in Table 1. Figure 1 shows that accumulation of temperature and PPFD with 

time varied little between experiments, except for the slow rate of increase in accumulated PPFD in 

the growth chamber. 

Table 1. Specifications of the four experiments mentioned in the text. Abbreviations are explained in 

Appendix 1. 

GC F93 F94 C95 

Treatments D: 31, 123,278, D: 0,31, 123, D: 123,494 D: 123 

494 494 R: 0, 1 

R/FR: 1.2,3.6 

Number of 6 4 3 2 

harvests 

Special LER and LED Temperatures in -

measurements crop and soil 
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Figure 1. Accumulated PPFD and accumulated degree days (base temperature 0 °C) after crop 
emergence. 

Growth chamber experiment (GC) 

This experiment was performed in two growth chambers which were set to a temperature of 17 °C 

from 9.00-21.00 hand 11 °C from 21.00-9.00 hand a relative humidity of 75%. Daily light period 

lasted from 7.00-21.00 h with a PPFD of 166 umol m'2 s"1 at the top of the crop canopy for both 

chambers. The R/FR ratio (measured as the ratio of photons in 10 nm bandwidths centred on 660 nm 

and 730 nm) was 1.2 (R0 treatment; natural value) or 3.6 (Rl treatment) by the use of a different 

combination of metal halide and high pressure sodium lamps, fluorescent tubes and incandescent 

bulbs per growth chamber. Incoming radiation with a R/FR =3.6 results in a higher phytochrome 

photoequilibrium at soil level than natural incoming radiation (R/FR = 1.2) at the top of a crop 

canopy, even at high LAI values (Smith, 1982). Within the two chambers minicrops of spring wheat 

were grown from sowing to the soft dough stage by placing 48 square (18 by 18 cm) 4.5 1 pots filled 

with quartz sand on a moveable cart. Four such minicrops were placed in one growth chamber, with 

one (D31), four (D123), nine (D278) or 16 (D494) plants per pot. The inner 24 pots were used as 

net pots. During growth carts were lowered to obtain a constant PPFD at the top of the plants and 

rotated within a growth chamber twice a week to minimise effects of small but persistent gradients in 

environmental variables within a growth chamber. Five times three pots were harvested up to 
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anthesis (Hl-5: 11, 24, 34, 46 and 81 DAE). After every harvest pots were readjusted to retain the 

desired plant density. At the last harvest (H6: 127 DAE) eight pots were taken. To determine LER 

and LED (Chapter 3), the length of growing leaves was carefully measured with a ruler during the 

whole growth period on eight plants per treatment three times a week. 

Field experiment 1993 (F93) 

Seeds were sown on 25 and 26 March 1993 in a heavy clay soil in Wageningen (52 °N, 6 °E ) and 

plants emerged on 12 April. Plants were grown in four densities (DO (= spaced), D31, D123, D494) 

in two blocks. Temperatures at -1, 0 and 40 cm above soil level were recorded in the DO and D494 

treatments from 34 DAE onwards. Individual plots were 3*3 m and the inner 2*2 m was regarded as 

net plot. Four times (23, 50, 64 and 79 DAE) plots were sampled by harvesting two spaced plants 

(DO treatments) or a square area of 3*3 plants (other D treatments). 

Field experiment 1994 (F94) 

Seeds were sown on 25 and 26 April 1994 in a field located within 1 kilometre from the F93 

experiment and the same soil type. Plants emerged on 3 May. The layout of this experiment was 

equal to F93, but most of the plots were discarded because of a high variability between plants. The 

remaining plots were D123 and D494 in two blocks. Temperatures were not recorded at the site and 

three harvests (29, 50 and 62 DAE) of a square area of 3*3 plants each were done. 

Container experiment 1995 (C95) 

Outside and within one kilometre from the locations of the field experiments, eight containers 

(l*w*h: 1.56* 1.25*0.35 m) were filled with potting medium above a small layer of gravel at the 

bottom. Seeds were sown on 3 April 1995 and plants emerged on 15 April. Plant density was 123 

m"2 in all containers. In half of the containers (Rl treatments), on 14 DAE red light was added to a 

central square area of 5*5 plants by placing two light emitting diodes on the soil on both sides of a 

plant shining towards the plant base. Each diode emission was 170 umol m"2 s"1 measured at a 

distance of 1 cm (A.,,^664 nm; 95% of photons between 638-690 nm). Diodes were switched on 

daily from 15 minutes before dawn until 15 minutes after dusk. The central 3*3 plants were 

considered as net plot. Also in the other four containers (R0 treatments) the net plot consisted of a 

central square area of 3*3 plants. Two harvests (Hl-2: 37 and 54 DAE) were done of two net plots 

per R treatment. 
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Evaluation of quantitative significance of effects of plant density on the seven variables defining 

leaf area growth 

The seven variables of leaf growth completely define the change with time in leaf area expansion per 

plant. With these variables, a model was built which simulates the dynamics of leaf area per plant 

(Appendix 2). This model was run for treatments R/FR1.2,D31 and R/FR1.2,D494 of the GC 

experiment, inserting the experimental data on LER, LED, maximum width, k and LA of individual 

leaves and HS-delay and SSU of individual tillers. To investigate the importance of the model 

components on the difference in leaf area per plant between D31 and D494, parameter values of 

D494 were successively changed into the values observed in D31. 

Results and discussion 

Effects of plant density on the seven variables defining leaf area growth 

Plant density generally did not affect LA of the main stem (ms) (expressed as the increment in HS per 

unit of thermal time with a base temperature of 0 °C); in Experiment F93 effects were significant 

(P<0.05) but numerically the differences were only small (Fig. 2). The leaf appearance rate of the ms 

was faster in the field experiments than in the GC experiment. This is probably related to the lower 

accumulated PPFD per day in the GC experiment (Fig. 1), which can reduce LA (Chapter 2). 

The leaf appearance rate of primary tillers (tl, t2, t3) in the GC experiment decreased significantly 

with increase in plant density (Table 2) and LA of t2 in D494 was almost half the one in D31. While 

LA of the ms was not affected by plant density, LA of primary tillers was significantly lower than the 

ms in treatments D123, D278 and D494, and differences increased with plant density. Primary tillers 

grow lower in the crop canopy than the ms (Masle, 1985). Therefore, the reductions in LA are 

probably related to a reduced PPFD for primary tillers by increased shading at higher plant densities 

and higher tiller positions. 

Haun Stage-delays for tiller appearance declined with position of the primary tiller (tl>t2>t3) in 

the GC experiment (Table 2). This is generally found for wheat and other Gramineae species 

(Chapter 2). Haun Stage-delay significantly increased with plant density for t2 and t3, indicating a 

delay in tiller appearance. In Chapter 2 it was found that HS-delay only increased when conditions 

were unfavourable for tiller appearance (SSU between 0 and 1). This is probably also the case for 

tiller t2 in D278 and D494 and for tiller t3 in D123, because these tillers appeared when LAI was 

already higher than 3. 

Effects of plant density on SSU were complicated and differed between the GC and F94 

experiments (Fig 3a,b). For spaced plants, in Chapter3 it was suggested that SSU depended on the 

growth rate of the parent tiller. The absence of tO and the low SSU of tl.O for treatments D278 and 

D494 in the GC experiment (Fig. 3a) were probably related to a low growth rate of parent tillers ms 
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Accumulated degree days (°C d) 

Figure 2. Effects of plant density (D) on HS of the ms as a function of accumulated degree 
days (base temperature 0°C) for three experiments mentioned in the text. Significance of the 
effect of plant density (P<0.05): * significant; ns=not significant. For the F93 and F94 
experiment, statistical analysis was based on one harvest; for the GC experiment, four 
harvests were used and a statistical analysis was done on the linear regression parameters 
per plant density. 

Table 2. LA (°C d)'1 and HS-delay of specific tiller types at different plant densities in the 

GC experiment. Different letters indicate significant differences between plant densities 

and tiller types based on LSD values (P<0.05). In case no or few tillers appeared and no 

reliable data could be derived, no numbers are given. 

LA HS-delay 

ms t l t2 t3 

D31 0.0104** 0.0112g 0.0106efg 0.0109* 

D123 0.0108fg 0.0099"1 0.0100°* 0.0096c 

D278 0.0107* 0.0085b 0.0083b 

D494 0.0105** - 0.0058* 

tl 

2.01f 

2.01f 

2.04f 

_ 

t2 

l^ l* 0 

l ^ 

1.80e 

1.83** 

t3 

1.37a 

1.58b 

-

_ 
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Figure 3. Effects of plant density on SSU of different tiller types, (a) GC experiment; (b) F94 experiment. 

and tl respectively at the time of daughter tiller appearance. While plant growth rates for comparable 

treatments were higher in the F94 than in the GC experiment (above-ground dry weight per plant at 

appearance of Leaf 6 on the ms was 0.51 and 0.39 g in the F94 and GC experiment, respectively), 

the effect of plant density on SSU was stronger in the GC experiment. Effects of plant density on 

SSU were larger if the tiller appeared later and consequently LAI was higher (magnitude of effects in 

order of t4 > t3 > t2 > tl , t2.1 > t2.0 > t2, t3.0 > t2.0 > tl.O (Fig 3a,b)). 

Full-grown leaf areas of the first five leaves on the ms were hardly different between density 

treatments in each of the GC, F93 and F94 experiments. Leaf area increased continuously with leaf 

position in low density treatments. However, the trend of increase of leaf area with leaf position 

reversed in a decline at higher leaf positions in higher plant density treatments (illustrated with data 

from the F93 experiment: Fig 4a). At higher plant densities maximum leaf width was lower for leaf 

positions larger than 5 (Fig. 4b), and leaf length was smaller for leaf positions higher than 7 (Fig. 4c). 

Measurements of LER and LED in the GC experiment showed that the shorter leaves at higher plant 

densities were related to a slower LER, while LED was hardly changed by plant density (data not 

shown). Variable k was never significantly affected by plant density (data not shown). 
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Significance of plant density effects on the seven variables defining leaf area growth 

To assess the significance in absolute contributions of density effects to the seven variables, the 

model on leaf area (Appendix 2) was run for treatment R/FR1.2,D494 of the GC experiment, 

inserting the experimental data on k, LER, LED, maximum width and LA of individual leaves and 

HS-delay and SSU of individual tillers. To investigate the importance of the seven variables on the 

difference in leaf area per plant between densities, D31 and D494 parameters were used as a test 

criterion. The parameter values observed in treatment R/FR1.2,D494 were successively changed into 

the values observed in the R/FR1 2,D31 treatment. In this way, a plant growing at 494 plants m"2 

was changed in seven steps into a plant with the leaf properties of a plant growing at 31 plants per 

m2. Fig. 5 shows the results for three durations of simulation resulting in different LAI values for the 

D494 treatment. Difference in leaf area per plant between the D494 and D31 treatment increased 

from 1 cm2 at LAI = 2.9 (in treatment D494) to 75 cm2 at LAI = 5.1 (in treatment D494). 

First k (~ 0.76), LER (1.5 - 6 cm d"1), LED (~ 8 d) and maximum width observed in D494 were 

successively changed into values observed in D31, thus obtaining a plant with the leaf and tiller types 
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of D494, but with individual leaf dimensions of D31. Because the difference in leaf area did not 

decrease (Fig. 5), individual leaf dimension variables did not explain differences in leaf area per plant 

between D31 and D494, irrespective of LAI. Changing the LA into values observed in D31 decreased 

the difference in leaf area slightly and only at LAI = 5.1. This was due to the lower LA in D494 for 

late emerging tillers (Table 2). Changing HS-delay values of D494 into values observed in D31 did 

not have any effect. The quantitative significance of plant density effects were primarily mediated by 

effects on SSU, which means that the leaf area per plant growing at 494 m"2 was lower than for 

plants growing at 121 m"2 mainly because some specific tillers did not appear (Fig. 3b). Therefore, 

the mechanism of plant density effects will only be studied on SSU, after analysing effects of plant 

density on some other plant variables. 

Early effects of plant density on other variables 

Other plant variables were also influenced by plant density, and some of them even in an earlier phase 

than leaf area variables. In F93, at HS of the ms = 5.2, plant density had no significant effect on leaf 

area or dry weight of the ms, but the distribution of dry weight was significantly changed. The leaf-

blade fraction in the dry weight of the ms was significantly lower for D494 (0.81) than for the other 

densities (0.84). More pronounced, specific leaf weight (SLW) of low-positioned leaves was 

significantly lower at higher plant densities (Fig. 6). The same phenomena were visible in the F94 and 

GC experiment (data not shown). 

In the GC experiment, regular harvests were done in early growth phases and the dynamics of 

SLW of individual leaves could be analysed. For Leaf 3 on the ms, Fig. 7 illustrates a trend that 

occurred for ms Leaves 1-4: when the leaf was just full-grown, SLW was hardly affected by plant 

density, but during ageing SLW decreased faster at higher plant densities. As a 'shade avoider', the 

wheat plant responds to competition for light by investing more dry matter in longer sheaths at the 

expense of leaf dry matter, thereby allowing the young leaves to be kept out of shade (Smith, 1982). 

This study showed that only dry weight of lower-positioned leaves was reduced, before reductions in 

total plant dry weight occurred. This reduction in SLW could be due to a reduced photosynthesis at 

a low position in the crop canopy or to a larger fraction of the dry matter in the lower leaves being 

remobilized at a higher plant density. 
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Possible role of temperature in effects of plant density on SSU 

Temperatures measured between 35 and 64 DAE were analysed in the F93 experiment for 

treatments DO (LAI=0) and D494 (LAI>4). On average, mean daily temperatures at -1, 0 and 40 cm 

were 3.5, 3.8 and 0.7 °C lower in D494 than in DO, respectively. Differences in temperature between 

DO and D494 were larger when daily accumulated PPFD was higher. The decreased SSU at higher 

plant densities can not be explained by these temperature differences, because lower temperatures 

result in an increase rather than a decrease in SSU (Chapter 2). 

Source andR/FR effects on SSU 

The largest effect of plant density on leaf area per plant was due to effects on SSU (Fig. 5). A 

decline in SSU with an increase in plant density could be related to source limitation: when plants 

compete for light, daily assimilate or dry matter production per plant will decline with an increase in 

plant density. Such a mechanism has been proposed to explain density effects in wheat (Van Keulen 

and Seligman, 1987), guar (Charles-Edwards and Beech, 1984) and lupin (Munier-Jolain etal, 

1996). We tried to relate SSU of tillers tl and t3 to the growth rate of the plant at the time of 

appearance of these tillers (Fig. 8). For t3, there was indeed a positive relation between SSU and 

plant growth rate. For t l , no relation was found. Therefore, the current results are inconclusive to 

show a role for plant growth rate in explaining differences in SSU. 
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Figure 8. SSU of tiller tl and t3 at two levels of R/FR in the 
GC experiment, as a function of total plant growth rate 
measured at the time of tiller appearance. Statistically 
significant logistic functions (P<0.05) are drawn. 
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The decline in SSU with increase in plant density could also be induced by declining R/FR ratio at 

the base of the plant (Kasperbauer and Karlen, 1986; Casal et al., 1990; Barnes and Bugbee, 1991). 

In the current study the enhanced red radiation was imposed to create in the plant stands the R/RF 

ratio that free standing plants experience in nature. Under natural weather conditions in the C95 

experiment, the addition of red light at the plant base did not significantly change SSU of any tiller 

position and total number of tillers formed was also not significantly different (15.2 and 15.6 tillers 

per plant for R0 and Rl treatments, respectively; P=0.7). In the GC experiment, there was a 

significant R/FR effect on the relation between plant density and SSU for tiller types tl and t3 (Fig. 

9). As expected, SSU of t3 is reduced at a lower plant density than the SSU of tl is, because plants 

are larger at appearance of t3 and (self-)shading is more intense. At R/FR = 3.6, the SSU of tl 

declined at a higher plant density than at R/FR =1.2. These results imply that R/FR ratio can partly 

explain effects of plant density on SSU in the GC experiment. 

The difference in R/FR effects in the field and growth chamber experiments could be due to the 

methodology of applying extra red light. The addition of red light only to the plant base could 

underestimate photomorphogenic effects, because elongating leaves are also a site of R/FR 

perception. However, Deregibus et al. (1985), Casal et al. (1986) and Casal et al. (1987) found 

tillering responses to addition of red light to the plant base, even with one diode per plant. Another 

explanation could be that the R/FR ratio has larger effects under more 'adverse' conditions for SSU 

D 
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0 100 200 300 400 500 

Plant density (m2) 
Figure 9. SSU of tiller tl and t3 at two levels of R/FR in the GC 
experiment, as a function of plant density. Statistically significant 
logistic functions (P<0.05) are drawn. 
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(low PPFD in the GC experiment). Indeed, most of the evidence for photomorphogenic tillering 

responses have come from growth chamber experiments with relatively low PPFD (Barnes and 

Bugbee, 1991; Kasperbauer and Karlen, 1986; Casal et al, 1985; Casal et al, 1987). Under natural 

weather conditions, addition of red light only increased SSU at low plant densities (Paspalum 

dilatatum. 6.7 plants m"2; Lolium multiflorum. < 56 plants per m"2) in an advanced plant stage (Casal 

etal, 1986). 

A new hypothesis 

It appears that neither plant growth rate nor R/FR ratio can fully explain effects of plant density on 

SSU. A new hypothesis is therefore proposed here. Specific leaf weight of lower positioned leaves 

was the first plant property measured that was affected by plant density (Fig. 6). Specific site usage 

of tl and t3 and SLW of Leaves 1 and 3 on the ms at the time of daughter tiller appearance were 

strongly related, independent of R/FR treatment in the GC experiment (Fig. 10). While both SLW 

and SSU depend on assimilate supply, a local reserve pool which is determined by local assimilate 

supply and translocation could regulate SLW and SSU (Fig. 11). Low R/FR ratios have been shown 

to accelerate senescence and translocation of structures out of old leaves (Guiamet etal, 1989), 

while lower PPFD values reduce photosynthesis (Lawlor, 1987). 

This hypothesis is an elaboration of the hypothesis discussed in Chapter 2, where it was stated 

that SSU depends on the growth rate of the parent tiller, based on observations on spaced plants. In 

the current plant density experiments it appears that assimilation supply of the parent leaf (assumed 
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experiment, as a function of SLW of their parent leaves at the time the 
daughter tiller appeared. Statistically significant logistic functions 
(P<0.05) are drawn. 
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Figure 11. Hypothetical relationships for effects of plant density 
on leaf area development via changes in R/FR ratio and PPFD. 

to be represented by SLW) gives a better explanation of SSU differences than the assimilation supply 

of the parent tiller. 

Conclusions 

i) Effects of plant density on leaf area per wheat plant were mainly caused by effects on 

Specific Site Usage (SSU). 

ii) These effects on SSU were associated with effects on SLW of the parent leaf, 

iii) R/FR ratio and PPFD can determine both SLW of individual leaves and SSU of daughter 

tillers, probably by changing the local assimilate supply. 
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Appendix 1. List of abbreviations used 

C95 

D 

DAE 

F93 

F94 

GC 

H 

HS 

k 

LAI 

LA 

LED 

LER 

LSD 

ms 

PPFD 

R 

R/FR 

SLW 

SSU 

t 

Container experiment 1995 

Plant density (m'2) 

Days After Emergence (d) 

Field experiment 1993 

Field experiment 1994 

Growth Chamber experiment 

Harvest number 

Haun Stage 

parameter relating maximum width and full-grown length with individual leaf 

area 

Leaf Area Index 

Leaf Appearance Rate (°C_1 d"1) 

Leaf Elongation Duration (d) 

Leaf Elongation Rate (cm d"1) 

Least Significant Difference 

main stem 

Photosynthetic Photon Flux Density (umol m"2 s"1) 

Red diode treatment; RO: no diodes, Rl diodes at base of plant 

Red/far-red ratio 

Specific Leaf Weight (g m"2) 

Specific Site Usage 

tiller type as classified by Klepper et al. (1982) 



Introduction 

At higher plant densities, leaf area per plant is reduced in later phases of growth (Hay and Walker, 

1989). As an example of a tillering Gramineae species, in Chapter 5 it was analysed for wheat which 

morphological leaf components were affected by plant density and which mechanisms were involved. 

It was found that the most significant effect of higher plant densities on leaf area per plant was the 

absence of later-formed tillers. The lack of tiller formation was related to low local assimilate 

availability, induced by low photosynthetic photon flux densities (PPFD) or low red/far-red ratios at 

the site of the incipient tiller. When a species does not form tillers, plant density can only affect the 

growth of leaves on the main stem. A study into the effects of environmental factors on the 

morphological development of such a plant type could lead to a better understanding of mechanisms 

involved in the effects of plant density on leaf area development. 

Modern maize (Zea mays L.) hybrids only rarely form tillers. Leaf area development on one 

(main) stem fully determines the leaf area development per plant, and effects of plant density must be 

related to effects on leaf area growth of this main stem. Several authors (e.g. Williams et al., 1965) 

found a decrease in leaf area per plant with an increase in plant density for maize. Grant and Hesketh 

(1992) assumed that leaf area growth on a maize plant is a function of leaf dry weight and the 

increase in leaf dry weight. However, they tested this hypothesis on plants grown in a range of rather 

low plant densities (1.5 - 10.3 m"2), resulting in only small differences in leaf area per plant, even 

between the extreme plant densitities. How leaf area is reduced at higher plant densities (is the 

appearance of leaves reduced or are individual leaves smaller?) and by what mechanisms is still 

unknown. 

The objectives of the current paper are: (i) to determine which leaf area variables in maize are 

affected by plant density, and (ii) to analyse which mechanisms could be involved. The effects of a 

wide range of plant densities and of 50% shade on leaf area variables were tested in a field 

experiment repeated for two years. 

Materials and methods 

Field experiment 1993 (F93) 

Maize seeds (hybrid 'Luna') were sown by hand at equal distances per plot in a heavy clay soil in 

Wageningen (52 °N, 6 °E) on 25 and 26 May 1993; plants emerged on 6 June. Treatments included 

all combinations of four densities (DO (= spaced), D7.7, D31, D123) and two shading levels (SO: not 

shaded; SI: shaded) in two blocks. DO plots were sown in a plant density of 4.5 m"2, and this density 

decreased in time by periodic harvesting. In early growth stages plots were irrigated and abundantly 

fertilised. Twelve days after emergence (DAE) (appearance Leaf 5) shading treatments were started 
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by placing white nets above the SI plots. Transmission of the nets was 50% in the wavelength range 

400-800 nm, with no effects of the nets on the red/far-red ratio. Nets were lifted during growth to 

assure a distance of 30 cm between the top of the crop canopy and the net. Individual plots were 

5.40*4.32 m and the inner 3.24*2.16 m was regarded as net plot. Every full-grown 5* leaf on a plant 

was marked to facilitate leaf identification. 

Field experiment 1994 (F94) 

Seeds were sown in a heavy clay soil in Wageningen on 20 May 1994; plants emerged on 31 May. 

Experimental layout was as in the F93 experiment. Fifteen DAE (appearance Leaf 4) shading 

treatments were started. 

Measurements and calculations 

Harvesting procedure. Plots were sampled 16, 30,43 and 56 DAE (F93 experiment) or 24, 35 and 

55 DAE (F94 experiment) by harvesting above-ground parts of eight plants. Due to severe lodging, 

the D123 SO plots in both blocks in the F94 experiment were discarded in Harvests 2 and 3. Plant 

material was dissected into individual leaf blades ("leaves"). The remaining plant was divided into 

three fractions: sheaths, stems and tassels. Leaves were counted acropetally. If more than 50% of a 

leaf was yellow or the leaf was broken off from the plant, it was considered dead and discarded. Full-

grown leaves were cut off at their ligule, growing leaves were cut off at the uppermost visible ligule 

on the plant. In this way, a leaf was supposed to have appeared when its tip reached above the 

uppermost visible ligule. Dissected material was oven-dried at 70 °C to constant weight. 

Temperature and light measurements. Daily values of maximum and minimum air temperatures and 

global radiation were recorded within 1 km from the experimental sites. Figure 1 shows that the first 

25 DAE were colder and darker in F94 than in F93 and that between 25 DAE up to 55 DAE 

temperature and PPFD were lower in the F93 than in the F94 experiment. Crop temperatures at -1, 0 

and 40 cm above soil level were recorded every two hours in all plots in one block in the F93 

experiment from 19 DAE onwards. 

Leqfappearance.The base temperature for leaf appearance was calculated as a linear function of 

growing degree days (gdd). Growing degree days were calculated with two methods: in Method 1 

daily average air temperatures were used; in Method 2 the suggestion of Grant (1989) and Yin et al. 

(1996) that diurnally fluctuating temperatures should be used, was taken into account for calculation 

of gdd. To do so, from the daily maximum and minimum measured air temperatures, hourly values 

were calculated with equations given by Goudriaan and Van Laar (1994). Leaf appearance rate 

(LAR) was calculated with linear regression as the slope of the number of appeared leaves (a leaf is 

here defined to be appeared when its tip is visible) vs. gdd. 
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F93 F94 u 
o 

DAE 
Figure 1. Accumulated photosynthetic photon flux density (PPFD) and growing degree days (base 
temperature 11.1 °C based on hourly values) after crop emergence. Solid lines: F93 experiment; 
dashed lines: F94 experiment. 

Leaf apperance rate (LAR) was fitted as a function of plant density using a hyperbolic spacing 

formula (De Wit, 1960): 

LAR = 
LAIL 

(1) 

LAIL 
-D + 1 

where LAR,, ("C1 d"1) is the fitted LAR for plant density (D) = 0 m"2 and 13 (°C
l d"1 m2) the fitted 

slope of the curve for D=0 m"2. 

Individual leaf area variables. Length and maximum width were measured on all appeared leaves. 

On one plant per plot, length, maximum width and width of full-grown leaves were measured at six 

or seven equidistant places covering the whole leaf length. With numerical rectangular integration, 

leaf area was calculated from leaf length and the leaf widths. After this, the leaf shape factor k was 

calculated: 
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k = 
Leaf area 

Leaf length * Maximum leaf width 
(2) 

For analysis of maximum leaf width and full-grown leaf length, data were used from leaves that were 

recently full-grown. 

Leaf elongation rate (LER) and leaf elongation duration (LED) were not directly determined but 

were calculated for Leaf 7. Leaf 7 was chosen because it elongated in the period during which 

observations were done. The calculation is as follows: 

i) the number of appeared leaves was plotted against the number of full-grown leaves (two example 

treatments shown in Fig. 2). Linear regression was used to estimate the number of appeared leaves at 

the time Leaf 7 was full-grown; 

ii) the LED of Leaf 7 can now be calculated in units of'appeared leaves between emergence and 

cessation of elongation of Leaf 7' (Fig. 2); 

iii) using the estimated LAR, LED can be expressed in gdd (°C d); 

iv) average LER (cm °C' d"1) was calculated by dividing full-grown leaf length (cm) by LED. 

Dry weight. Above-ground dry matter production per plant (W (g)) in time (t (d)) was fitted with the 

expolinear equation (Goudriaan and Van Laar, 1994): 

W = f=. ln(l + e
r
"

,(t
~'

b
) (3) 

16 

g 14 
8 

1 12 

2 10 

i 
Z 8 

' -y-~ y 

o 

s 
s /A 

v~\ DOSO 

Number of full-grown leaves 

Figure 2. Illustration of the calculation of the number of appeared leaves during 
elongation of Leaf 7. Lines are fitted linear regressions and the length of the arrows 
represent the number of appeared leaves during elongation of Leaf 7 for treatments 
DOSO and D123S0 in the F93 experiment. 
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where cm is the maximum growth rate for t - °° (g d'1), rm the initial relative growth rate (g g"1 d"1) 

and tb the moment at which the linear phase effectively starts (d). While shading treatments 

commenced some time after emergence, Equation 3 was rewritten to obtain Equation 4 and one 

common W value (Wsh) was estimated at the day when the shading treatments started (tsh) for the 

two shading treatments per plant density per year. 

y
 - **h(1

 *
 e':71 w 

ln(l + e
m<f

* *) 

Variable W was log transformed and W^, rm and tb were estimated with nonlinear regression. The 

coefficient cm was calculated with Equation 5: 

W, r 
cm = * _ = (5) 

ln(l + e
rmitsh

~
tb

) 

To examine whether plant growth rates (expressed in g "C"1 d"1) could explain effects of plant 

density on LAR, plant growth rate was calculated for the period LAR was determined: 

Plant growth rate (g^d^ (W (g) at gdd - ll^Cd) - (W (g) at gdd • 90 -Cd) 
& ^ (210 - 90) °Cd 

Variable W was estimated with Equation 3 with the estimated values of cm, rm and tb. 

Results and discussion 

Temperatures in the crop 

Between 19 and 56 DAE in the F93 experiment, mean daily temperatures in the crop were lower in 

shaded treatments and at higher plant densities. The maximum difference in temperature was 

observed between D0S0 and D123SI plots. The average temperatures during the measuring period 

in the D0S0 plot were 2.7 (at -1 cm), 2.8 (at 0 cm) or 0.5 (at 40 cm height) °C higher than in the 

D123S1 plot. 

Dry matter accumulation 

Fitted values for rm (Eq. 4) were not significantly (P<0.05) different between plant densities. 

Therefore, the analysis was redone with one common estimate for rm for the four plant density 

treatments per shading level per year and one common estimate for Wsh for the two shading 
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treatments per plant density per year. Parameter tb was estimated for every individual treatment. 

Table 1 shows the estimates of Wsh, cm (recalculated using Equation 4), rm and tb. Parameter rm was 

higher in F94 than in F93, probably related to the higher temperatures in F94 from 25 DAE onwards 

(Fig. 1). Shading decreased rm and especially cm. These effects are probably related to a reduced 

photosynthesis for shaded plants (Lawlor, 1987). At higher plant densities, tb was lower, indicating 

that competition between plants for resources started earlier at higher plant densities. Also cm 

(expressed per plant) was lower at higher plant densities, indicating that at later stages there was 

competition for resources between plants. 

Leaf area per plant 

Leaf area per plant was clearly lower at higher plant densities: e.g. for the F93 experiment 30 days 

after emergence leaf area per plant of treatment D0S0 was 1.7 times as high as treatment D0S123 

and even 3.2 times as high 56 days after emergence (data not shown). 

Leaf appearance rate (LAR) 

When daily average air temperatures (Method 1) were used to calculate the number of appeared 

leaves as a linear function of growing degree days (gdd) for unshaded free standing plants (D0S0 

treatments in F93 and F94), a very low base temperature of-8 °C fitted the data best (R2^ = 95.6 

%). This is a very unrealistic value for maize. Using estimated hourly temperature values (Method 2), 

a base temperature of 11.1 °C fitted the data best (R2^ = 99.3 %). Although this value is higher than 

commonly found in literature, the hourly method with a base temperature of 11.1 °C was used to 

calculate gdd (Fig. 1), because more variance was accounted for by the use of hourly instead of daily 

values while a realistic base temperature was obtained (Ellis et ai, 1992). 

The LAR per treatment was plotted against plant density in Fig. 3. The data are fitted to Equation 

1. Figure 3 shows that LAR was lower at higher plant densities and for shaded plots compared to 

unshaded plots over the entire range of plant densities. 

Temperatures in the crop were lower for shaded treatments and at higher plant densities. Crop 

temperature differences between plots were up to 2.8 °C, which will reduce LAR for this hybrid by 

20 % (Chapter 4). Differences in LAR were much larger and temperature can therefore only partly 

explain the effects of plant density on LAR. 

Figure 4 shows a very close relationship between plant growth rate and LAR independent of year, 

plant density or shading level. While the effects of growth rate on LAR were independent of shading 

level, it seems likely that the amount of assimilates determines LAR in the wide range of plant 

densities studied here. Effects of other factors such as red/far-red ratio can not be ruled out, but are 

probably less important. 
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Table 1. W,,, (estimated per density*year combination), rm (estimated per shading*year 

combination) and tb (estimated per individual treatment) in Equation 3 (expolinear 

growth equation), and calculated cm (Equation 4; expressed per plant and per area) for 

different plant densities and shading levels in the F93 (R2^ = 99.3 %) and F94 (R2^ = 

99.8 %) experiments. Standard errors are indicated between brackets. 

F93: 

DOSO 

D7.7S0 

D31S0 

D123S0 

D0S1 

D7.7S1 

D31S1 

D123S1 

F94: 

DOSO 

D7.7S0 

D31SO 

D123S0 

DOSl 

D7.7S1 

D31S1 

D123S1 

WA(g) 

0.24 (0.02) 

0.26 (0.02) 

0.26 (0.02) 

0.26 (0.02) 

0.24 (0.02) 

0.26 (0.02) 

0.26 (0.02) 

0.26 (0.02) 

0.032 (0.003) 

0.028 (0.003) 

0.034 (0.003) 

-

0.032 (0.003) 

0.028 (0.003) 

0.034 (0.003) 

0.032 (0.004) 

r„(gg-'d-') 

0.170(0.008) 

0.170(0.008) 

0.170(0.008) 

0.170 (0.008) 

0.161 (0.009) 

0.161 (0.009) 

0.161 (0.009) 

0.161 (0.009) 

0.285 (0.008) 

0.285 (0.008) 

0.285 (0.008) 

-

0.246 (0.007) 

0.246 (0.007) 

0.246 (0.007) 

0.246 (0.007) 

Ud) 

36(2) 

34(2) 

30(2) 

20(1) 

35(2) 

32(2) 

27(2) 

21(2) 

37(1) 

36(1) 

31(1) 

-

40(1) 

38(1) 

32(1) 

27(1) 

cuCBpl-'fr
1
) 

2.6 

1.9 

0.94 

0.20 

1.4 

1.2 

0.48 

0.19 

4.7 

2.8 

0.96 

-

3.4 

1.9 

0.58 

0.16 

c»(gn»-

-

15 

29 

25 

-

8.9 

15 

23 

-

22 

29 

-

-

14 

18 

19 

' d ' ) 
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O F94,S0 

A F94,S1 

C* 0.04 

< 

0.03 

0.02 
0 20 40 60 80 100 120 

Plant density (nr2) 
Figure 3. Effect of plant density on LAR for the two field experiments and shading 
levels. Lines are fitted curves using Equation 4. 

0.02 
0.00 0.05 0.10 

• F93,S0 

# F93,S1 

O F94.S0 

• F94.S1 

0.15 

Plant growth rate (g °C_1 d"1) 

Figure 4. Relation between LAR and plant growth rate, calculated with Equation 5. A 
second order polynomial equation was fitted. 
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Leaf length, LER and LED 

Shading significantly increased the length of full-grown leaves that appeared after the shading 

treatments commenced in both experimental years (data not shown). The effect of plant density on 

full-grown leaf length differed between the experimental years: in F93 full-grown leaves in both 

unshaded and shaded treatments were longer at higher plant densities at leaf positions higher than 5 

(shown for unshaded treatments in Fig. 5a), while in F94 there was no significant effect of plant 

density on full-grown leaf length, neither for unshaded nor for shaded treatments (shown for 

unshaded treatments in Fig. 5b). 

The calculated LER and LED of Leaf 7 relative to the value for spaced unshaded plants 

(treatment DOSO) are shown in Table 2. For both years, length and LED of Leaf 7 of shaded plants 

were longer. In the F93 experiment, at higher plant densities LED was longer and LER was 

unaffected resulting in longer leaves. In the F94 experiment, at higher plant densities LED was 

longer but LER was slower, resulting in no or a small effect of plant density on full-grown leaf 

length. 

(a) (b) 
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Figure 5. Full-grown leaf length of unshaded (SO) plants grown at different plant densities as a function of 
position on the plant in (a) the F93 experiment, and (b) the F94 experiment. 
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In all experiments, LED was longer at higher plant densities and for shaded treatments. For 

wheat, a good relationship existed between LED and leaf appearance interval (Chapter 3). Such a 

relation also existed between LED and leaf appearance interval of Leaf 7 (Fig. 6). In tillering 

Gramineae species such as barley (Tesafova et al, 1992), tall fescue (Skinner and Nelson, 1995) and 

wheat (Chapter 3), the growth of successive leaves is related in such a way that on average a 

constant number of visible leaves (between 1 and 2) is elongating per tiller. For maize, LED of Leaf 

7 is four to seven times higher than the leaf appearance interval (Fig. 6). This is in agreement with 

findings in Chapter 4, where it was found that the number of growing leaves on a maize plant 

increases during development. Probably there is synchronisation between the growth of successive 

leaves, but this synchronisation is less simple than in barley, tall fescue or wheat. 

Maximum leaf width 

For both experimental years, shading significantly decreased the maximum width of leaves that 

appeared after the shading treatments were started. At higher plant densities, maximum leaf width 

was also significantly reduced, and already at a lower leaf position at higher plant densities 

(illustrated for F94 in Fig. 7). This confirms earlier findings for wheat (Chapter 5). 

Possibly maximum leaf width is related to the plant growth rate per phyllochron. This measure 

adjusts for the effect of plant density on LAR and indicates the dry matter produced during one leaf 

appearance interval. At appearance of Leaf 7, dry matter production per plant and number of 

appeared leaves per plant were not yet affected by plant density. The plant growth rate per appeared 

• 
• 

o 

• 

F93.S0 

F93,S1 

F94,S0 

F94,S1 

Leaf appearance interval (°C d) 

Figure 6. Relation between LED of Leaf 7 and leaf appearance interval, fitted 
with linear regression. Data from different density treatments. 
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Figure 7. Maximum leaf width of plants grown at different plant 
densities and shading levels as a function of position on the plant in the 
F94 experiment. 

leaf at appearance of Leaf 7 can therefore not explain the differences in maximum leaf width between 

plant densities. If the growth rate per appeared leaf is calculated for the period that Leaf 7 is 

elongating, a good positive relationship was found between maximum leaf width and the growth rate 

per appeared leaf (Fig. 8). Apparently, if leaf width is determined by growth rate per appeared leaf, 

maximum leaf width is not set at appearance of the leaf but during elongation. 

Leaf shape factor (k) 

The leaf shape factor k (Equation 1) decreased from 0.82 for Leaf 1 to 0.69 for Leaf 3 and was 

between 0.67 and 0.71 up to Leaf 8. Shading nor plant density had a significant effect on the value of 

k. Sanderson et al. (1981) found very small effects of plant density on k. Apparently area per leaf 

position is determined by the maximum width and length, in a manner which is rather independent of 

plant density or shading. 

Leaf lifespan 

There was no significant effect of plant density or shading on the number of dead leaves per plant as 

a function of DAE within the duration of the experiment (data not shown). At lower densities, old 

leaves died mainly due to wind, putrefaction (leaves laying on the ground) or penetration of their 

sheath by crown roots. At high plant densities old leaves mainly died by yellowing. 
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Conclusions 

Plant density affected the leaf area expansion in maize mainly through effects on L A R 

The effects on LAR were well related to effects on the plant growth rate per leaf appearance interval. 

Appendix. List of abbreviations used 

cm Maximum growth rate for t - °° (equation 2) 

D Plant density 

D A E Days after emergence 

gdd Growing degree days 

LAR Leaf appearance rate 

LARa LAR at D = 0 m"2 (equation 5) 

L E D Leaf elongation duration 

LER Leaf elongation rate 

PPFD Photosynthetic photon flux density 

rm Initial relative growth rate (Equation 2) 

R 2 ^ Percentage of variance accounted for 

S Shading treatment (SO: unshaded; S1: 50 % shaded) 

t Time 

tb Time when the linear growth rate effectively starts (Equation 2) 

t8h Time when the shading treatments started 

W Dry weight above-ground parts per plant 

W * W a t t 8 h 

P Slope of Equation 5 at D = 0 m"2 
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Part III 

Simulation 
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Chapter 7 

An object-oriented morphological model 

of leaf area expansion in wheat 

Abstract 

A model was developed to simulate plant leaf area expansion of Gramineae species. The principles 

of object orientation were used to obtain maximum flexibility, and the application to modelling foliar 

development of plants is shown. Plant related processes were strictly simulated at organ level. This 

implied that some variables, e.g. maximum leaf width, depended on the value of the leaf beneath it, 

instead of on the position on the plant. Equations and parameter values in the model were derived 

from earlier published data on spaced wheat plants, and growth was assumed to be sink limited. 

From these data, all plant processes needed to run the model could be converted to equations and 

data on organ level, using difference equations for relationships within the plant. The simulations 

yielded patterns of leaf area expansion that depended on the position of the leaf within the plant. The 

relative growth rate for leaf area per plant decreased with time. Experimental data were not 

predicted well, because source limitation was not included and the assumption of a constant leaf 

appearance rate was not correct. Possible improvements, extensions and applications of the model 

are discussed. 
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Introduction 

A good prediction of leaf area expansion is crucial to quantify differences in growth between plants 

or crops (Goudriaan and Van Laar, 1994; Van Loo, 1993). However, relatively few analytical 

studies have been carried out to understand the mechanisms of leaf area expansion. As a 

consequence, dynamic crop growth models simulate leaf growth in very different ways. 

In SUCROS (Spitters etal., 1989), leaf area growth is divided into two phases. In the first phase, 

growth is assumed to be sink-limited, and leaf area growth proceeds exponentially with thermal time. 

In the second phase (Leaf Area Index > 0.75), growth is assumed to be source-limited, and leaf area 

growth is calculated from the dry weight of the leaves and a predetermined specific leaf area (SLA). 

However, SLA is strongly affected by environmental factors, especially temperature and 

photosynthetic photon flux density (PPFD). Therefore, SLA should be an output of a mechanistic 

growth model, instead of an input (Van Loo, 1993). 

Others have tried to simulate leaf area growth completely separately from dry matter production 

(McMaster et al., 1991; Amir and Sinclair, 1991) or included mechanisms of possible source 

limitation on tiller appearance and leaf area expansion (Van Loo, 1993). In these models the 

morphological development otGramineae plants, i.e. tillering, appearance of leaves on a tiller, and 

individual leaf growth, is included in various degrees. However, a general quantitative concept of 

morphology is still lacking. 

Our Crop Physiology Group introduced a general framework to analyse effects of temperature 

and PPFD on leaf area growth in wheat (Chapters 2 and 3) and maize (Chapter 4). We used this 

framework to analyse effects of plant density on wheat (Chapter 5) and maize (Chapter 6). In this 

paper the framework will be formalised into a mechanistic growth model, in which: 

1. sink limited leaf area expansion of wheat is simulated, based upon the variables used for analysing 

leaf area expansion (Chapters 2 and 3); 

2. the mechanisms of regulation of these leaf area variables are included as suggested in Chapters 2 

and 3; 

3. the resulting model should become very flexible, such that leaf area growth of other plant species 

can be simulated and source limited growth can be easily introduced. 

Theory 

Object orientation 

To enhance the desired flexibility, object orientation was used in the model. Object orientation can be 

characterised by the following concepts: objects, member variables, methods, messages, classes, 

encapsulation, polymorphism and inheritance. 
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Objects. An object is a representation of a real-world element, for example a particular leaf blade on 

a specific wheat plant. An object contains member variables and methods (explained below). 

Member variables. These are data or other objects stored inside an object (for instance the member 

variable "Length" is data stored inside a "Leaf Blade" object; the member variable "Seed" is an 

object stored inside a "Plant" object). 

Methods. Methods are functions that belong to an object (for instance the method "Leaf Elongation 

Rate" in a "Leaf Blade" object calculates the current "Leaf Elongation Rate" depending on, for 

example, temperature. 

Messages. These are the (only) way objects can communicate with each other. An object can send a 

message to another object. If the message is recognised by one of the methods of the receiving 

object, an answer will be given. For example, a "Seed" object can send the message: "GiveLength" 

to a "Leaf Blade" object. If the method "GiveLength" is present in the "Leaf Blade" object, it will 

execute the code present in that method, and pass the value of the length that is stored in the "Leaf 

Blade" object to the "Seed" object. 

Class. A class is a set of definitions for a uniform group of its derived objects. For example, the class 

"Leaf Blade" defines that its derived objects contain the member variables "Length" and "Width", 

and a method "GiveLength". Values of "Length" and "Width" are specific for each of the objects 

derived from the class. 

Encapsulation. Encapsulation prevents that member variables in objects can be retrieved or changed 

directly by other objects. Objects can only retrieve or change information of other objects by sending 

messages which are understood by the methods of the receiving object. For example, another object 

can get the value of the width of a "Leaf Blade" object, only if this "Leaf Blade" object has a method 

that gives the value of its width. 

Polymorphism. Polymorphism allows a program to treat objects derived from different classes as if 

they were derived from the same class. Thus a certain message can be sent to objects derived from 

different classes. For example, a "Leaf Blade" object can send a "What is the temperature?" message 

to an "Abiotic Environment" object. Depending on whether the model is running under growth 

chamber or field conditions, the "Abiotic Environment" object is derived from class "Growth 

Chamber" or "Field". Both the "Growth Chamber" and the "Field" class have a method "What is the 

temperature?", but they can calculate temperature in different ways. In this way, the calculation of 

temperature is the full responsibility of the "Abiotic Environment" object and hidden from the "Leaf 

Blade" object. 

Inheritance. The concept of inheritance permits objects to be organised in taxons in which 

specialised objects inherit the member variables and methods of more generalised objects. Similar 

classes of objects which share member variables and methods can be modeled by specifying a super 

class, which defines a common part, and then deriving specialised classes (subclasses) from the 

superclass. For example, the class "Organ" can be seen as a superclass of classes "Root" and "Seed" 
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("Root" and "Seed" are a kind of "Organ"). "Dry matter" is a member variable that is generic for all 

organs and can be defined in the "Organ" class. "Nitrogen Uptake" is a member variable specific for 

"Root" and should be defined in the "Root" class. 

Advantages of Object Orientation for modelling morphology. The most important advantage of 

using Object Orientation for modelling plant morphology is the real-world presentation of objects. 

With object orientation, the appearance and disappearance of organs on a plant can be simply 

modeled as the creation and destruction of "Organ" objects. Furthermore, inheritance can be used to 

describe member variables and methods in one class, while all its subclasses automatically inherit the 

member variables and methods. For example, if it is decided that all organs should have a new 

member variable "Nitrogen Content", this new member variable can be defined in the "Organ" class. 

All subclasses automatically inherit the new member variable "Nitrogen Content", and there is no 

need to change the code in the subclasses of the superclass "Organ". 

Plant morphology 

Integration level. In Chapters 2 and 3 a method was developed to calculate the dynamics of numbers 

of leaf blade organs and the dynamics of individual leaf dimensions for Gramineae species. In line 

with these observations, objects in the simulation model are strictly at organ level and not at a tiller 

level. Accordingly, leaf area is calculated per individual leaf and not directly per tiller or per plant. 

Relationships between organs. Existing simulation models assume simple relations between leaf 

position and, for example, individual leaf area (McMaster etal, 1991; Amir and Sinclair, 1991). 

However, in Chapter 3 it was shown that effects of leaf position differ between tiller types. 

Furthermore, it is unrealistic to assume that there is a causal relation between a leaf variable and its 

position on a tiller. In experiments with Brussels sprouts it was found that newly formed leaves of 

plants that were supplied with ample nitrogen after a period of a shortage of nitrogen were smaller 

than comparable leaves on plants supplied with ample nitrogen throughout (Vos etal., 1996). After 

a while comparable leaves reached equal sizes. These experiments show that both the current 

environmental condions and the history of the plant should be taken into account for prediction of 

leaf area. The history of the plant is probably reflected in the size of the apex (Abbe et al., 1941; 

Pieters and Van den Noort, 1988, 1990): the size of the apex increases faster under better growth 

conditions. Mathematically, this can be represented as follows. The value of a certain leaf variable 

(Pfcaf) depends on the size of the apex at appearance of Leaf L (A,^) and environmental conditions 

(E): 

Pleaf = / . VteapE) 0 ) 

Apex size changes with every leaf that has appeared: 
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A
leaf*X =

 A
leaf

 +
 k ^leaf^ (2) 

Combining the two equations results in a discrete difference equation for a given leaf variable: 

V̂i = & <?**>*> (3) 

This implies that leaf variable values depend on the values on the leaf beneath it (see also Chapter 3). 

This mechanism will be used in the model to simulate the change of certain leaf variables with leaf 

position. 

Model description 

Plant morphology. 

The morphological structure of Gramineae plants forms the core of the model. Klepper et al. (1982) 

introduced an identification method for tillers and leaves on wheat seedlings (Fig. 1). The first leaf on 

a tiller is the prophyll, a non-foliar leaf which is not important for photosynthesis. All leaves 

(including prophylls) contain a bud which can grow out into a new tiller. Leaves and tillers are 

counted acropetally: the prophyll is Leaf 0 (LO) on a tiller, the first foliar leaf is Leaf 1 (LI) and so 

on. Daughter tillers are named after their parent leaf. For example, Tiller tl is the daughter tiller of 
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Figure 1. Morphological representation of a Gramineae 
seedling (redrawn from Klepper et al, 1982). If = leaf, t 
= tiller, ms = main stem. 
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Leaf LI and Leaf LI.2 is the second foliar leaf on Tiller tl (Fig. 1). In fact Klepper's method gives a 

morphological representation of leaf positions common for all Gramineae plants. Based on the 

morphological structure of Fig. 1, four variables were derived in Chapter 2 that determine the 

dynamics of the number of living leaves on a plant: 

i) leaf appearance rate per tiller; 

ii) timing of tiller appearance; 

iii) specific site usage (SSU), i.e. the fraction of existing buds that grow out into a visible tiller; 

iv) timing of leaf death. 

New foliar leaf on tiller 

At LDS =1 

New prophyll on daughter tiller Foliar leaf or prophyll 

AtLDS>=LDS„ and 
tiller 

SSU=1 

Death 

Figure 2. Basic processes of leaf number dynamics in Gramineae species. 

Table 1. Events which are determined by Leaf Development Stage (LDS). 

Value of LDS 

0 

1 

LDS,^ 

Event 

Foliar leaf appearance 

Appearance of next leaf on same tiller 

Foliar leaf is full-grown; elongation stops 

From this moment onwards, a bud in the axil of a leaf 

can grow out into the first foliar leaf of the daughter 

tiller 
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Processes i), ii) and iii) are at tiller level, which is between organ and plant level. While the model is 

intended to include processes strictly at organ level, these three processes are converted to organ 

level. Fig. 2 and Table 1 show the basic processes of leaf formation of Gramineae species at organ 

level. Leaf development stage (LDS) is introduced here to mark the visible appearance of a leaf 

(LDS = 0), the visible appearance of the next leaf on the same tiller (LDS = 1), and the moment a 

leaf is full-grown (ligule is visible) (LDS = LDSf^). Leaf development stage also indicates the earliest 

possible appearance of the first foliar leaf (Leaf 1) on the daughter tiller of the leaf (LDS = LDS^). 

The prophyll of the daughter tiller is assumed to appear at one unit of LDS earlier than Leaf 1 on the 

daughter tiller. 

A new set of four variables on leaf level can now be introduced: 

i) leaf development rate (LDR), i.e. the rate of change of LDS; 

ii) LDSflkr: LDS after which the bud in the axil of the leaf can grow out into the first foliar leaf 

(Leaf 1) on the daughter tiller; 

iii) SSU, now defined as the probability a bud grows out into the first foliar leaf (Leaf 1) on the 

daughter tiller; 

iv) timing of leaf death. 

If the processes in Fig. 2 are iterated with specific values per leaf for LDR, LDSHJ^, SSU and 

timing of leaf death, every possible above-ground leaf arrangement of a Gramineae plant can be 

modelled. 

Leaf size 

For Gramineae species, cell division and expansion of foliar leaves take place within the enveloping 

leaf sheaths. Therefore, foliar leaf parts that have appeared are full-grown and area expansion of 

individual foliar leaves can be described with four variables (Chapter 3): 

v) Leaf elongation rate (LER); 

vi) Timing of cessation of elongation; 

vii) Maximum leaf width (MLW); 

viii) Leaf shape variable (k). 

Formalisation for sink-limited growth 

LDR. LDR (d1) is equal to leaf appearance rate, because I defined LDS=0 at leaf appearance and 

LDS=1 at appearance of the next leaf on the same tiller. Leaf appearance rate on the main stem has 

been studied extensively, and strong effects of temperature have been found (e.g. Volk and Bugbee, 

1991). For spaced plants and high irradiance conditions, leaf appearance rate of tillers is almost equal 

to that on the main stem (Chapter 2). A linear effect of temperature on LDR independent of leaf type 

was therefore assumed in the model. Variable LDR is expressed in degree days, with a base 
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temperature of 0 °C (Chapter 2). 

LDSm, LDSufe, is equivalent to Haun Stage-delay, a variable introduced in Chapter 2. This variable 

indicates the timing of tiller appearance relative to the leaf stage of the parent tiller. In Chapter 2 it 

was found that at high light conditions HS-delay of wheat tillers was independent of temperature, but 

changed with tiller type. The negative exponential relation found in Chapter 2was: 

LDStiller = 1 + ( m S f t / W 0 - 1) *-**"* (4) 

where x is the Haun Stage of the main stem at which the tiller appears assuming a maximum site 

filling of 0.69 (Plant type 1 in Chapter 2), and RDR is the relative decline rate. The current modelling 

approach requires that the properties of Organ x+1 are written as a function of the properties of Leaf 

x. An appropriate way to achieve this is by using discrete difference equations. Equation 4 can be 

rewritten into the following discrete difference equation (Edelstein-Keshet, 1988; calculation is given 

in Appendix I): 

UXmr. w i
 =

 War. w -
 !
> W

 + l
 (

5
) 

where TUXitla is a constant (equal to e"81"1), and Leaf+1 is the next younger leaf on the same tiller or 

the prophyll on the daughter tiller. For Leaf-*°° and -l<rLDSiater
<l, LDS = 1, which is the absolute 

minimum reflecting a site filling of 0.69 (Neuteboom and Lantinga, 1989). 

SSU. In principal, all axil buds can grow out into new tillers. If growth is fully sink-limited, SSU 

equals 1. 

Timing of foliar leaf death. For spaced wheat plants well supplied with nutrients and water, in 

Chapter 2 no death of foliar leaves up to HS of the main stem = 7 was found. Therefore, in the 

current exercise, foliar leaves are assumed not to die within the time-span of canopy construction. 

LER. In Chapter 3 it was found that LER depends on the position of the leaf on the plant and on 

temperature with a base temperature of 0 °C: 

LER = (gTd -JTJ (1 - e^mmed Leaf Position - 1)) + ^ ^ 

where Summed Leaf Position is the sum of all the numbers in the designation of the leaf (e.g. for 

Leaf 1.0.1 the Summed Leaf Position is 2; for Leaf 2.3.0.1 the Summed Leaf Position is 6 (Chapter 

3)), c is a fitted constant, Td the mean daily temperature, fTd the LER for Summed Leaf Position = 1, 

and gTd is the LER for Summed Leaf Position - °°. This relation is split up into two parts here. At a 

temperature of 10 °C, the relation can be rewritten into the following discrete equation: 
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LER
T=10'C, Foliar Leaf *\ ~ (

LER
T.10"C, Foliar Leaf

 LER
max,T=10°c) *

 T
LER

 + i£^ira,a'=10<C (7) 

where Foliar Leaf + 1 is the next younger foliar leaf on the same tiller or the first foliar leaf on the 

daughter tiller, LER^^JOOC (cm d"1) is the maximum LER at a temperature of 10°C and Foliar Leaf 

- », TLER is a dimensionless constant and LERT=10oCFoBarLeaf is the LER at 10 °C for a foliar leaf. 

The effects of temperature on LER are linear (Chapter 3): 

T - T 
LER = LEIL, ,n<r * ( ^ ) (8) 

where TbjLER is the base temperature (°C) for LER. 

Timing of cessation of elongation. For wheat (Chapter 3), barley (Tesafova et al., 1992), rice (Yin 

etal., 1995), perennial ryegrass (Van Loo, 1993), and tall fescue (Skinner and Nelson, 1995) leaf 

elongation duration is proportional to leaf appearance interval. A constant leaf development stage at 

which the leaf is full-grown (LDSf^, see Table 1 and Fig. 2) is used here to model the timing of 

cessation of elongation. 

MLW. For wheat, maximum leaf width (MLW; in cm) depended on summed leaf position, but not on 

temperature (Chapter 3): 

MLWm„ 
MLW = 22 (9) 

i + _ a -b x Summed leaf position 

where MLWIMX(cm) is the maximum MLW for Summed Leaf Position - °°, and a and b are fitted 

constants. This relation is rewritten here as a discrete logistic difference equation: 

Foliar Leaf +1 

MLW„r , , 

MTW = FobarLeaf no) 
MLW

Foliar Leaf,I J ^ V») 
1 + ( M™ - 1) r 

where v^^ is a dimensionless constant. 

Leaf shape. The dimensionless leaf shape variable k has been usually determined to calculate full-

grown leaf area from maximum leaf width and full-grown leaf length (Chapter 3): 

t Full-grown leaf area . . . , 

Maximum leaf width * Full-grown leaf length 
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Sine functions have been found which describe the width of a leaf at every point (Sanderson et al, 

1981; Chapter 4). For simplicity, in the model a leaf was assumed to consist of a triangular part from 

the leaf tip (width=0) to point a (width=MLW), where a is a fraction of the full leaf length. The 

remaining part (1-a) is assumed to be rectangular width a width of MLW. Parameter a 

(dimensionless) can be calculated from k: 

a 2 - 2 k (12) 

If LDS<a, the triangular part of a leaf is appearing. If LDS > a, the rectangular part is appearing. 

Implementation of the model 

The model is implemented in C++, which is an object-oriented computer language. Fig. 3 shows the 

inheritance structure of the model. The classes FOLIAR LEAF and PROHYLL are subclasses of 

class LEAF (a foliar leaf is a kind of leaf), which means that FOLIAR LEAF and PROPHYLL inherit 

member variables and methods from their superclass LEAF. LEAF and SEED are subclasses of 

ORGAN, and GROWTH CHAMBER and FIELD are subclasses of ABIOTIC ENVIRONMENT. 

Other classes in the model are defined without a superclass. As an example of the use of inheritance, 

ORGAN has a member variable "Name", which means that every organ (foliar leaf, propyll, or seed) 

has its own "Name". FOLIAR LEAF has a member variable "Length", which means that this variable 

is only defined for a foliar leaf, and not for a prophyll or a seed. 

To connect adjacent organs, pointers are used. A pointer is the computer memory address of 

Figure 3. The class inheritance structure of the model. 
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another object. For example, all objects derived from the class LEAF or its subclasses have a pointer 

member variable called 'p_younger_leaf, which is the memory address of the next younger leaf on 

the same tiller. For the foliar leaf Ll, p_younger_leaf points to the address of L2. Fig. 4 gives, as an 

example, the complete pointer structure around leaf 0 (the coleoptile). 

At the start of a run (here equal to emergence day), basically the following methods are called: 

1. a RUN object (Run) is created; 

2. Run creates an INPUT object (Input) and asks Input for Run member data (e.g. start and finish 

date of Run); 

3. Input reads required data from a file and hands this over to Run; 

4. Run destroys Input and creates a PLANT object (Plant); 

5. Plant creates a SEED object (Seed); 

6. Seed creates a PROPHYLL object (LO) and the memory address of LO is stored as a pointer 

member variable in Seed; 

7. LO stores the memory address of Seed as a member variable and creates a FOLIAR LEAF object 

(Ll). The memory address of Ll is also stored as a pointer member variable in LO; other member 

variables are initialised (e.g. LDS); 

8. Ll stores the memory address of LO as a pointer member variable, creates an INPUT object and 

asks it for input data (as in 2.); other member variables are initialised (e.g. Length = 0 cm). 

p: Younger 

Leafl 

[FOLIAR] 

leaf 

r 

Leal U 

irPROPHYTTl 

p: Cole0f >tile p: 

/ 

Seed 

[SEED] 

Older organ 

p: Daughter leaf 

Older organ 

Leaf 0.0 

[PROPHYLL] 

Figure 4. The memory pointer structure of the model. Rectangles are objects, 
between brackets the class from which the object is derived, "p:..." is a pointer 
member variable. 
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As the plant is growing, within one time step sequentially the following methods are called: 

1. Run asks actual abiotic data from an ABIOTIC ENVIRONMENT object (depending on the 

choice of the user, this will refer to an object of class GROWTH CHAMBER or FIELD 

(mechanism of polymorphism)); 

2. Run sends a message to Plant to calculate its rates; 

3. Plant sends a message to Seed'to calculate its rates; through the pointer structure in Fig. 4 all 

organs of the plant calculate their rates; 

4. Run sends a message to Plant to calculate its new states; 

5. Plant sends a message to Seed to calculate its new states; using the pointer structure in Fig. 4 all 

organs of the plant calculate their new states; 

6. Plant sends a message to Seed to form new organs; this message is passed to all other organs 

using the pointer structure. If a new organ is formed, an object is created, its member variables 

initialised and the pointer structure adjusted. 

At certain intervals file output is produced by objects of the REPORTER class. 

This is a very flexible structure: responsibilities per class are such that the functionality is generic: for 

example the class RUN can be used for all kind of simulations. Using the pointer structure in Fig. 4 a 

very complex plant structure can be simulated with just a few simple rules. 

Calibration 

The required numerical values were calculated from data of a growth chamber experiment with 

spaced spring wheat plants (Chapters 2 and 3). For the closest approximation of sink-limited growth, 

data from the lowest temperature (13/8 °C) and highest PPFD (286 umol m'2 d"1) treatment were 

used: 

1. LDR is equal to leaf appearance rate: 1/91 = 0.011 "C"1 d"1; 

2. r ^ ^ is equal to e?°
R
: e431 = 0.73; 

3 . LDSufcr jLeaW>= 2.2; 

4. L E R ^ ^ K P C = 0.34 cm °C d'1 * 10 °C = 3.4 cm d1; 

5. rLER = e-°-6O = 0 .55 ; 

6. LERwiPcwhrurf-i = 0.17*10 = 1.7 cm d1; 

7. LDSf^= 123/91 = 1.35; 

8. MLWF o H a r L e i l f = 1 = 0 .354 cm; 

9. MLW,,^ = 2.2 cm; 

10. rMLW = e"<,45 = 0 .64; 

11. a = 2 - 2 * 0.80 = 0.40. 

The base temperature for both leaf appearance and leaf elongation was 0 °C. 
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Validation 

The model was run with hourly time steps at different temperatures (13/8,18/13 and 23/18 °C) from 

0 to 40 days after emergence. Some of the output was compared with growth chamber experiments. 

Also a sensitivity analysis was performed for all 11 parameters: each parameter was increased 10 % 

and decreased 10 %, and the effect on leaf area was analysed. 

Simulation results 

Fig. 5 shows the increase in leaf area for consecutive leaves on the main stem at a temperature 

regime of 18/13 °C. The leaves appear at regular intervals, caused by a constant LDR. The constant 

value of LDSf^ is reflected in the equal duration of elongation for all leaves. The increase in size of 

consecutive main stem leaves is completely due to an increased leaf area expansion rate, caused by 

broader leaves (Eqn. 10) and higher elongation rates (Eqn. 7). 

In Fig. 6, the area growth of individual leaves on a selection of tillers is aggregated to tiller level. 

The interval between appearance of primary tillers tO, t l , t2, t3, and t4 increases up to a constant 

level, due to Eqn. 5 together with a constant LDR. The increase in leaf area clearly differs between 
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Figure 5. Simulated leaf area growth of consecutive main stem leaves at 18/13 °C. For 
clarity of presentation, a line is not continued after the leaf is full-grown. The dashed line 
connects the maximum leaf areas of the leaves. 
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Figure 7. Observed and simulated number of folair leaves at three temperature 
regimes. 

tiller types, such that even later-appearing tillers have more leaf area than earlier appearing tillers 

(e.g. compare tO and tl from 25 days after emergence onwards). Daughter tillers of higher 

positioned leaves (higher summed leaf position) start with a first leaf which is already quite large 

(Eqns. 7 and 10) and the interval between appearance of consecutive tillers on the same parent tiller 

is less than a leaf appearance interval (Eqn. 4). Thus, Leaf 1.1 has the same size as Leaf 0.2, but Leaf 

1.1 has appeared earlier (18 days after plant emergence) than Leaf 0.2 (19 days after plant 

emergence). 
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Table 2. Effect of a 10 % decrease or increase of separate plant 

parameters on leaf area per plant 20 days after emergence relative to 

standard values for a temperature regime of 23/18 °C. Acronyms 

and symbols are explained in the text. 

Plant parameter 

LDR 

r
LDS,lflfcr 

LDSflto L^p^ 

k*
1
'Vmax,T=10

o
C 

r
LER 

LERj^floc Folia,. Leaf = \ 

LDS^ 

MLW^BarLeaf^l 

MLW^ 

r
MLW 

01 

10 % increase 

+29 

-4 

-8 

+7 

-3 

+3 

+5 

+8 

+2 

-11 

-3 

10 % decrease 

-24 

+4 

+9 

-7 

+3 

-3 

-6 

-8 

-2 

+12 

+4 
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Figs. 7 and 8 show simulation results for three temperature regimes at whole-plant level. The number 

of leaves increases more or less exponentially, although the curve is not smooth (Fig. 7). Leaf area 

per plant increases with an decreasing relative growth rate in an early stage and a constant relative 

growth rate in a later phase (Fig. 8). For both number of leaves and leaf area per plant, the increase is 

faster at a higher temperature, due to a higher LDR and LER (Eqn. 8). The experimental data are not 

well predicted by the model. The reasons for this will be discussed below. 

Table 2 shows the results of the sensitivity analysis. Small changes in LDR appear to have large 

impact on leaf area per plant. For the other 10 parameters, the impact is much smaller. 

Discussion 

In the model, sink limited growth of a young wheat plant was simulated. In one run, more than 400 

separate leaves were simulated, each with their individual member variables. It appeared that 

variables measured at tiller level (e.g. leaf appearance rate) could be converted to individual organ 

level (LDR). In the model there was no direct relation between leaf position and a leaf variable, 

because all these relations were successfully converted to discrete equations, in which the leaf 

variable was related to the equivalent variable of an adjacent leaf. In principle, this is a more 

mechanistic method than using direct relations with position, because the history of the plant 

together with the current environmental factors both affect leaf variables. 

Object orientation was used to implement the model. Object-oriented programs are potentially 

more flexible and enhance reusability (Taylor, 1990). Furthermore, plant organs can be viewed as 

objects that are created and deleted dynamically, just like real organs are. In this way, the model 

gives a more realistic representation of organ population dynamics and growth on a plant. Also, 

variables and processes only need to be described at one hierarchical level (e.g. organ, leaf, or foliar 

leaf), because of the inheritance principle. The organs are held together by the pointer structure. In 

this way, plants can grow out into a very complex morphological structure, the only boundary being 

the size of the computer's memory. 

The current model is an accumulation of the knowledge on morphology of leaf growth of tillering 

Gramineae species in a vegetative phase. However, only temperature effects are included, and no 

effects of assimilates or nitrogen. The predictive performance of the model in the current status for 

predictions is still poor, as can be seen in Figures 5 and 6. There are two main reasons for lack of fit: 

1. Variable LDR was measured some time after emergence (Chapter 2), but this value is used here 

from emergence onwards. It appears that the LDR in a very early stage is underestimated by the 

model. LDR is also a very sensitive variable for leaf area development (Table 2). 

2. At higher temperatures, assimilate availability limits the outgrowth of tiller buds (Chapter 2), so 

source limitation must be included in the model in order to give better predictions. 
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Assimilate distribution can be introduced in the model as follows: 

1. Calculate photosynthesis, respiration and potential remobilization of assimilates per leaf blade, 

assuming a certain spatial leaf distribution for photosynthesis calculations. 

2. Distribute these assimilates depending on the sink strengths of the neighbouring organs. 

Relationships between SLW of parent leaves and the SSU of daughter tillers (Chapter 5) can be 

introduced to simulate reduced tillering. 

When the model is used for simulation of leaf area growth of other Gramineae plants, not only 

parameter values should be adapted, but also the equations need to be changed. For example, in 

maize LDSf^ is not constant (Chapter 4). To simulate this, a new class should be defined: MAIZE 

FOLIAR LEAF, which is a subclass of FOLIAR LEAF. The special equation to calculate LDSf^ in 

MAIZE FOLIAR LEAF overrules the standard equation of the superclass FOLIAR LEAF. 

However, the basic structure of the model remains the same. 

Appendix I. Example of a transformation from a continuous to a discrete equation 

Starting point is the following continuous equation: 

LDS^ - 1 + (LDStillerLe^ - 1) C ™ » (7.1) 

where x is the Haun Stage of the main stem at which the tiller appears, assuming a maximum site 

filling of 0.69 (plant type 1 in Chapter 2). For this plant type, the prophyll in the axil of a leaf 

develops at the same time as the next leaf on the same tiller. Therefore, the following two equations 

can be derived (x is replaced by leaf because a leaf appears every Haun Stage unit): 

LDSttllerM+1 - 1 = {LDSmerL^ - 1) e-**«<W> (/.2) 

LWmrU ~ 1 ̂  (LDSmkrLeqfX) - 1) e-^
R
^ (13) 

where Leaf+1 is the next younger leaf on the same tiller or the prophyll on the daughter tiller. 

Equation 1.2 can be rewritten as: 

e -RDR*Leaf = ( ^ ^ tiller±eafO *) e
 ,j ^ 

L
D
b'tiller,Leaf+1 ~ * 

and equation 1.3 as: 
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measurements on plant growth. 

On the balance, the measurements appeared to be relatively easy to perform. The measurements were 

done on young plants, but can in principle be continued up to the flag leaf. 

Quantifying morphological development 

From the morphological measurements, three variables were derived that determine the leaf number 

dynamics: leaf appearance rate per tiller, specific site usage per tiller and Haun Stage-delay per tiller. 

To include leaf death, leaf lifespan per leaf should also be measured, but this was left beyond the 

scope of the study. These variables apply to plants where leaves appear sequentially on a tiller or a 

branch, when a leaf can have maximally one daughter tiller and tillers always have a parent leaf. 

These requirements hold for all Gramineae species and therefore these variables can be measured on 

all Gramineae species. 

Four variables were derived that determine the leaf area growth per individual leaf: leaf elongation 

rate, leaf elongation duration, maximum leaf width and a leaf shape factor k. The method of 

measuring leaf elongation rate and leaf elongation duration was different from the usual method. To 

analyse individual leaf growth, Volenec and Nelson (1982) and Skinner and Simmons (1993) used a 

radial position transducer. With this method, sheath elongation and blade elongation can be 

measured separately. This technique was not used here, because the objective of my research was 

different, namely to analyse leaf area expansion on the whole plant. To avoid complexity in the 

analysis, blade and sheath elongation were not measured separately. 

The total of maximally seven variables was used for the analysis of wheat and maize leaf area 

expansion, and can be applied to all Gramineae species in principle. They form a logical set of 

variables that relate area growth of individual leaves and leaf number dynamics to plant leaf area 

expansion. In this thesis, it was shown that effects of temperature, PPFD and plant density on leaf 

area expansion could be readily analysed with these seven variables. While these seven variables are, 

from a morphological point of view, logical, these variables also indicate the mechanisms of response 

of the plant to environmental factors. Effects of other environmental factors on leaf area expansion 

can also be analysed using these seven variables, and a better insight in the mechanisms that cause 

their effects on leaf area expansion is obtained. Below, the effects of environmental factors and leaf 

position on the seven variables are discussed. 
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Leaf appearance rate 

In this thesis, leaf appearance rate of maize and wheat was higher at higher temperatures, higher 

PPFD levels and lower plant densities (Table 1). Effects of temperature are in line with many 

previous findings (McMaster and Wilhelm, 1995). The reduction in leaf appearance rate at low 

PPFD levels is also often found (e.g. Mitchell, 1953). There appeared to be a curvilinear relationship 

between PPFD and leaf appearance rate for both wheat (Chapter 2) and maize (Chapter 4), in 

accordance to model assumptions by Volk and Bugbee (1991). Although possible effects of red/far-

red ratio can not be ruled out, the effects of plant density on leaf appearance rate are probably caused 

by reduced PPFD within the crop canopy (Chapter 5 and 6). 

Table 1. Effects of temperature, PPFD, and plant density on leaf area variables. (+) indicates that the 

value of the plant variable is higher at higher values of the environmental factor, (-) indicates the 

value is lower, and (0) means that there were no or little effects. 

Maize Wheat 

Leaf area 

variable 

Leaf 

appearance rate 

Specific site 

usage 

Haun Stage-

delay 

Leaf elongation 

rate 

Leaf elongation 

duration 

Maximum leaf 

width 

Temperature 

+ 

+ 

-

+/-

PPFD 

+ 

0 

-

+ 

Plant 

density 

-

0/-

+ 

-

Temperature PPFD Plant density 

0/-

0/+ 

0/-

0/-

121 



Haun Stage-delay 

Haun Stage-delay was introduced in this thesis as a new plant variable, indicating the timing of tiller 

appearance relative to the Haun Stage of the parent tiller. Haun Stage-delay appeared to be almost 

unaffected by temperature, PPFD or plant density (Table 1). However, the effects of tiller bud 

position were quite large, with late-appearing tillers showing lower values of Haun Stage-delay 

(Chapter 2). While environmental effects were small, the change of Haun Stage-delay with tiller bud 

position is under genetic control. The research described in Chapter 2 has shown that this 

ontogenetic change in Haun-stage delay has large effects on leaf area growth per plant. 

Specific site usage 

In contrast to the timing of tiller appearance (reflected in the variable Haun Stage-delay), the specific 

site usage (i.e. the probability that a specific tiller will appear) was greatly influenced by 

environmental conditions. Specific site usage was clearly higher at lower temperatures, higher PPFD 

levels and lower plant densities (Table 1), in accordance with previous findings (e.g. Rickman et al. 

(1985); Cannell (1969)). In this thesis, there was evidence that these effects of temperature, PPFD 

and plant density were well related to assimilate levels locally in the plant. In Chapter 2, for spaced 

plants, specific site usage was better related to the rate of dry matter production of the parent tiller 

than to dry matter production of the whole plant. In Chapter 5, in experiments with different plant 

densities, more evidence was collected for this effect of local assimilates on specific site usage. 

For tillering plants, specific site usage is the key variable of response to environmental conditions 

such as PPFD and plant density. The current findings indicate that young wheat plants can be viewed 

as a collection of rather individually responding units, instead of one plant unit responding to 

environmental factors based on whole plant variables. 

Leaf elongation rate 

For both maize and wheat, leaf elongation rate increased with higher temperatures, and decreased 

slightly with higher plant densities. This implies that leaf elongation rate is basically temperature 

driven, and only in extreme conditions there could be an effect of assimilate availibility. This is in 

accordance with research done by Van Loo (1993) with perennial ryegrass plants. There was a clear 

effect of leaf position on the plant on leaf elongation rate (Chapters 3 and 4). 

The combined effects of leaf position on a tiller and position of the tiller on the plant were very 

different from what was previously assumed. Amir and Sinclair (1991), McMaster et al. (1991) and 
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Van Loo (1993) assumed that there was no effect of tiller position on the plant on leaf area variables. 

This thesis has shown that there are very large effects of tiller type on leaf elongation rate, and leaf 

elongation rate was well related to summed leaf position (this is the sum of all the digits in the 

designation of the leaf) This effect of summed leaf position implies that characteristics such as the 

elongation rate of a leaf exerts an influence on the elongation rate of the next foliar leaf, regardless 

whether this next leaf is on the same tiller or is the first leaf on the daughter tiller. 

Leaf elongation duration 

In wheat, the leaf elongation duration was closely linked to the phyllochron (the inverse of leaf 

appearance rate), independent of temperature and slightly affected by PPFD (Chapter 3). This 

strengthens the hypothesis of Tesafova et al. (1992) and Skinner and Nelson (1995), that the 

development of consecutive leaves is synchronised. In maize there was no clear connection between 

the phyllochron and leaf elongation duration, and the number of growing leaves increases in early 

growth stages (Chapter 4). Apparently in maize there is no synchronisation or an unknown way of 

synchronisation, in contrast to wheat and small grasses. 

Maximum leaf width 

The effects of temperature, PPFD and plant density were small or absent for wheat and more 

pronounced in maize (Table 1). The effects in maize seem to be caused by effects of assimilate 

availability, reflected in a good relationship between maximum leaf width and specific leaf weight 

(Chapter 4). Because wheat has the flexibility to respond to lower assimilate levels with a reduction 

in specific site usage, an effect on maximum leaf width might be absent in wheat. Just as leaf 

elongation rate, maximum leaf width was well related to summed leaf position, in contrast to earlier 

assumptions. This strengthens the hypothesis that leaf characteristics such as elongation rate and 

maximum width of a leaf has effect on the next foliar leaf (on the same tiller or on the daughter 

tiller), possibly as a result of the changing size of the apex (discussed in Chapters 3 and 4). 

Leaf shape variable: k 

Effects of temperature, PPFD, plant density or leaf position on leaf shape variable k were small or 

absent (Table 1; Chapters 2, 3,4, 5 and 6). In Chapter 4 the existing model of leaf shape by 

Sanderson et al. (1981) was adjusted. This leaf shape model describing the width depending on the 
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distance from the leaf tip requires the estimation of two variables. However, for studies on leaf area 

of the whole plant, one estimate of k together with a certain leaf shape assumption might be 

sufficient (e.g. leaf consists of a triangular and rectangular part). 

Comparison between maize and wheat 

In this thesis, both maize, as a representative of a non-tillering Gramineae plant, and wheat, as a 

representative of a tillering Gramineae plant were examined. The effects of temperature, PPFD and 

plant density on the seven leaf area variables are summarised in Table 1. It appears that most of the 

effects of temperature, PPFD, and plant density are surprisingly consistent for both maize and wheat. 

The effects of temperature and PPFD were only different for maximum leaf width, which was 

unaffected in wheat but increased at higher PPFD values and had an optimum value at a temperature 

of 18/13 - 23/18 °C in maize. Effects of plant density on leaf appearance rate, leaf elongation 

duration, and maximum leaf width were more pronounced in maize than in wheat. Table 1 shows 

that for constant conditions and spaced plants, there were almost no differences in effects of 

temperature or PPFD for maize or wheat. While plants were grown more or less free-standing, every 

new tiller in wheat is also a free-standing tiller, because competition between tillers for resources was 

avoided in the experiments. This could explain the lack of difference in effects of temperature and 

PPFD. 

Simulating morphological development 

In the simulation model, it was assumed that specific organ variables (e.g. maximum leaf width) are 

only influenced by its adjacent organs and by abiotic factors. Therefore, the model had two 

requirements: 

1. simulated processes should be strictly on organ level; 

2. per organ, variable values should only depend on the values of directly neighbouring organs and 

on abiotic factors. 

Existing morphological models do not comply with these rules. In these models, leaf variables are 

assumed to depend on the position of the leaf on the tiller (e.g. Van Loo, 1993; McMaster et al., 

1991). The initially measured variables in this thesis did also not meet these two requirements. 

Therefore, new variables were derived from the measured variables. This resulted in a new set of 

variables, which can be classified into three types: 

1. variables indicating initial values (e.g. maximum leaf width of Leaf 1); 

2. variables indicating the rate of change compared to the value of the neighbouring organ (e.g. rate 
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of change in maximum leaf width); 

3. variables with constant values (e.g. leaf shape variable k). 

Variables of the first type depend mainly on genotype and on seed characteristics: they represent the 

initial status of the plant. Variables of the second type mainly depend on genotype and environmental 

conditions. Genotype and environmental conditions determine how fast a certain variable can change 

from one organ to the other. Variables of the third type only depend on genotype. In this way a set 

of variables was calculated which complied with the model requirements. 

Flexibility of the simulation model 

In Part III of this thesis it was claimed that the model was flexible and could be easily extended. To 

reinforce that claim, possible effects of plant density are introduced into the model (Appendix I) as 

an example. Some parameter values needed to be guesstimated in this extended model, because no 

data were available. The example in Appendix I shows that a lot of relationships needed to be 

included. Most of these relationships could be derived form an existing model (Goudriaan and Van 

Laar, 1994). The class structure was extended with seed (carbohydrate source), and sheaths and 

roots (carbohydrate sink). Also several methods and member variables were added in existing 

classes. However, the basic structure of the model (object orientation, the class structure, the pointer 

structure, all processes at organ level) was not violated and only specific assimilate features needed 

to be included. 

Possible applications of the simulation model 

The simulation model presented in Chapter 7 can be extended for specific applications. For plant 

breeding, the model can be a tool for analysis of variation in genotypes with respect to leaf area 

variables. Furthermore, the model can be useful in situations where simpler models do not give 

enough insight in the processes involved. When different plant species are competing for radiation 

(intercropping, weeds (Lotz et al., 1996)), or in case of specific management practices (e.g. cutting 

of plants (Van Loo, 1993)), the simulation technique described in this thesis can be useful for 

studying the mechanisms that are involved. The model can also be applied to situations where 

environmental conditions vary during growth of the plants (e.g. fluctuating nitrogen supply (Vos et 

al., 1996)). The way in which the model is extended depends upon the objective of the study, but the 

basic principles of the model (object orientation, the class structure, the pointer structure, all 

processes at organ level) should not be violated. 
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Conclusions 

In this thesis, a method was developed for experimental analysis of leaf area variables of Gramineae 

species. This method was successfully applied to the study of the effects of leaf and tiller position, 

temperature, PPFD and plant density on a tillering Gramineae species, wheat, and a non-tillering 

Gramineae species, maize. Experiments under constant conditions (spaced plants, growth chambers) 

yielded basic relationships, which were useful in the analysis of environmental effects in field 

experiments. 

A simulation model was created based upon the experimental variables and relationships. To 

obtain maximum flexibility in the model, object orientation was used and processes were strictly 

simulated at organ level. Because of time constraints, only a part of the knowledge was summarised 

in the model. However, it was shown that the model could be extended without violating the basic 

structure. 

Appendix I. An example of an extension of the model: effects of plant density. 

In this appendix, the existing simulation model (Chapter 7) is extended to include effects of plant 

density on leaf area growth in wheat. In this example, it is assumed that the effects of plant density 

are only caused by effects of assimilate availability on SSU (Chapter 5). For this purpose, the class 

structure needed to be extended with seed, sheath, and root (Fig. I I ) . 

Figure 1.1. The new hierarchial class structure in the extended model. 
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Effects of assimilates on SSU. 

In Chapters 2 and 5 it was shown that SSU more likely depends on local assimilate availability than 

on assimilate availability of the whole plant. In the model it is assumed that the amount of assimilates 

of the organ from which bud the tiller appears (parent organ), determines the specific site usage 

(SSU). If the parent organ is a prophyll, the parent organ of that prophyll is considered. The parent 

organ can be a leaf blade or the seed. This results in the following equations: 

min 
SSU = 0 ifA< A 

SSU = 1 if A > A 

with A the amount assimilates available (g) and A,^ the rninimum amount of assimilates required for 

outgrowth of a tiller bud (g). A is calculated as follows: 

^ parent organ min, parent organ' DM of parent organ - CH20 

where D M ^ orgm is the dry weight of the parent organ, D M ^ ̂ ^ ovm is the minimum dry weight 

of the parent organ (thus not available for conversion to CH20)r and CFDM ̂p^^ c ^ ^ c m o t n e 

conversion factor from dry matter to CH20. This implies that all dry weight of a parent organ above 

a minimum can become available for depending organs. 

If a leaf blade is the parent organ, it is assumed that there is a minimum SLW (SLW^, because a 

leaf has a minimum amount of structural material (Van Loo, 1993): 

DM. = SLW- * Area of leaf blade 
min mm J J 

If the seed is the parent organ, it is assumed that a certain fraction of the seed can not be converted 

to CH20 (fj,,™;,̂  seed): 

DMmin = DM *(l - fstructuraU w ) 

To calculate dry weights of organs, assimilate formation, distribution, losses and conversion to dry 

matter must be calculated. This is described below. 

Photosynthesis. Photosynthesis was calculated per leaf. Leaves were assumed to be vertically layered 

as shown in Fig. 1.2. For every layer photosynthesis was calculated with three-point Gaussian 

integration and a negative exponential relation between absorbed PPFD and photosynthesis as was 

done in SUCROS for the whole crop canopy (Goudriaan and Van Laar, 1994). Incoming PPFD for a 

layer was equal to the PPFD that was transmitted through the layer above it. 
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Figure 1.2. The layering of leaves in the model. 

Assimilate distribution.Assimilates are distributed as shown in Fig. 1.3. This figure shows eight 

flows: 

1. Leaf photosynthesis as was explained before, not applicable for seed. 

2. A part of the dry matter in the leaf blade or seed can be redistributed (see above). The amount of 

assimilates that is potentially redistributed per time interval is simulated as: 

dCH20 

dt~ 
J redistrii redistributed 

* LDR 

w h e r e fredbtribuied m e fraction of A that is redistributed per leaf appearance interval (leaf1) and LDR is 

the leaf development rate. 

The CH20 is distributed between the dependent leaf, sheaths, roots and the leaf blade itself 

depending on the sink strengths of these organs: 

dDM^ _ dCH2Q(flowl,2) SS„ 
organ 

dt dt Ess. 
* CF, 

CH20~DMOrgcm 

all organs 

where SS is the sink strength (no dimension). 
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Figure 1.3. Assimilate flows in the model. Details are explained in the text. 

Maintenance 

3. Because it is the relative sink strength that is important (strength of one sink compared to the 

other sink), one sink strength can be treated as a constant. The sink strength of the roots is taken 

as reference and therefore constant. 

4. The sink strength of a leaf blade is modelled as: 

SS; Blade 

SLW^-SLW 

SLW„„-SLW„;„ 

where SLW,,,̂  is the maximum SLW. This equation implies that the sink strength of blades is 

higher if the SLW is lower. The dependent leaf is defined as the most recently appeared leaf that 

is connected with the pointer structure to the considered leaf or seed without any other leaf blades 

in between. Dependent leaf of LI canbeL2, Ll.l , Ll.0.1 etc. 

The sink strength of the leaf blade itself is calculated as for the dependent leaf (flow 4). 

While sheath/blade ratios are rather constant, SSsheahs was calculated as: 

SS. 
sheaths fs sheaths (SS, + SS 

blade depending blade 
) 

where f,̂ ,̂  is the sink strength of the sheaths relative to the leaf blades. 

7. The flow from the supplying organ is comparable to the flow to the dependent leaf. The difference 

is that the considered leaf is the dependent leaf for the flow from the supplying organ. 
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8. Maintenance respiration was calculated as in SUCROS (Goudriaan and Van Laar, 1994) 

Calibration and results 

Estimates of parameter values are shown in Table 1.1. The model was run for 35 days, starting at 

plant emergence, at plant densities of 1,10, 100, or 1000 plants m"2 under the following conditions: 

Temperature = 1 5 °C 

Photosynthetic photon flux density = 200 umol m"2 s"1 

Daylength = 12 hours day"1 

Seed weight = 0.04 gDM 

Table 1.2 shows results of the tillering pattern, which is clearly influenced by plant density. The 

tillering trends are the same as reported in Chapter 5, only the coleoptile tiller (tO), appeared more 

frequently than measured in the experiments. 
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Table 1.1. Calibration of parameters used in the simulation model. If no source is mentioned, the 

value was roughly estimated. 

Parameter 

Ajnin 

AMAX (maximum rate of 

photosynthesis) 

*-*' DM -> CH20 

^ CH20->DM 

EFF (initial light use 

efficiency) 

•̂ rediBtiibuted 

Sheath 

f 
A structural, seed 

KDIF (extinction 

coefficient diffuse light) 

MAINTL VS (maintenance 

leaf blades) 

MAINTSH (maintenance 

sheaths) 

MATNTRT (maintenance 

roots) 

MAINTSD (maintenance 

seed) 

Q10 (maintenance 

respiration) 

REFTEMP (maintenance 

respiration) 

SCV (scattering 

coefficient) 

SLW^ 

SLWm„ 

ss ,̂ 

Dimension 

gCH20 

gCHjOm2 

h ' 

(gCH2Om"2 

h') / (nmol 

m2 s1) 

gCH2Og' 

DM day1 

gCHjOg' 

DM day' 

gCH2Og' 

DM day' 

gCHjOg' 

DM day' 

°C 

gDMm'2 

gDMm 2 

Estimated vah 

0.015 

2.73 

1.43 

0.70 

0.00667 

0.20 

0.50 

0.20 

0.70 

0.030 

0.015 

0.015 

0.015 

2.0 

25 

0.2 

20 

50 

0.50 

le Source 

-

Goudnaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

1 ' ^ ^ D M . > C H 2 0 

Goudriaan and Van Laar (1994) 

-

It is assumed that sink strength of 

sheaths is half the sink strength of 

the leaf blades 

-

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

Goudriaan and Van Laar (1994) 

-

-

Set as reference value 
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Table 1.2. Simulated appearance of tillers at four different plant densities. 

Plant density 

(m-2) 

1 

10 

100 

1000 

Primary tillers 

appeared 

tO, t l , t2, t3, t4 

t0,t l , t2,t3,t4 

tO, t2, t3, t4 

to 

Secondary tillers 

appeared 

t0.0,t0.1,t0.2,tl.0, 

tl.l,t2.0,t3.0 

t0.2,tl.0,tl.l,t2.0, 

t3.0 

t2.0,t3.0 

-

Tertiary tillers 

appeared 

tO.0.0 

-

-

-
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Summary 

Leaf area expansion is an important factor for the understanding of plant and crop growth. In this 

thesis, leaf area expansion was analysed for two representatives of the Gramineae family: wheat and 

maize. 

Existing assumptions of mechanisms of plant leaf area expansion can be divided into three groups: 

1. plant leaf area expansion is an exponential function of accumulated degree days; 

2. availability of assimilates determines plant leaf area expansion; 

3. the morphology of the plant (e.g. number and individual sizes of leaves) is the basis for plant 

leaf area expansion. 

Application of the third hypothesis gives the best insight in the mechanisms, but a general 

morphological framework is lacking and more and better experimental data are needed. 

The objective of this research was to present a morphological analysis of the mechanisms of leaf 

area expansion in Gramineae. The approach for the analysis was the following: 

1. determine general morphological variables for leaf area expansion of Gramineae, 

2. in experiments, compare two Gramineae species that clearly differ in their morphology (wheat: 

tillering plant; maize: non- or rarely-tillering plant); 

3. perform the first basic experiments at constant environmental conditions (growth chambers, 

spaced plants), to avoid complexity in the basic analysis; 

4. analyse the effects of some important environmental conditions (temperature, photosynthetic 

photon flux density (PPFD), and plant density) on the morphological variables; 

5. summarise the knowledge in a simulation model, which should be easily extendable to other 

species and environmental conditions. 

In Part I the morphological model was introduced. This model consisted of seven variables: 

1. leaf appearance rate per tiller; 

2. specific site usage, which is the fraction of buds that ultimately develop into a visible tiller at a 

specific site; 

3. HS-delay, which is the difference in Haun Stage (HS) between the parent tiller and the daughter 

tiller above the point where the daughter tiller appears; 

4. leaf elongation rate; 

5. leaf elongation duration; 

6. maximum leaf width; 

7. a leaf shape factor: k. 

The effects of temperature and photosynthetic photon flux density (PPFD) on these seven variables 
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were analysed on two contrasting Gramineae species: wheat and maize. These experiments were 

carried out in growth chambers at daily mean temperatures of 10.5, 15.5, 20.5, and 25.5 (maize only) 

°C and at PPFD values of approximately 110, 190, and 280 umol m"2 s'1. 

For wheat, effects of temperature and PPFD on leaf appearance rate were well described by 

equations already reported in literature. Specific site usage was higher at lower temperatures and 

higher PPFD values and was related to tiller position. It was proposed that these effects on specific 

site usage reflect differences in local availability of assimilates for tiller appearance. HS-delay of a 

tiller was lower if the tiller appearance, calculated with a maximum site filling of 0.69, was later and 

was only slightly affected by PPFD or temperature. Effects of leaf position and tiller type on 

maximum leaf width and leaf elongation rate could be explained by a new assumption, that maximum 

leaf width, and leaf elongation rate, of a leaf depend on the values for the previous foliar leaf on the 

same tiller, or on the parent tiller. Leaf elongation rate increased linearly with temperature and was 

not affected by PPFD, whereas maximum leaf width was not influenced by temperature or PPFD. 

Leaf elongation duration was closely related to phyllochron (i.e. the inverse of leaf appearance rate) 

expressed in days, although this relation was slightly modified by PPFD. Equations formulated for 

each leaf area variable accounted for 90% of the variation in leaf area between different leaf types, 

temperatures and PPFD values. 

In maize, tillering was absent, and therefore no effects on specific site usage or HS-delay were 

measured. At 10.5 °C, a high proportion of the plants died due to prolonged exposure to cold stress. 

Both high temperatures and high PPFD values increased leaf appearance rate. Maximum leaf width 

was highest at intermediate temperatures (20.5 °C) and high PPFD values, and was strongly related 

to specific leaf weight (R2^ = 0.88). At higher temperatures leaf elongation rate was greater and leaf 

elongation duration was lower, resulting in a maximum final leaf length at 20.5 °C. At lower PPFD 

values leaves were slightly longer, caused by a prolonged leaf elongation. Leaf shape was described 

with new functions; the functions for Leaves 1 and 2 differed from the one for higher positioned 

leaves. 

In Part II, the effects of plant density on the seven variables which were derived in Part I were 

analysed for spring wheat and maize at ample supplies of water and nutrients. Also, it was analysed 

which environmental factor (PPFD, red/far-red (R/FR) ratio or temperature) was responsible for the 

plant density effects. 

For spring wheat, plants were grown in different plant densities (0 - 494 m"2) in the field and in 

growth chambers. Ratios of R/FR were manipulated by using different combinations of lamps 

(growth chamber) or adding red light to the base of the plant with diodes (experiments outdoors). At 

early growth stages, leaf properties and tillering were not affected by plant density. However, 

specific site usage of later appearing tillers was reduced at higher plant densities. For late tillers, leaf 

appearance rate was slower and HS-delay was longer at higher plant densities. Furthermore, 
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maximum leaf width and full-grown leaf length of high positioned leaves on the main stem were 

significantly smaller. Plant density effects occurred at lower leaf and tiller number the higher the plant 

density. A dynamic model was used to evaluate the relative importance of effects of plant density on 

the seven variables determining leaf area growth per plant. The model analysis showed that the effect 

of plant density on SSU was by far the strongest determinant of density-dependent changes in leaf 

area per plant during early growth of wheat. The effects of plant density on specific site usage could 

not be fully explained by temperature differences, plant growth rate or R/FR effects. The variable 

specific site usage appeared to be well related to the specific leaf weight of the parent leaf (i.e. the 

leaf from which the tiller is appearing) at the time of tiller appearance, independent of R/FR ratio. 

While specific leaf weight of a single leaf depends on local assimilate supply, it was proposed that 

specific site usage is regulated by local assimilate supply. 

For maize, plants at a wide range of plant densities (0-123 m"2) were grown in the field for two 

years. Half of the plots were shaded (50 % transmittance). Leaf appearance rates were lower at 

higher plant densities and under shade. These effects were not caused by the small differences in 

canopy temperature observed, but were closely associated with reductions in the growth rate per 

individual plant. Leaf length was higher under shade than with full light; effects of plant density on 

leaf length were inconsistent over the two years, associated with inconsistent effects on leaf 

elongation rate. Leaf elongation duration was longer at higher plant densities in both experimental 

years. The crop-ecological analysis showed that plant density affected leaf area expansion of maize 

mainly through effects on leaf appearance rates, and that these effects were closely related to density 

effects on plant growth rate per leaf appearance interval. 

In Part III, a simulation model was developed for wheat based upon the morphological framework 

presented in Part I. The principles of object orientation were used to obtain maximum flexibility, and 

the application to modelling foliar development of plants is shown. Plant related processes were 

strictly simulated at organ level and growth was assumed to be sink-limited. All plant processes 

needed to run the model could be converted to equations and data on organ level, using difference 

equations for relationships within the plant. The simulations yielded patterns of leaf area expansion 

that depended on the position of the leaf within the plant. The relative growth rate for leaf area per 

plant decreased with time. Experimental data were not predicted well, because source limitation was 

not included in the model and the assumption of a constant leaf appearance rate was not in 

agreement with reality. 

In the general discussion, the morphological measurement techniques were evaluated and the 

usefulness of the seven variables that determine leaf area expansion were discussed. Furthermore, the 

effects of leaf and tiller position, temperature, PPFD and plant density on the seven variables and the 

differences between wheat and maize were analysed. In maize, at higher temperatures leaf 
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appearance rate and leaf elongation rate were higher, and leaf elongation duration was shorter. At 

higher PPFD values, leaf appearance rate and maximum leaf width were higher and leaf elongation 

rate was lower. In wheat, the effects of temperature and PPFD were qualitatively equal to those in 

maize, except there was no effect of PPFD on maximum leaf width. In wheat, specific site usage was 

higher at lower lower temperatures and higher PPFD values. The morphological framework can be 

used for experimental analysis of leaf area growth, revealing mechanisms regulating leaf area growth 

of plants. 

It was shown that the simulation model was extendable with an example, that included plant 

density effects in the simulation model. The simulation model is flexible and can be easily extended 

for different environmental conditions and plant species. 
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Samenvatting 

Bladoppervlakteuitbreiding is een belangrijk proces voor de analyse van plant- en gewasgroei. In dit 

proefschrift wordt de bladoppervlakteuitbreiding geanalyseerd voor twee soorten van de Gramineae 

familie: tarwe en mais. 

Bestaande veronderstellingen over de mechanismen van bladoppervlakteuitbreiding van een plant 

vallen in drie categorieen: 

1. bladoppervlakteuitbreiding van een plant is een exponentiele functie van de temperatuursom; 

2. de beschikbaarheid van assimilaten bepaalt de bladoppervlakteuitbreiding van een plant; 

3. de bladoppervlakteuitbreiding is gebaseerd op de onderliggende morfologische processen, zoals 

de aantalsdynamiek van bladeren en vertakkingen (spruiten). 

De derde hypothese geeft het meeste inzicht in de mechanismen van bladoppervlakteuitbreiding, 

maar is nog onvoldoende uitgewerkt. 

Het doel van dit onderzoek was het kwantitatief analyseren van de mechanismen van 

bladoppervlakteuitbreiding van Gramineae soorten op basis van de morfologie. Voor de analyse 

werd de volgende benadering gekozen: 

1. bepaal algemene morfologische variabelen voor bladoppervlakteuitbreiding van Gramineae; 

2. vergelijk twee Gramineae soorten die duidelijk verschillen ten aanzien van hun morfologie (tarwe: 

uitstoelende plant; mais: niet of weinig uitstoelende plant) in experimenten; 

3. voer de basis-experimenten uit onder constante omgevingsfactoren (fytotroncellen, vrijstaande 

planten) om complexiteit te voorkomen tijdens de basis-analyses; 

4. analyseer de effecten van enige belangrijke omgevingsfactoren (temperatuur, lichtsterkte en 

plantdichtheid) op de morfologische variabelen; 

5. vat de kennis samen in een simulatiemodel, dat eenvoudig uit te breiden is naar andere soorten of 

omgevingsfactoren. 

In deel I werd het morfologische model geintroduceerd. Dit model bestond uit zeven variabelen: 

1. bladverschijningssnelheid per spruit; 

2. specifieke knopbenutting; dit is het gedeelte van de okselknoppen dat uitgroeit tot een zichtbare 

spruit op een specifieke plek in de plant; 

3. HS-delay, dit is het verschil in Haun Stage (HS) tussen de ouder-spruit en de dochter-spruit 

boven het punt waar de dochter-spruit tevoorschijn komt; 

4. bladstrekkingssnelheid; 

5. bladstrekkingsduur; 

6. maximale bladbreedte; 

137 



7. een bladvormvariabele: k. 

De effecten van temperatuur en lichtsterkte op deze zeven variabelen werden geanalyseerd in twee 

contrasterende Gramineae soorten: tarwe en mais. Deze experimenten werden uitgevoerd in 

fytotroncellen met gemiddelde etmaaltemperaturen van 10.5, 15.5, 20.5 en 25.5 (alleen voor mais) 

°C en lichtsterktes van ongeveer 110, 190 en 280 umol m"2 s"1. 

In tarwe werden de effecten van temperatuur en lichtsterkte op bladverschijningssnelheid goed 

beschreven met vergelijkingen uit bestaande literatuur. Specifieke knopbenutting was hoger bij lagere 

temperaturen en hogere lichtsterktes, en was gerelateerd aan de positie van de spruit aan de plant. 

Deze effecten op specifieke knopbenutting kunnen samenhangen met de lokale beschikbaarheid van 

assimilaten voor spruitverschijning. HS-delay van een spruit was lager wanneer de verwachte 

verschijning van de spruit later was en werd weinig beinvloed door lichtsterkte en temperatuur. 

Bladpositie- en spruittype-effecten op maximale bladbreedte en bladstrekkingssnelheid konden 

worden verklaard door een nieuwe hypothese. Deze hypothese luidde dat maximale breedte en 

strekkingssnelheid van een blad afhangen van de waardes van het vorige blad op dezelfde spruit of 

op de ouder-spruit. De bladstrekkingssnelheid nam lineair toe met de temperatuur en werd niet 

beinvloed door lichtsterkte. De maximale bladbreedte werd door lichtsterkte noch temperatuur 

beinvloed. De bladstrekkingsduur was sterk gerelateerd aan het bladverschijningsinterval, uitgedrukt 

in dagen. Deze relatie werd lichtelijk beinvloed door lichtsterkte. De vergelijkingen die geformuleerd 

werden voor elke bladopppervlaktevariabele verklaarden 90 % van de variatie in bladoppervlakte 

tussen de verschillende bladtypes, temperaturen en lichtsterktes. 

Omdat mais niet uitstoelt, konden effecten op specifieke knopbenutting en HS-delay niet worden 

geanalyseerd voor mais. Bij een temperatuur van 10.5 °C stierf een groot percentage van de planten 

door de langdurige blootstelling aan koudestress. Hoge temperaturen en hoge lichtsterktes 

versnelden de bladverschijningssnelheid. De maximale bladbreedte was het grootst bij gemiddelde 

temperaturen en hoge lichtsterktes en was sterk gerelateerd aan het specifiek bladgewicht (R2^ = 

0.88). De bladstrekkingssnelheid was hoger en de bladstrekkingsduur was korter bij hogere 

temperaturen. Het bleek dat de langste bladeren werden gevormd bij een temperatuur van 20.5 °C. 

Bij lagere lichtsterktes werden de bladeren iets langer, als gevolg van een langere 

bladstrekkingsduur. De bladvorm werd beschreven met een nieuwe vergelijking en was verschillend 

voor de eerste twee bladeren van een plant en de hoger gepositioneerde bladeren. 

In deel II werden de effecten van plantdichtheid op de zeven variabelen, die bepaald werden in deel I, 

geanalyseerd voor zomertarwe en mais bij een voldoende water- en nutrientenvoorziening. Ook werd 

geanalyseerd welke omgevingsfactor (lichtsterkte, rood/verrood (R/VR) verhouding of temperatuur) 

de plantdichtheidseffecten veroorzaakte. 

Zomertarweplanten werden opgekweekt bij verschillende plantdichtheden (0 - 494 m"2) in veld- en 

fytotronproeven. De R/VR-verhouding werd beinvloed door het gebruik van verschillende 
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lampcombinaties (fytotron) of door het toevoegen van rood licht aan de plantbasis door middel van 

diodes (veldproeven). Blad- en spruitvariabelen werden niet beinvloed tijdens de allereerste 

begingroei. De specifieke knopbenutting van spruiten die later verschenen, werd gereduceerd bij een 

hogere plantdichtheid. Ook de maximale breedte en de lengte van volgroeide bladeren die hoger 

gepositioneerd waren in het gewas waren significant kleiner. De effecten van plantdichtheid werden 

zichtbaar bij lagere blad- en spruitposities naar mate de plantdichtheid hoger was. Om het relatieve 

belang van de zeven bladoppervlaktevariabelen met betrekking tot effecten van plantdichtheid op 

bladoppervlakte per plant te bepalen werd een dynamisch model gebruikt. Deze modelanalyse toonde 

aan dat de effecten van plantdichtheid op de specifieke knopbenutting duidelijk het belangrijkst 

waren om de verschillen in bladoppervlakte tussen de verschillende plantdichtheden te verklaren. 

Deze effecten van plantdichtheid op de specifieke knopbenutting konden niet volledig worden 

verklaard door temperatuur, groeisnelheid van de plant of R/VR-verhouding. De specifieke 

knopbenutting Week wel goed gerelateerd te zijn aan het specifieke bladgewicht van het ouder-blad 

(dit is het blad vanuit wiens okselknop de spruit ontstaat) op het moment van spruitverschijning en 

onafhankelijk van de R/VR-verhouding. Omdat het specifieke gewicht van een blad afhangt van de 

lokale assimilatenvoorziening, werd verondersteld dat de specifieke knopbenutting gereguleerd 

wordt door de lokale assimilatenvoorziening. 

Maisplanten werden opgekweekt bij verschillende plantdichtheden (0 -123 m"2) in veldproeven in 

twee jaren. De helft van de veldjes werd 50 % beschaduwd. De bladverschijningssnelheid was lager 

bij hogere plantdichtheden en bij beschaduwing. Deze effecten werden niet veroorzaakt door 

temperatuurverschillen, maar waren sterk gerelateerd aan de reductie in groeisnelheid van de plant. 

Bladeren werden langer bij beschaduwing; effecten van plantdichtheid op bladlengte waren echter 

inconsistent over de twee jaren, wat gerelateerd was aan de inconsistente effecten op 

bladstrekkingssnelheid. Bladstrekkingsduur was langer bij hogere plantdichtheden in beide jaren. De 

gewasecologische analyse toonde aan dat plantdichtheid de bladoppervlaktetoename in mats 

voornamelijk beinvloedde door effecten op bladverschijningssnelheid. Deze effecten op 

bladverschijningssnelheid waren sterk gerelateerd aan de groeisnelheid van de plant per 

bladverschijningsinterval. 

In deel III werd een simulatiemodel ontwikkeld op basis van het morfologische raamwerk van deel I. 

De principes van object-orientatie werden gebruikt om een maximale flexibiliteit van het model te 

bewerkstelligen. Plantprocessen werden strikt gesimuleerd op het niveau van het orgaan. Verder 

werd verondersteld dat de groei niet afhankelijk was van externe bronnen als lichtsterkte, water of 

nutrienten. Alle plantprocessen die benodigd waren werden geconverteerd naar vergelijkingen op het 

niveau van het orgaan door gebruik te maken van differentievergelijkingen. De simulaties lieten 

patronen van bladoppervlakteuitbreiding zien die afhingen van de positie van het blad aan de plant. 

De relatieve groeisnelheid van bladoppervlakte nam voorts af tijdens de groei. Experimentele 
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gegevens werden niet goed voorspeld door het model, omdat er geen effecten van assimilaten waren 

ingebouwd en omdat bladverschijningssnelheid in werkelijkheid niet constant is, zoals wel werd 

verondersteld in het model. 

In de algemene discussie werden de morfologische metingen geevalueerd en het nut van de zeven 

bladoppervlaktetoenamevariabelen bediscussieerd. Verder werden ook de effecten van blad- en 

spruitpositie, temperatuur, lichtsterkte en plantdichtheid op de zeven variabelen, en de verschillen 

tussen tarwe en mais geanalyseerd. Bij een hogere temperatuur waren in mais de 

bladverschijningssnelheid en de bladstrekkingssnelheid hoger en de bladstrekkingsduur korter. Bij 

grotere lichtsterktes waren de bladverschijningssnelheid en de maximale bladbreedte groter, maar de 

bladstrekkingssnelheid was lager. In tarwe waren deze effecten van temperatuur en lichtsterkte 

kwalitatief gelijk aan die van mais, alleen was er geen effect van lichtsterkte op maximale 

bladbreedte. In tarwe was verder de specifieke knopbenutting groter bij lagere temperaturen en 

hogere lichtsterktes. Dit morfologische raamwerk kan dus worden gebruikt voor 

proefondervindelijke analyse van bladoppervlakteuitbreiding, waarbij inzicht wordt verkregen in de 

mechanismes voor bladoppervlakteuitbreiding van een plant. 

Het simulatiemodel dat gebaseerd was op object orientatie en waarin alle processen op het nivo van 

het orgaan gemodelleerd werden, was flexibel. Deze flexibiliteit werd succesvol getest door het 

uitbreiden van het model met plantdichtheidseffecten. 
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