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Abstract

Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To 

cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade 

immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of 

these processes, pathogens secrete effector proteins that promote colonization. This review covers 

recent advances in the field of effector biology, focusing on conserved cellular processes targeted 

by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the 

host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is 

discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on 

infection stage. Recent advances have also enhanced our understanding of effectors acting in 

specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into 

biological processes as well as key points of vulnerability in plant immune signaling networks.
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INTRODUCTION

Although plants lack a global circulatory immune system, they possess a sophisticated 

innate immune system capable of recognizing all pathogen classes (17, 161). The 

coevolution between plants and pathogens over millions of years has culminated in large 

arsenals of immune receptors present in plant genomes. In order to gain entry into the plant 

interior, colonize diverse tissues, and cause disease, pathogens must be able to disable plant 

defense responses. A critical component required for pathogenesis is the secretion of 

pathogen proteins, called effectors, which modulate plant immunity and facilitate infection 

(76). In this review, we examine effectors that function in the apoplast as well as inside host 

cells.

Secreted effectors act in the apoplast or inside the cytoplasm of plant cells to manipulate 

their hosts. Not surprisingly, multiple effectors have been identified that suppress immune 

responses triggered by both extra- and intracellular receptors (41, 76). Immune receptors 

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the 

objectivity of this review.

HHS Public Access
Author manuscript
Annu Rev Phytopathol. Author manuscript; available in PMC 2017 January 31.

Published in final edited form as:

Annu Rev Phytopathol. 2016 August 04; 54: 419–441. doi:10.1146/annurev-phyto-080615-100204.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



possessing extracellular domains, such as receptor-like proteins (RLPs) and receptor-like 

kinases (RLKs), are capable of perceiving conserved microbial features and eliciting pattern-

triggered immunity (PTI) (161). These PTI receptors are termed pattern recognition 

receptors (PRRs). Intracellular immune receptors possess nucleotide-binding (NB) and 

leucine-rich repeat (LRR) domain architecture (17). These intracellular immune receptors 

specifically recognize pathogen effectors or effector activity, leading to the induction of 

effector-triggered immunity (ETI). A hallmark of ETI is the hypersensitive response (HR), a 

form of programmed cell death at the site of infection (17).

Plants can be infected by all pathogen classes, including viruses, fungi, oomycetes, bacteria, 

nematodes, and feeding insects. Plant viruses typically possess small genomes and utilize 

host transcriptional machinery to replicate inside host cells (21). Thus, most viral proteins 

can be conceptually considered as effectors. Bacteria possess multiple secretion systems that 

facilitate the secretion of effectors directly outside bacterial cells as well as inside host cells. 

The most well-characterized secretory pathway for Gram-negative bacterial effectors is the 

type III secretion system (T3SS), which delivers effectors inside host cells and is 

indispensable for pathogenesis (20). Nematode effectors can be directly secreted into host 

cells from the stylet or delivered to the plant apoplast by amphidial and hypodermal 

secretions (39). Insect pathogens, such as aphids and psyllids, can also deliver effectors 

during feeding through stylet secretions. Filamentous pathogens, such as fungi and 

oomycetes, secrete effectors via the general secretory pathway and through dedicated 

feeding and infection structures, such as haustoria and appressoria (102). Effectors secreted 

by filamentous pathogens possess an N-terminal signal peptide and can function extra- or 

intracellularly. Intracellular effectors may carry sequence motifs implicated in translocation 

inside the host cytoplasm, such as the RxLR dEER and the LxFLAK motifs present in the 

oomycete RxLR and Crinkler (CRN) effectors, respectively (102). In this review, we focus 

on key cellular processes that are targeted by diverse pathogen effectors with an emphasis on 

timing and specificity of infection.

KNOCKING DOWN THE GATE: EFFECTORS THAT ENHANCE PATHOGEN 

ENTRY

Initial Pathogen Invasion into the Plant Interior

Plant pathogens have evolved diverse mechanisms to invade the plant interior, from entry 

through natural openings or wounds to forced penetration through the epidermis. Pathogens 

must overcome physical barriers such as the plant cell wall and the waxy cuticular layer 

covering the epidermis of aerial plant organs (117). Fungi can sense cuticular components, 

resulting in stimulation of prepenetration processes and cutinase secretion (117). Some fungi 

can directly penetrate the leaf surface using specialized infection structures called 

appressoria, which adhere tightly to the leaf surface, facilitate localized secretion of plant 

cell wall–degrading enzymes, and generate the high turgor necessary for penetration through 

mechanical force (48). The rice blast fungus Magnaporthe oryzae, for example, develops a 

melanized appressorium whose turgor pressure enables the penetration peg to gain direct 

entry to plant epidermal cells (48). Other pathogens enter into the plant without damaging 

the cell wall through stomata and wounds.
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Effectors from Filamentous and Insect Pathogens Facilitating Host Entry

Effectors from diverse pathogens have been identified that facilitate effective penetration and 

early invasion of host tissues. Ustilago maydis, the causal agent of smut disease in maize, 

secretes the Pep1 effector from fungal hyphae that is required for effective invasion of host 

tissue (27). Pep1 is a phylogenetically conserved effector across smut fungi infecting both 

dicots and monocots (45). U. maydis Δpep1 is not compromised in appressorial formation, 

but mutant hyphal growth is arrested immediately upon penetration of the plant epidermis 

(27). U. maydis Δpep1 elicits a strong plant defense response, and Pep1 inhibits plant 

peroxidases to suppress early maize defense responses (27, 44).

Piercing/sucking insects can cause direct damage during phloem feeding, and stylet-

delivered effectors have been demonstrated to further facilitate effective penetration. The 

green peach aphid Myzus persicae feeds on host plants by inserting its stylet between cell 

layers until it reaches the phloem. A few salivary M. persicae effectors have been identified 

that inhibit plant defense responses and enhance feeding (89, 150). M. persicae secretes a 

salivary gland effector with homology to a macrophage migration inhibition factor (MIF) 

that enhances aphid fecundity on the host Vicia faba, enables feeding, and blocks plant 

defense responses (89). In vertebrates, MIFs act as cytokines, which function as critical 

modulators of innate immunity and inflammation (13). Future research investigating the role 

of pathogen-secreted cytokines for suppression of plant immune responses may reveal novel 

mechanisms facilitating pathogenesis in plant and animal systems.

Stomatal Manipulation by Bacterial Effectors

Stomata are the main port of entry for many pathogens. However, guard cells are active 

immune sensing cells and can rapidly induce stomatal closure upon perception of microbial 

features, thus blocking pathogen entry (84). Immunity-mediated stomatal closure requires 

the plant hormone salicylic acid (SA) (84). In contrast, the hormone jasmonic acid (JA) 

plays an antagonistic role with SA. Bacterial pathogens are able to manipulate stomatal 

opening through a variety of mechanisms. Some strains of Pseudomonas syringae pv. tomato 

use coronatine, a mimic of the bioactive plant hormone JA-isoleucine, to induce stomatal 

reopening on the leaf exterior (84). Recently, multiple T3SS bacterial effectors that 

manipulate stomatal apertures and thus enhance pathogen entry have been identified. The 

wildfire pathogen P. syringae pv. tabaci secretes the effector HopX1, which induces JA 

signaling (36). JA signaling is negatively regulated by JAZ transcriptional repressors (18). 

HopX1 is a cysteine protease (CP) that degrades multiple JAZ transcriptional repressors, 

leading to activation of JA-regulated genes (36). P. syringae strains possessing HopX1 do not 

produce coronatine but are nonetheless able to induce stomatal reopening, indicating 

thatHopX1 may be sufficient to induce JA signaling (36). The conserved P. syringae HopZ1a 

effector also targets JAZ proteins (52). HopZ1a is an acetyltransferase and acetylates both 

soybean and Arabidopsis JAZ proteins, leading to their degradation (52). Transgenic 

Arabidopsis plants expressing HopZ1a are also able to suppress stomatal defense (74). The 

P. syringae effector HopM1 suppresses stomatal defense by targeting the Arabidopsis 14-3-3 

protein GRF8/AtMIN10 (68). Other bacterial effectors, such as AvrB and HopF2, also 

suppress stomatal immunity (49, 160). Collectively, these results highlight the importance of 

overcoming stomatal defenses for successful pathogen colonization. However, it is still 
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unclear whether pathogen effectors can specifically target guard cells. Future investigation 

of specificity in effector delivery will significantly enhance our understanding of early 

pathogen entry events.

PLASMA MEMBRANE BATTLEGROUND: PATTERN RECOGNITION 

RECEPTORS AND ALLIES

The first line of active defense against invading microbes consists of plant PRRs at the 

plasma membrane, which can recognize conserved microbial features termed pathogen-

associated molecular patterns (PAMPs) (161). Activation of PRR-mediated immunity results 

in stomatal closure, inhibiting pathogen proliferation at early stages of infection (84, 155). 

Therefore, adapted pathogens have evolved effectors that can inhibit PRR-mediated 

responses at multiple levels. Research in this area has significantly enhanced our 

understanding of plant immunity. The two most well-characterized PRRs are flagellin-

sensing 2 (FLS2) and the elongation factor Tu receptor (EFR), which both recognize 

epitopes of conserved bacterial proteins. FLS2 and EFR, as well as their co-receptor BAK1, 

are targeted by several P. syringae effectors to suppress plant immune responses (76). For 

example, AvrPtoB is an E3 ubiquitin ligase that promotes degradation of several PRRs (37, 

38). AvrPto inhibits the kinase activities of FLS2 and EFR to enhance bacterial virulence 

(152). HopF2, AvrPto, and AvrPtoB also target BAK1 to inhibit downstream immune 

responses (119, 159). The P. syringae effector HopAO1, a protein tyrosine phosphatase, 

dephosphorylates activated EFR to suppress immune responses (75).

Effectors can not only inhibit the activity of PRR complexes but also interfere with PRR 

translation. The P. syringae effector HopU1, a mono-ADP-ribosyltransferase, interferes with 

translation by targeting RNA-binding proteins, including the glycine-rich RNA-binding 

protein GRP7 (33). GRP7 binds translational components and RNA, including immunity-

related transcripts (91). HopU1 inhibits the ability of GRP7 to bind PRR mRNAs, 

decreasing the amount of PRRs at the plasma membrane and interfering with immune 

responses (91).

Pathogen effectors are also known to interfere with components of PRR complexes as well 

as downstream responses. Members of the plant receptor-like cytoplasmic kinase (RLCK) 

subfamily VII have been implicated as positive regulators of immune responses (42, 71, 

156). The BIK1 RLCK is a member of PRR complexes and can transphosphorylate primary 

immune receptors as well as the coreceptor BAK1 (71). Furthermore, BIK1 also 

transphosphorylates the NADPH oxidase RBOHD, leading to an oxidative burst that could 

directly act as an antimicrobial compound as well as reinforce the plant cell wall (56, 64). 

Multiple bacterial effectors have been identified that specifically target RLCKs. The P. 

syringae AvrPphB effector is a protease that directly cleaves PBS1, BIK1, and other RLCKs 

(120, 156). The Xanthomonas campestris effector AvrAC, also known as XopAC, is an 

uridylyl transferase that uridylylates several RLCKs, including BIK1 (31, 42). AvrAC-

mediated uridylylation of RLCKs inhibits their kinase activity, interfering with downstream 

immune signaling and promoting bacterial virulence (31, 42). However, Arabidopsis has 

evolved the ability to detect AvrAC-mediated uridylylation of the PBL2 RLCK, inducing 
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ETI (144). Downstream of PAMP perception, suites of mitogen-activated protein kinases 

(MAPKs) are activated, leading to transcriptional reprogramming in the nucleus (161). P. 

syringae effectors can also inhibit MAPKs to stop downstream signaling. For example, the 

phosphothreonine lyase effector HopAI1 irreversibly inactivates several MAPKs, including 

MPK3, MPK6, and MPK4; the AvrB effector targets the kinases MPK4 and RIPK to 

promote infection (22, 65, 157, 158). Pathogen effectors that interfere with later defense 

responses, such as vesicular trafficking and callose deposition, have also been identified 

(92).

THE BEST DEFENSE IS A GOOD OFFENSE: EFFECTOR-MEDIATED 

INHIBITION OF PAMP PERCEPTION

In addition to actively inhibiting PRR-mediated responses, some pathogens have evolved 

mechanisms to circumvent immune detection by sheltering or masking PAMPs perceived by 

PRRs (Figure 1). Oligosaccharides derived from the major polymer components of the 

bacterial (peptidoglycan), fungal (β-glucan, chitin, chitosan), and oomycete (β-glucan, 

cellulose) cell walls are potent elicitors of plant immune responses, resulting in the 

reinforcement of the plant cell wall with callose, the secretion of immune-related proteases, 

and the production of phytoalexins and pathogenesis-related proteins with antimicrobial 

activities (47, 116, 161). Some pathogenesis-related proteins are lytic enzymes that can 

destroy the integrity of the pathogen cell wall and inhibit growth (116). Consequently, 

several microbial effectors function to directly or indirectly protect against hydrolytic 

assaults or mask the detection of microbial features.

Effector Inhibition of Plant Proteolytic Activity

Secreted CPs are widely distributed in plants and can function in defense against microbial 

pathogens as well as in pathogen recognition, signaling, and activation of immune responses 

(47). Multiple apoplastic effectors from filamentous pathogens are capable of inhibiting host 

proteases (51). Avr2 is a small, cysteine-rich, apoplastic effector protein from the tomato 

pathogen Cladosporium fulvum (syn. Passalora fulva), which binds and inhibits the papain-

like CPs Rcr3 and PiP1 during infection of the host (118). Silencing Avr2 in C. fulvum leads 

to reduced pathogen virulence on tomato, whereas overexpression of Avr2 in Arabidopsis 

increases susceptibility to filamentous pathogens (141). Tomato plants possessing the Cf-2 

RLP are able to perceive the conformational changes induced upon Rcr3 by binding to Avr2, 

leading to the activation of plant immune responses (111). It is hypothesized that Pip1, 

which accumulates to considerably higher levels than Rcr3 in the apoplast, is the primary 

target of Avr2, whereas Rcr3 acts as a decoy to facilitate immune perception of C. fulvum 

(118, 139) (Figure 1).

The EPIC1 and EPIC2B effectors from the oomycete pathogen Phytophthora infestans, the 

causal agent of late blight of potato and tomato, also target and inhibit the CPs Rcr3 and 

PiP1 in tomato as well as C14 in potato (57, 122, 133) (Figure 1). The plant-parasitic 

nematode Globodera rostochiensis secretes the VAP1 effector that perturbs Rcr3’s active site 

(70) (Figure 1). In the absence of the correspondingCf-2 immune receptor, Rcr3 from 

Solanum pimpinellifolium enhances G. rostochiensis virulence, implying that Rcr3 is a 
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virulence target of VAP1 (70). VAP1, Avr2, EPIC1, and EPIC2B do not share sequence or 

structural homology, indicating that inhibition of host CPs is an important aspect of 

microbial pathogenesis that has independently evolved across phylogenetically distant 

microbial pathogens. In tomato, pathogen-secreted CP inhibitors are targeted for degradation 

by the serine protease P69B, which in turn is inhibited by the P. infestans EPI1 and EPI10 

effectors that act as Kazal-like serine protease inhibitors (131, 132) (Figure 1). This is a 

compelling example of an apoplastic coevolutionary arms race between host and pathogen.

Stealthy Secretions: Effectors Masking Microbial Features

In addition to actively defending against proteolytic attacks, filamentous pathogens can also 

secrete effectors that offer passive protection (Figure 1). The C. fulvum apoplastic effector 

Avr4 possesses a carbohydrate-binding module of family 14 (CBM14) that specifically binds 

and protects fungal chitin from host-derived chitinases (138) (Figure 1). Several tomato 

chitinases accumulate in the vicinity of invading C. fulvum hyphae (151). Accordingly, Avr4 

is specifically expressed during host colonization and accumulates on the surface of the 

intercellular hyphae; silencing of Avr4 in C. fulvum leads to attenuated virulence and growth 

on tomato (138, 140). Thus, Avr4 may promote pathogen virulence by protecting the 

pathogen from degradation and adverting the release of PAMPs that can be perceived by 

plant PRRs (Figure 1).

Functional orthologs of Avr4 have been identified in a number of fungal species within the 

Dothideomycete class, including the banana pathogen Pseudocercospora fijiensis, the tomato 

pathogen Pseudocercospora fuligena, and the pine tree pathogen Dothistroma, among others 

(24, 124).

Chitin-binding effectors can also play a critical role in preventing the activation of 

chitininduced host defenses. The C. fulvum Ecp6 effector is abundantly produced during 

colonization and possesses three lysine motif (LysM) domains with affinity for short chito-

oligosaccharides (10). Unlike Avr4, binding of Ecp6 to chito-oligosaccharides does not 

fortify against chitinases. Instead, Ecp6 is able to directly compete for the same ligand chito-

oligosaccharides with plant PRR chitin receptors, such as the Arabidopsis chitin elicitor 

receptor kinase 1 (AtCERK1) and the rice chitin elicitor binding protein (CEBiP) (112, 161) 

(Figure 1). The Ecp6 crystal structure revealed that it possesses a high affinity chitin-binding 

site composed of LysM1 and LysM3 in addition to LsyM2, which possesses lower binding 

affinity (23, 112). In contrast, the crystal structure of AtCERK1 indicates that only one of 

the three LysM domains binds chitin, which could explain the considerably lower affinity of 

this protein for chitin (67, 112). As with Avr4, functional orthologs of Ecp6 that are able to 

suppress chitin-induced plant immune responses in order to enable parasitic infection of the 

host are found in other fungal species, including M. oryzae and the wheat pathogen 

Zymoseptoria tritici (syn. Mycosphaerella graminicola) (81, 85). Taken together, these 

studies highlight elegant and diverse strategies employed by pathogen effectors to inhibit 

plant immune recognition.
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ORCHESTRATING EFFECTOR EXPRESSION OVER TIME AND SPACE

Plant pathogens possess diverse lifestyles, ranging from stealthy obligate biotrophs that 

require robust immune suppression and cannot be maintained axenically outside their hosts 

to necrotrophs that feed off dead tissue and seek to activate cell death (48, 143). Depending 

on the stage of infection, pathogens can also adopt intermediate lifestyles. Hemibiotrophs 

initially exhibit biotrophy but switch to necrotrophy during later stages of infection (143). In 

the case of filamentous fungi and oomycetes, colonization of the plant is achieved through 

intracellular invasive hyphae that can grow from cell to cell as well as terminal feeding 

structures, such as haustoria (102). Below, we focus on advancements in effector biology 

with respect to timing of effector expression.

Waves of Effector Expression in Relation to Infection Stages

Filamentous pathogens can possess large arsenals of predicted secreted effectors. These 

effectors are differentially expressed during the course of infection or in a histologically 

specific manner (Figure 2). Hemibiotrophic Colletotrichum pathogens comprise more than 

600 species that cause anthracnose disease on a wide variety of plants (88). Transcriptome 

analyses of Colletotrichum higginsianum during infection of Arabidopsis revealed three 

waves of effector expression (60, 94). Specific effectors were expressed during distinct 

pathogenic stages, suggesting that particular effectors function in each stage (Figure 2). 

Coordinated expression of specific effector sets occurred during appressorial penetration, 

biotrophic growth in host cells, and the conversion from biotrophy to necrotrophy (60). 

When transiently expressed in Nicotiana benthamiana, specific C. higginsianum effectors 

either inhibit or promote cell death (60). Consistent with their expression patterns, cell 

death–inhibiting effectors were expressed during the biotrophic phase, whereas cell death–

inducing effectors were expressed during the switch to necrotrophy (60) (Figure 2).

Phytophthora spp. also exhibit waves of effector expression during infection. Phytophthora 

sojae, the causal agent of root and stem rot of soybean, possesses ~400 effectors carrying the 

RxLRdEER motif (135). Using transient expression in N. benthamiana, the ability of 169 

effectors to either elicit cell death or suppress INF1-mediated cell death was investigated 

(146). The most strongly expressed effectors during early to intermediate stages of infection 

were able to suppress cell death, whereas a second effector class was induced during the first 

12 hours of infection and elicited cell death (146) (Figure 2).

Misexpression of stage-specific effectors significantly reduced P. sojae virulence (146). 

Other pathogens, such as Phytophthora capsici and Blumeria graminis f. sp. hordei, also 

exhibit successive waves of effector expression during infection (43, 55). These experiments 

highlight the importance of appropriate timing of effector expression to mediate different 

infection stages and differentially regulate plant responses (Figure 2).

Effector Specificity by Infection Stage and Plant Organ

U. maydis effector knockouts have revealed the importance of particular effectors for 

different stages of infection as well as infection of different plant organs (107, 114). After 

penetration of epidermal cells, fungal hyphae are surrounded by the host plasma membrane 
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and can move throughout mesophyll tissue (27, 28). Fungal hyphae accumulate inside and 

surround vascular bundles, where they likely obtain nutrients (28). During later stages of 

infection, U. maydis induces tumor formation that is conducive to large-scale proliferation 

of the fungus (28). The U. maydis Pep1 effector is required for initial penetration of maize, 

whereas the Pit2 effector acts slightly later in infection and Pit2 knockouts are unable to 

maintain a biotrophic interaction (26, 27). The U. maydis effector Tin2 is induced during 

early infection, functions inside plants cells, and shifts plant metabolism in favor of the 

pathogen (129). Tin2 inhibits degradation of the maize kinase ZmTTK1, which controls 

activation of anthocyanin biosynthetic genes (129). In the absence of Tin2, vascular bundles 

exhibit strong lignification, resulting in the decreased ability of U. maydis to reach vascular 

tissue for nutrient acquisition (129).

In addition to U. maydis effectors acting in different stages of infection, effectors have been 

identified exhibiting plant organ specificity. Transcriptional profiling of infected maize 

seedlings, adult leaves, and tassels revealed specific plant and pathogen genes induced in an 

organ-specific manner (121). Subsequent functional analyses verified alterations in virulence 

in particular maize organs for effector knockouts, depending on their specificity of 

expression (107, 114, 121). For example, the See1 effector induces plant DNA synthesis 

required for tumor progression in leaf cells but not in immature tassels (107). Collectively, 

these studies highlight the importance of specific effector sets for enabling successful 

infections over time and in distinct plant organs. Despite clear evidence of waves of effector 

expression during infection, few studies have investigated how effectors are transcriptionally 

regulated in filamentous pathogens. Future research in this area will enable greater 

mechanistic insight into how effector expression is tightly controlled, including 

identification of specific transcription factors, in eukaryotic pathogens.

EFFECTORS THAT INDUCE CELL DEATH AND PROMOTE NECROTROPHY 

OF PLANT PATHOGENS

In contrast to strict biotrophs, effectors from necrotrophic fungi and other hemibiotrophs 

deliberately induce necrosis to promote virulence (Figure 2). These necrotrophic effectors 

can either be unspecific or act as host-selective toxins that contribute to pathogen host range 

(147). Ethylene (ET)-inducing peptide 1 (NEP1)-like proteins (NLPs) are a protein 

superfamily produced by bacteria, fungi, and oomycete plant pathogens (101). In many 

dicots, NLPs elicit cell death as well as strong immunity-associated responses (106). More 

than 70% of NLPs originate from pathogens exhibiting necrotrophic or hemibiotrophic 

lifestyles (106). It is plausible that these NLPs elicit immune responses to trigger cell death 

and nutrient acquisition. In Arabidopsis, NLPs are perceived as PAMPs, and a conserved 20 

amino acid fragment is recognized by the RLP23 immune receptor and elicits classic PTI 

responses such as the extracellular ROS burst, ethylene production, MAPK activation, and 

defense gene expression (1, 97, 106). Crinkler (CRN) effectors also induce necrosis as well 

as a characteristic leaf crinkling phenotype (115). CRNs are abundantly distributed within 

oomycetes and possess a characteristic N-terminal LxFLAK translocation domain, and the C 

termini of several CRNs localize to the plant nuclei (115). The P. infestans CRN8 effector 
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possesses kinase activity and localizes to plant nuclei, indicating that it interferes with host 

signaling pathways during infection (115, 137).

Although the necrotrophic effectors described above mostly lack host selectivity, others 

induce severe necrosis on particular plant genotypes possessing dominant sensitivity genes 

(127). Cloning of multiple sensitivity genes revealed that they resemble intracellular plant 

immune receptors, with NB sites and LRR domain architecture (127). Thus, necrotrophic 

effectors can exploit the activation of plant NB-LRRs to induce effector-triggered sensitivity 

as opposed to ETI. The pathogens Pyrenophora tritici-repentis and Stagonospora nodorum 

(syn. Parastagonospora nodorum) secrete multiple effectors that induce severe necrosis in 

wheat genotypes possessing corresponding sensitivity genes (96). The PtrToxA effector 

produced by P. tritici-repentis triggers necrosis or chlorosis in wheat genotypes containing 

Tsn1 (19). Tsn1 possesses NB-LRR domain architecture in addition to a serine/threonine 

protein kinase domain (30). Upon fungal secretion, the PtrToxA effector is internalized only 

in wheat genotypes possessing Tsn1, localizes to the chloroplast, and interacts with 

ToxAB1, which may be involved in thylakoid formation (79, 80). PtrToxA orthologs have 

now been identified in the sister species Stagonospora avenaria tritici as well as the maize 

pathogen Cochliobolus heterostrophus (73, 82). Notably, molecular phylogenetic analysis 

has suggested that the ToxA homolog present in P. triticirepentis is likely to have been 

horizontally acquired from P. nodorum, thus leading to the emergence of highly pathogenic 

populations that instigated new disease epidemics (32). At least eight more pairs of 

necrotrophic effectors and cognate plant sensitivity genes have been reported in the P. 

nodorum–wheat interaction, highlighting the importance of necrotrophic effector-triggered 

sensitivity (96).

EFFECTORS EXHIBIT DIVERSITY IN CELL-TO-CELL MOVEMENT AND 

LOCALIZATION

Not only can effectors target diverse cellular processes, but recent work has illustrated that 

effectors from the rice blast fungus M. oryzae canmove from cell to cell to enhance 

subsequent colonization (59). After entering the plant interior, M. oryzae initially colonizes 

rice in a biotrophic manner using intracellular invasive hyphae (48). Fungal transformants 

expressing fluorescently labeled effectors have enabled the investigation of effector 

expression, secretion, and movement during natural infection of rice. Recognized effectors 

and secreted proteins associated with the biotrophic phase accumulate in a structure called 

the biotrophic interfacial complex, and some effectors could be visualized inside host cells 

(59). In contrast, apoplastic effectors were uniformly expressed throughout invasive hyphae 

(59). Interestingly, some cytosolic effectors, such as PWL2and BAS1, were able to move up 

to four cells away from invading hyphae, possibly through plasmodesmata (59). Effectors 

that can move from cell to cell likely play a role in priming host cells for pathogen 

colonization.

In addition to the capability to move from cell to cell, effectors can also exhibit diverse 

subcellular localizations. Thus, effectors are excellent cellular probes, and specific effectors 

have been identified that localize to almost every plant subcellular compartment. Effectors 
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from filamentous pathogens exhibiting focal accumulation surrounding the biotrophic 

interface have been identified. The cucumber pathogen Colletotrichum orbiculare secretes a 

variety of effectors that accumulate around the neck of biotrophic hyphae (50). C. 

orbiculare’s exocyst-related component SEC4 also localized to the same compartment, and 

disruption of SEC4 in the pathogen impaired effector delivery to the plant-pathogen 

interface (50). These results highlight the importance of focal effector secretion to enable 

targeted inhibition of plant immune responses.

EFFECTOR MANIPULATION OF VESICULAR TRAFFICKING

Endocytosis and exocytosis are key cellular processes that are involved in the accumulation 

of primary immune receptors at the plasma membrane as well as in focal protein delivery 

and secretion. Secretory vesicles deliver antimicrobial cargo to the sites of infection to 

inhibit pathogen proliferation (130). These antimicrobial molecules can be defense-related 

proteins, cell wall depositions, and phytotoxins (130). In addition, mutations affecting 

exocytosis and vesicular trafficking have compromised resistance to different pathogens. For 

instance, T-DNA mutants, Exo70B2 and Exo70H1, in two members of the Arabidopsis 

exocyst complex are more susceptible to P. syringae pv. maculicola, and exo70B2 exhibits 

increased abnormal papillae formation after inoculation with the barley powdery mildew 

pathogen B. graminis f. sp. hordei (100). PEN1/SYP121, a plasma membrane syntaxin 

involved in focal secretion and papillae formation, is also required for resistance to B. 

graminis f. sp. hordei, as the pen1 mutant allows enhanced penetration of this fungal 

pathogen (5). Taken together, these results highlight the importance of exocytosis for 

effective plant defense responses.

One well-characterized effector that interferes with secretion of immune cargo is the P. 

infestans RxLR effector AVRblb2 (11). During infection, AVRblb2 exhibits focal 

accumulation surrounding haustoria. Using transient expression in N. benthamiana, 

AVRblb2 was demonstrated to associate with and specifically inhibit secretion into the plant 

apoplast of the papain-like CP C14 (11). As described above, this class of immune proteases 

is involved in enhancing plant immune perception and is targeted by multiple apoplastic 

effectors (47). Silencing of C14 in N. benthamiana resulted in enhanced susceptibility, 

whereas overexpression of C14 resulted in enhanced resistance to P. infestans, thus 

highlighting the importance of this immune protease for inhibiting pathogen proliferation 

(11). AVRblb2 is under positive selection, and different allelic variants are maintained in 

global populations of P. infestans, indicating that specific alleles contribute differentially to 

virulence (95). Another P. infestans RxLR effector, AVR1, interacts with the exocyst 

component (29). In addition, the M. oryzae effector AVR-Pii interacts with two Exo70 

components in rice (34). Overexpression of pathogen effectors in plants commonly inhibits 

secretion of callose and pathogenesis-related proteins (41). Future experiments investigating 

whether these are direct or indirect effects will help determine whether vesicular trafficking 

is a conserved process targeted by many effectors as well as shed light on the biological 

relevance of effector overexpression in plants.

Pathogen effectors that specifically disrupt intracellular vesicular trafficking have also been 

identified. The P. syringae effector HopM1 interferes with vesicular trafficking, is encoded 
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in the conserved effector locus of several P. syringae strains, and significantly contributes to 

bacterial pathogenicity (2). HopM1 induces host proteasome-dependent degradation of 

AtMIN7, an adenine diphosphate ribosylation factor–guanine nucleotide exchange factor 

(ARF-GEF) involved in vesicular trafficking (92). Both HopM1 and AtMIN7 localize to the 

trans-Golgi network/early endosome compartment where AtMIN7 regulates endocytosis of 

plasma membrane proteins (93, 128). Furthermore, Arabidopsis atmin7 plants exhibit 

enhanced susceptibility to virulent and avirulent P. syringae (92, 93). AtMIN7 is not the only 

virulence target of HopM1, as this effector can suppress other plant immune responses 

independent of its association with AtMIN7 (35). The P. infestans AVR3a effector also 

disrupts internalization of activated FLS2 and may interfere with endocytosis of other PRRs 

through its association with the host dynamin-related protein 2, a GTPase involved in 

endocytosis and membrane trafficking (14). Thus, effectors can regulate specific aspects of 

exo- and endocytosis and interfere with immune receptor abundance at the plasma 

membrane.

EFFECTORS THAT MIMIC AND INTERFERE WITH PLANT HORMONES

Multiple aspects of plant growth, development, and defense are regulated by complex 

hormone signaling networks. SAis important for resistance to biotrophic and hemibiotrophic 

pathogens, and JA and ET are associated with resistance to necrotrophs and herbivorous 

insects (103). In addition, SA is also required for the induction of systemic acquired 

resistance. Signaling networks involving SA, JA, and ET are important for PTI and ETI 

responses (134). Pathogens have evolved innovative strategies to manipulate signaling of 

most plant hormones to enable pathogen proliferation. Below, we review plant hormones 

repeatedly targeted by diverse pathogen effectors.

SA is considered the canonical defense hormone that functions to inhibit biotrophic 

pathogens. Components of SA biosynthesis and perception are targeted by effectors from 

diverse pathogens. The U. maydis Cmu1 effector is a chorismate mutase (25). Chorismate 

mutases function in the shikimate pathway, which produces aromatic amino acids, 

precursors of secondary metabolites such as the hormones auxin and SA, cell wall products, 

and pigments (78). Maize plants infected with U. maydis Δ cmuI strains have reduced 

disease symptoms and increased SA levels compared with wild-type strains (25). Cmu 

effectors have also been identified in several nematodes, including the potato cyst nematodes 

G. rostochiensis and Globodera pallida, the soybean cyst nematode Heterodera glycines, and 

the sugar beet cyst nematode Heterodera schachtii (7, 53,72, 142). Thus, chorismate mutase 

effectors manipulate the shikimate pathway to interfere with immune responses and promote 

virulence. The filamentous pathogens P. sojae and Verticillium dahliae secrete the virulence 

promoting effectors Pslsc1 and Vdlscl, respectively. Pslsc1 and Vdlscl are isochorismatases, 

enzymes that hydrolyze the SA precursor isochorismate to disrupt SA metabolism (66).

Several pathogens induce JA signaling to promote pathogen virulence. JA is able to inhibit 

SA-mediated responses. As discussed above, P. syringae effectors activate the JA pathway 

by directly or indirectly mediating degradation of JAZ proteins, thereby suppressing SA 

signaling and facilitating pathogen entry (36, 52, 160). The Arabidopsis downy mildew 

pathogen Hyaloperonospora arabidopsidis is an obligate biotroph that secretes the RxLR 
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effector HaRxL44 during infection. HaRxL44 induces the degradation of the Mediator 

subunit 19a (12). Mediator is a conserved multiprotein complex in eukaryotes that bridges 

RNA polymerase II with diverse transcription factors (154). HaRxL44-mediated degradation 

of Med19a results in elevated JA levels and decreased SA responses (12). Arabidopsis plants 

lacking MED19a or overexpressing HaRxL44 are more susceptible to H. arabidopsidis, 

whereas plants overexpressing MED19a are more resistant, indicating a role of MED19a in 

immunity (12). The C2 protein from Tomato yellow leaf curl virus is conserved across 

geminiviruses and targets a component of the COP9 signalosome CSN5, resulting in 

suppression of JA-mediated responses (69). Thus, effectors have evolved to disrupt JA 

signaling at multiple levels, highlighting the importance of manipulating JA signaling to 

promote pathogenicity.

In addition to interfering with plant hormone perception and signaling, pathogens can also 

produce mimics of plant hormones. For example, some strains of P. syringae produce 

coronatine, a JA-isoleucine mimic (8). Cyst nematodes secrete effectors that mimic plant 

CLAVATA3/endosperm surrounding region-related (CLE) peptide hormones (Figure 1). 

Plant CLE peptides are secreted, are mobile, and are perceived by RLKs (61). In plants, 

CLE perception is critical for cell-to-cell communication and controls multiple 

developmental processes (61). CLE-like effectors are posttranslationally processed, 

revealing a 12–13 amino acid mature peptide ligand with similarity to plant CLE peptides 

(16). Overexpression of CLE-like effectors in Arabidopsis results in premature meristem 

termination and phenocopies plants overexpressing CLE peptides (145). RNAi-mediated 

gene silencing of cyst nematode CLE-like genes results in decreased parasitism, 

demonstrating the importance of CLE-like effectors for virulence (6, 99). CLE-like effectors 

are recognized by several plant RLKs, which are required for nematode-induced syncytium 

(giant multinucleated cell) development and successful nematode infection (109, 110). It is 

hypothesized that cyst nematodes secrete CLE-like effectors to reprogram plant tissues as 

feeding sites for their benefit. Pathogen effectors are also able to alter other plant hormones 

like auxin and gibberellins to favor pathogenicity (103). However, the amplitude and timing 

of pathogen hormone manipulation are still not well understood. Future research in this area 

will enhance our understanding of plant hormone dynamics during pathogen infection.

REPROGRAMMING THE HOST: EFFECTORS MANIPULATING HOST GENE 

EXPRESSION

Plant perception of microbial pathogens involves transcriptional reprogramming toward 

defense. Transcriptome analyses have revealed that 44% of Arabidopsis genes are 

differentially regulated after inoculation with P. syringae (63). Similarly, U. maydis induces 

transcriptional reprogramming of up to 21% of maize genes (28). Pathogens have evolved 

diverse mechanisms to manipulate host gene expression by targeting host transcription 

factors, inducing the expression of susceptibility genes and interfering with host gene 

silencing (Figure 3).

Toruño et al. Page 12

Annu Rev Phytopathol. Author manuscript; available in PMC 2017 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Effector Modulation of Plant Transcription Factors

Phytoplasmas are a class of phloem-limited obligate plant pathogens and are insect 

transmitted (126). Phytoplasmas cause a variety of diseases and significantly impact host 

development. They belong to the class Mollicutes, lack an outer membrane, and do not 

possess a T3SS (40). However, phytoplasmas are able to directly secrete effectors outside 

the bacterial cell that can move throughout infected plants and interface with host 

transcription factors in the nucleus (126). The Aster Yellow phytoplasma strain Witches’ 

Broom (AY-WB) secretes the effector SAP11 that binds and destabilizes the transcription 

factors Cincinnata (CIN)-related teosinte branched1, cycloidea, proliferating cell factors 1 

(TCP1), and TCP2, which are involved in plant development (125). SAP11 reduces the 

abundance of CIN-TCP transcription factors, including TCP4, which regulates the 

expression of lipoxygenase 2 (LOX2) involved in JA biosynthesis. Arabidopsis plants 

expressing SAP11 have reduced expression of LOX2 and produce less JA, indicating that 

SAP11 downregulates LOX2 expression and JA signaling by destabilizing TCP4 (125). 

Overexpression of SAP11 in Arabidopsis phenocopies AY-WB–infected plants, resulting in 

increased stem number and enhanced fecundity of the insect vector Macrosteles 

quadrilineatus. Silencing members of the Arabidopsis CIN-TCP family resulted in similar 

phenotypes (125). Plants infected with AY-WB also exhibit altered flower development, 

resulting in leaf-like flowers (phyllody), which is thought to enhance M. quadrilineatus 

attraction and fecundity. The effector SAP54 induces degradation of type II MADS-domain 

transcription factors involved in floral development, resulting in phyllody (77). Thus, 

phytoplasmas regulate plant development through degradation of transcription factors to 

favor insect vector colonization (Figure 3).

Host transcription factors appear to be hubs targeted by multiple pathogen effectors in 

diverse ways (87, 149). Effectors can directly target transcription factors or transcriptional 

repressors by altering their stability and subcellular localization, and by blocking their 

activity. For example, the RxLR effector Pi03192 from P. infestans and the coat protein of 

Turnip crinkle virus interact with host NAC transcription factors, preventing their 

localization to the nucleus, thereby affecting their function (83, 108) (Figure 3). 

Furthermore, TCP transcription factors appear to be key points of vulnerability in plant 

immune signaling and are targeted by diverse pathogens, including phytoplasmas (described 

above) as well as Phytophthora (123). JAZ proteins, which transcriptionally repress JA 

signaling, are targeted by multiple pathogen effectors, representing another vulnerable node 

in plant immune signaling (36, 52). WRKY transcription factors, known for their DNA-

binding domain with a WRKYGQK sequence motif, are also key proteins regulating defense 

responses to several pathogens (98). Arabidopsis also possesses RRS1-R, a canonical 

intracellular immune receptor possessing an additional WRKY domain that mimics WRKY 

transcription factors targeted by pathogen effectors that function as a decoy to activate 

immunity (62, 113). Nematode effectors also interfere with host transcription. The 10A07 

effector from the sugar beet nematode H. schachtii is phosphorylated by the plant kinase 

IPK, facilitating its nuclear localization and interaction with the auxin-responsive 

transcription factor INDOLE-3-ACETIC ACIDINDUCIBLE16(IAA16) (46). Thus, 10A07 

interferes with auxin signaling by its interaction with IAA16 transcription factor.
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Glorious TALEs: Effectors Acting as Plant Transcription Factors

Pathogen effectors can directly act as transcription factors and induce the expression of host 

susceptibility genes (Figure 3). These T3SS effectors are found in multiple Xanthomonas 

and Ralstonia bacterial pathogens and are called transcriptional activator-like effectors 

(TALEs). The elucidation of how TALEs specifically bind the promoters of their target 

genes has facilitated the identification of specific effector targets (9, 86). Xanthomonas 

oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight, delivers the TALE PthXo1, 

which binds to the promoter region of OsSWEET11, a sucrose transporter gene, to induce its 

expression and promote bacterial pathogenicity (153). Another SWEET gene, OsSWEET14, 

is induced by Xoo TALEs AvrXa7 and PthXo3 (4). Thus, the virulence targets of multiple 

TALEs are sugar transporters in the SWEET gene family, likely facilitating sugar export for 

bacterial consumption (15) (Figure 3). Deciphering TALE DNA-binding specificity has 

enabled the prediction of target genes that confer bacterial susceptibility as well as targets 

present in resistant plants that drive the expression of defense genes (Figure 3). This 

knowledge has also enabled the generation of synthetic TALEs fused to nucleases, which 

have been heavily used for genome editing in plant, animal, and human cells (54). The 

widespread use of TALEs for genome editing illustrates the importance of investigating the 

mechanistic basis of effector function.

Effectors Targeting RNA Silencing Machinery

RNA silencing (or posttranscriptional gene silencing) is a conserved regulatory mechanism 

in eukaryotes. Plants also use the RNA silencing machinery as a defense mechanism against 

viral pathogens (21). Many plant viruses have an RNA genome and replicate via a double-

stranded RNA intermediate (21). Double-stranded RNA is a potent trigger for RNA 

silencing, and enables the host to specifically target viral RNA for degradation. To overcome 

this defense response, multiple plant viruses have evolved suppressors of RNA silencing that 

are required for viral proliferation (21) (Figure 3). One of the first characterized viral 

suppressors of RNA silencing is the helper component proteinase P1/HC-Pro protein from 

Tobacco etch potyvirus (3, 58). P1/HC-Pro has been implicated in several functions, 

including viral genome amplification, polyprotein processing, cell-to-cell movement, and 

aphid transmission (136). However, all these functions are associated with its RNA silencing 

suppression activity. Several viral suppressors of RNA silencing target different components 

of the RNA silencing pathway, including 2b from Cucumber mosaic virus and P19 from 

Tomato bushy stunt virus (21). These suppressors are key effectors required for viral disease 

progression in plants.

Aside from viruses, other pathogen classes possess effectors that interfere with 

posttranscriptional processes. P. sojae delivers the RxLR effectors PSR1 and PSR2 

(Phytophthora suppressor of RNA silencing 1 and 2), which act as suppressors of RNA 

silencing (Figure 3). PSR2-silenced P. sojae is less virulent on soybean plants (104). 

Expression of PSR1 in N. benthamiana increases pathogenicity of the Potato virus X and P. 

infestans, demonstrating the importance of this effector for pathogen proliferation (104). 

Arabidopsis plants expressing PSR1 have reduced accumulation of small RNAs, including 

precursor microRNAs (miRNAs) and small interfering RNAs (siRNAs) (104). PSR1 targets 

PSR1-interacting protein 1, a nuclear protein with an RNA helicase domain that regulates 
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accumulation of miRNAs and siRNAs (105). Thus, PSR1 affects biogenesis of small RNAs, 

most likely in a Dicer-like dependent manner. PSR2 suppresses different components of 

RNA silencing and reduces the accumulation of specific trans-acting siRNAs (104). P. 

syringae can deliver effectors that interfere with the miRNA pathway, but it is not known 

whether this is a direct effect (90). Fungal pathogens can also manipulate RNA silencing 

components. The Botrytis cinerea fungus expresses small RNAs targeting the host silencing 

machinery to impair the expression of immune-related genes (148) (Figure 3). These data 

demonstrate that altering host transcriptional processes is a common mechanism utilized by 

pathogen effectors to suppress plant immune responses and facilitate pathogen proliferation.

CONCLUDING REMARKS

The ability to robustly deliver effectors enables pathogens to successfully colonize their 

hosts. Over the past two decades, research in effector biology has revealed diverse host 

targets and has significantly impacted our understanding of both pathogen and host 

biological processes. Diverse pathogens are able to target common plant immune 

components. For example, stealthy pathogens secrete cell death and immune suppressing 

effectors, whereas necrotrophic pathogens target the same components for promotion of cell 

death and immunity. Initial investigations have also revealed that effectors are deployed in 

complex spatial and temporal manners. Future research in effector biology will undoubtedly 

reveal novel strategies employed by pathogen effectors that can be exploited to control plant 

disease.
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SUMMARY POINTS

1. Effectors are excellent cellular probes to dissect diverse biological processes 

and points of vulnerability in plant immune signaling.

2. Effectors can modify plant gene expression by modulating transcription 

factors, directly regulating transcription, and interfering with plant RNA 

silencing machinery.

3. Filamentous pathogens express effectors in waves during infection.

4. Effectors from diverse pathogens differentially target similar cellular 

processes in order to achieve opposite outcomes.

5. Manipulation of PRR complexes, hormone signaling, vesicular trafficking, 

and gene expression are common strategies used by diverse plant pathogens.
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FUTURE ISSUES

1. Do effectors play roles beyond plant-microbe interactions?

2. Do effectors from different pathogens act in synergistic or antagonistic 

manners in mixed plant infections?

3. How are effectors from diverse pathogens delivered inside host cells?

4. What mechanisms (e.g., transcription factors) are regulating the expression of 

eukaryotic pathogen effectors over time, space, and plant organ?

5. Are there correlations between effector conservation, expression, and 

contribution to virulence?

6. Are there differences in expression and hierarchy of delivery for bacterial type 

III effectors?
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Figure 1. 
The battle in the apoplast between plants and pathogens. Filamentous pathogens secrete 

multiple effectors to interfere with host immunity. The Cladosporium fulvum Avr4 effector 

shields and masks chitin present in the fungal cell walls from tomato chitinases during 

infection. The Avr2 effector binds to and inhibits tomato apoplastic proteases such as Rcr3 

and PiP1. The plant-parasitic nematode Globodera rostochiensis secretes the VAP1 effector 

that blocks Rcr3’s active site. The Phytophthora infestans EPIC1 and EPIC2B effectors also 

inhibit apoplastic proteases. Perception of apoplastic effectors can be mediated by receptor-

like proteins (RLPs). Avr2 results in a conformational change in Rcr3, which is perceived by 

the cognate tomato Cf-2 RLP. Perception of Avr4 by the tomato RLP Cf-4 is hypothesized to 

occur through direct effector binding. The LysM-domain containing effector Ecp6 interferes 

with host immunity by sequestering short chito-oligosaccharides that could be released by 

the fungus. Such short chito-oligosaccharides, usually six to eight oligomers in length 

[(GlcNAc)6–8], act as PAMPs (pathogen-associated molecular patterns) and are perceived 

by plant LsyM domain–containing immune receptors, including Arabidopsis thaliana 

CERK1 and LYK5, a receptor-like kinases (RLKs), and the Oryza sativa CEBiP. Cyst 

nematodes secrete effectors mimicking plant CLE (CLAVATA3/endosperm surrounding 

region-related) peptide hormones, which are perceived by CLAVATA RLKs. CLAVATA 
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RLKs regulate stem cell maintenance, and it is hypothesized that nematode CLE effectors 

act to inhibit cell division to promote syncytium development. Not to scale.
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Figure 2. 
Waves of effector expression over time and pathogen type. Plant pathogens range from 

obligate biotrophs with narrow host ranges to hemibiotrophs and necrotrophs with broad 

host ranges. Effector expression patterns change over the course of infection and type of 

tissue infected. Obligate biotrophs secrete effectors that act to suppress immune recognition 

and promote cell survival. Hemibiotrophs initially secrete effectors promoting cell survival, 

but during later stages of infection secrete cell death–promoting effectors. Necrotrophic 

pathogens can also secrete effectors promoting cell survival during very early infection 

stages but predominantly secrete cell death–promoting effectors to facilitate colonization.
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Figure 3. 
Pathogen effectors manipulate host gene transcription. Bacterial effectors are depicted in 

blue, effectors from filamentous pathogens are depicted in red, and viral effectors are 

depicted in purple. Transcriptional activator-like effectors (TALEs) from Xanthomonas and 

Ralstonia bacterial pathogens are secreted through the type III secretion system (T3SS) into 

host cells. TALEs bind to promoter regions of target genes to activate transcription of 

susceptibility (S) genes and promote virulence. However, some plant genotypes possess 

resistance (R) genes with TALE-binding promoter regions and act as decoys to activate 

immune responses. The bacterial pathogen Pseudomonas syringae delivers the T3SS effector 

HopU1 (blue circle) that targets the RNA-binding protein GRP7. HopU1 interferes with 

GRP7’s ability to bind messenger RNAs, including immunity-related RNAs. Phytoplasmas 

are insect-transmitted, phloem-limited bacterial pathogens that secrete SAP effectors (blue 

star). SAP effectors are able to move throughout the plant via plasmodesmata, and some, 

such as SAP11 and SAP54, manipulate host transcription factors to induce plant 

developmental changes favoring insect colonization. Filamentous pathogens (oomycetes and 

fungi) as well as viruses deliver effectors to suppress plant RNA silencing and thus interfere 

with plant transcription factors and promote virulence. Botrytis cinerea is able to deliver 

fungal small RNAs into the host cells that suppress gene expression (red line).
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