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Abstract Plant peroxisomes are subcellular compart-
ments involved in many biochemical pathways during the
life cycle of a plant but also in the mechanism of response
against adverse environmental conditions. These organ-
elles have an active nitro-oxidative metabolism under
physiological conditions but this could be exacerbated
under stress situations. Furthermore, peroxisomes have
the capacity to proliferateand also undergo biochemical

adaptations depending on the surrounding cellular
status. An important characteristic of peroxisomes is
that they have a dynamic metabolism of reactive nitrogen
and oxygen species (RNS and ROS) which generates two
key molecules, nitric oxide (NO) and hydrogen peroxide
(H2O2). These molecules can exert signaling functions by
means of post-translational modifications that affect the
functionality of target molecules like proteins, peptides
or fatty acids. This review provides an overview of the
endogenous metabolism of ROS and RNS in peroxisomes
with special emphasis on polyamine and uric acid
metabolism as well as the possibility that these
organelles could be a source of signal molecules involved
in the functional interconnection with other subcellular
compartments.
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INTRODUCTION

Plant peroxisomes are organelles with a single
membrane and a spherical or oval morphology, and
behind their simple appearance peroxisomes are
highly dynamic compartments involved in different
important physiological functions (Baker and Paudyal
2014; Corpas 2015a; Goto-Yamada et al. 2015; Oikawa
et al. 2015; del R�ıo and L�opez-Huertas 2016). A typical
property of peroxisomes is their metabolic plasticity,
since their enzymatic content can change depending
on the organism, cell- and tissue-type, and environ-
mental conditions (Desai and Hu 2008; Hu et al. 2012;
del R�ıo 2013). However, in all cases peroxisomes have
been shown to have a basal metabolism of reactive

oxygen species (ROS) and reactive nitrogen species
(RNS) which points out that this nitro-oxidative activity
could be an important function of peroxisomes (Corpas
2015b; Corpas et al. 2017). At the same time, this
metabolic flexibility put the peroxisomes at the
crossroad of different metabolic pathways, allowing
the interrelationship of peroxisomes with other subcel-
lular compartments, including oil bodies, plastids or
mitochondria (Sunil et al. 2013; Sewelam et al. 2014;
Demarquoy and Le Borgne 2015; van Wijk 2015; Palma
et al. 2015; Kmiecik et al. 2016; Noctor and Foyer 2016).
All these subcellular compartments are involved inmany
physiological processes, ranging from seed and pollen
germination (Li et al. 2014), nitrogen metabolism, fatty
acidb-oxidation, photorespiration, stomatalmovement,
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senescence, fruit ripening, response to abiotic stresses
(Smertenko 2017), to interactions among beneficial
(Borucki 2007) and pathogenic micro-organisms (Kubo
2013; Sørhagen et al. 2013: Roos et al. 2014; Zhong et al.
2016) (Figure 1). In fact, there are data suggesting that
some ROS/RNS could function as retrograde signals
(Fransen and Lismont 2018; Su et al. 2018).

The peroxisomal enzymatic machinery of plants also

participates in the biosynthesis of key regulatory

molecules such as jasmonic acid (JA) or the auxin

indole-3-acetic acid (IAA) (Gfeller et al. 2010; Le�on 2013;

Spiess and Zolman 2013). This allows the interconnec-

tion of peroxisomes with other subcellular compart-

ments because the JA precursor 12-oxophytodienoic

acid (OPDA) is generated in the chloroplasts and then

transported to the peroxisomes, where through several

rounds of b-oxidation, JA is synthesized. It should be

highlighted that NO can stimulate JA production by

inducing the expression of the OPR3 gene which codes

for the peroxisomal oxophytodienoate reductase 3

(Mur et al. 2013). On the other hand, the auxin precursor

indole-3-butyric acid (IBA) is converted into IAA through

a battery of b-oxidation enzymes including the

predicted short-chain dehydrogenase/reductase in-

dole-3-butyric acid response1 (IBR1), the acyl–CoA

dehydrogenase/oxidase-like IBR3 (https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC3098716/ � bib70), the

predicted enoyl–CoA hydratase IBR10, enoyl–CoA

hydratase 2 (ECH2) and the 3-ketoacyl–CoA thiolase

encoded by PED1 (Strader et al. 2010; Strader and Bartel

2011). These pathways are also an important source of

H2O2 and some enzymes involved in the generation of

this important metabolite are modulated by NO (Huang

et al. 2004; Mur et al. 2013) which supports

the existence of interconnection networks among

these phytohormones, H2O2, NO and peroxisomes.

On the other hand, the photorespiratory pathway is

an important source of H2O2 and this implies the

coordination among peroxisomes and other organelles,

like chloroplasts and mitochondria. Moreover, it is

known that the activity of some peroxisomal enzymes is

regulated by NO, like the H2O2-producing glycolate

oxidase and the hydroxypyruvate reductase (HPR1),

which are inhibited by S-nitrosation and nitration,

respectively (Corpas et al. 2017).
During the last 20 years biochemical, cellular,

proteomic, in silico and reverse genetic approaches,
among others, have extended our knowledge about the
complexity of plant peroxisomes. The identification of
new components threw more light on the physiological
functions of peroxisomes present in different plant
tissues (leaves, seeds, roots, fruits) of diverse plant

2 Corpas et al.

Figure 1. Overview of the implication of peroxisomal reactive nitrogen species (RNS) / reactive oxygen species
(ROS) metabolism in physiological and stress processes in higher plants
Nitric oxide and H2O2 are generated in numerous physiological processes as signal molecules or as simple
by-products of different pathways, such as b-oxidation or photorespiration. Under stress conditions, both nitric
oxide (NO) and H2O2 can be overproduced and they can causemolecular damages (oxidation and/or nitration) or be
involved in defense against pathogens.
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species at different stages of development (Corpas
et al. 1999; McCartney et al. 2005; Reumann et al. 2007,
2009, 2016; Eubel et al. 2008; Lingner et al. 2011; Bussell
et al. 2013;Meng et al. 2014; Oikawa et al. 2015; Shai et al.
2016; Palma et al. 2009, 2018; Pan and Hu 2018; Pan
et al. 2018). There are excellent reviews on the
biogenesis and function of plant peroxisomes
(Igamberdiev and Lea 2002; Mullen and Trelease
2006; Hu et al. 2012; Goto-Yamada et al. 2015; Cross
et al. 2016; Kao et al. 2018). However, there are newdata
that extend our knowledge about peroxisomes. It is
known that proteins with no peroxisomal targeting
signals can “piggyback” into peroxisomes by interact-
ing with peroxisomal targeting signal (PTS)-containing
proteins (Kataya et al. 2015). It has been demonstrated
that the peanut clump virus (PCV)-encoded P15 can be
targeted into peroxisomes where it is deactivated
(Incarbone et al. 2017, 2018) suggesting a new
peroxisomal function for P15 as a regulator of the virus
cycle. It has been found that the 33 kDa auxiliary
replicase protein (p33) of cucumber necrosis virus
(CNV), which is targeted into peroxisomes, induces
necrosis because it alters the peroxisomal H2O2

scavenging function (Rochon et al. 2014). In another
case, it has been reported that protein denominated
TGBp1 (triple gene block protein 1) from the pepino
mosaic virus can interact with catalase to increase its
activity and trigger virus accumulation (Mathioudakis
et al. 2013). Moreover, the peroxisomal import system
has started to be used as a strategy model to generate
designed peroxisomes with a protein composition on
demand (Cross et al. 2017).

Our knowledge on the metabolism of ROS and more
recently RNS in plant peroxisomes has also been
significantly augmented. In previous works, we have
described the main enzymatic and non-enzymatic
components implicated in the generation of ROS and
RNS in plant peroxisomes, and how these species can
be controlled under physiological and stress conditions
(del R�ıo 2015; Corpas et al. 2017). In the present review
some peroxisomal pathways which affect other subcel-
lular compartments are highlighted with special em-
phasis on the function of two key molecules, NO and
H2O2. Research in forthcoming years will very likely
reveal more functions for plant peroxisomes associated
with these important signaling molecules (Koffler et al.
2014; Tripathi and Walker 2016; Mignolet-Spruyt et al.
2016; Singh et al. 2017).

NITRIC OXIDE (NO) IS A KEY PIECE IN THE
PUZZLE OF THE PEROXISOMAL
METABOLISM

Our knowledge on the sources and functions of
NO in plant metabolism has experienced significant
advances in recent years (Astier et al. 2018; Begara-
Morales et al. 2018), although there are still important
and significant gaps. We still await the unequivocal
identification of the enzymatic source of NO generation
in different subcellular compartments, like chloroplasts,
mitochondria and peroxisomes, among others
(Jeandroz et al. 2016; Chamizo-Ampudia et al. 2017).

Plant peroxisomes were the first cell organelles
where a L-arginine-dependent NO synthase activity
(NOS-like activity) was identified. This activity had
similar biochemical requirements to animal NOS
isozymes, with nicotinamide adenine dinucleotide
phosphate (NADPH), flavin adenine dinucleotide
(FAD), flavin mononucleotide (FMN), calcium and
calmodulin as cofactors (Barroso et al. 1999; Corpas
et al. 2004). Some years later the presence of an
inducible NOS activity in animal peroxisomes was also
discovered (Stolz et al. 2002). By complementary
technological approaches it was possible to advance
in the characterization of this peroxisomal NOS-like
activity as well as the detection of NO in peroxisomes by
three different methods: (i) electron paramagnetic
resonance (EPR) spectroscopy with the spin trap
Fe(MGD)2; (ii) ozone chemiluminiscence; and (iii)
fluorometric analysis with 4,5-diaminofluorescein diac-
etate which allowed corroboration of the presence of
NO in peroxisomes (Corpas et al. 2009, 2004) (Figure 2).
Additionally, further reports have shed light on the
peroxisomal protein responsible for the NO generation.
The import of this NOS-like protein into peroxisomes is
dependent on peroxins PEX12 and PEX13 (Corpas et al.
2009) and it seems to have a PTS type 2 (PTS2) (Corpas
and Barroso 2014), like that of peroxisomal NOS from
animal origins (Loughran et al. 2013). More recently, it
has been corroborated that the NO generation in
peroxisomes is strictly dependent on calmodulin and
calcium (Corpas and Barroso 2018). All these data have
allowed us to get a more complete picture of the puzzle
that represents the peroxisomal NO in plants.

Further research has emphasized the relevance of
NO in peroxisomal metabolism with the discovery
that different key peroxisomal enzymes, like catalase,
hydroxypyruvate reductase and glycolate oxidase,
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can undergo post-translational modifications (PTMs)
mediatedbyNO, suchas S-nitrosylation (orS-nitrosation)
and/or nitration (Corpas et al. 2017).

CATALASE IS THE MAIN PEROXISOMAL
H2O2-SCAVENGING ENZYME WHICH IS A
TARGET OF NO

Catalase (EC 1.11.1.6.) is recognized as one of the most
important antioxidant enzymes, that catalyzes the
decomposition of H2O2 to water and oxygen and is

predominantly localized in peroxisomes. Consequently,
it is considered as a reliable marker enzyme of these
organelles in both animal and plant cells. In higher
plants, catalase is encoded by a multigene family
and the number of catalase isozymes could change
depending on the plant species, organ, developmental
stage or environmental conditions (Ni et al. 1990;
Frugoli et al. 1996, 1998; McClung 1997; Polidoros and
Scandalios 1997; Hite et al. 1999; Corpas et al. 1999;
Talarczyk et al. 2002; Mhamdi et al. 2012). Catalase is
usually a homotetrametic protein with subunits of
around 55 kDa and it has been demonstrated that it is
regulated at post-transcriptional and post-translational
levels (Schmidt et al. 2002, 2006).

The identification of the presence of NO in plant

peroxisomes (Corpas et al. 2004, 2009) plus some

additional evidence from in vitro and proteomic

analyses has shown that catalase activity can be

modulated by NO. The main modifications mediated

by NO, including S-nitrosation or S-nitrosylation (addi-

tion of NO to the thiol groups of Cys residues) and

nitration (addition of �NO2 groups mainly to Tyr

residues) provoke the inhibition of catalase activity

(Clark et al. 2000; Chaki et al. 2015; Corpas et al. 2017).

This indicates that NO may indirectly regulate the level

of peroxisomal H2O2.

PEROXISOMAL AMINE OXIDASE (AO)
AND POLYAMINE OXIDASE (PAO):
SOURCES OF H2O2

The most relevant polyamines (PAs) in plant cells are

putrescine (Put), spermidine (Spd) and spermine (Spm).

They are involved in cell division, organ development,

leaf senescence, abiotic stresses, fruit development and

ripening (Tiburcio et al. 2014). PAs are synthesized

from arginine and ornithine by arginine decarboxylase

(ADC) and ornithine decarboxylase (ODC) but some

peroxisomal enzymes have also been identified to

be involved in PAs catabolism as well as its back-

conversion. These enzymes are copper-containing

amine oxidases (CuAOs) and FAD-dependent polyamine

oxidases (PAOs), both generators of H2O2 as a product

of their catalytic activity (Figure 3). There are different

isozymes present in several cellular localizations

including cytoplasm, apoplast and peroxisomes. Table

1 summarizes the identified isozymes of PAOs and

Figure 2. Detection of nitric oxide (NO) in peroxisomes
by electron paramagnetic resonance (EPR) spectros-
copy and confocal laser scanning microscopy (CLSM)
(A) EPR spectra of the NO-spin adduct of the Fe(MGD)2
complex in different samples (purified neuronal NOS
as control, pea leaf extracts and purified pea leaf
peroxisomes). Reproduced with permission from
Corpas et al. (2004) Plant Physiol 136: 2722–2733.
Copyright American Society of Plant Biologists.
(B) Images illustrating CLSM in vivo detection of
peroxisomes (red) (left panel) and nitric oxide (green)
(right panel) in guard cells of transgenic Arabidopsis
seedlings expressing CFP-PTS1. Reproduced with per-
mission from Corpas et al. (2017) Redox Biol 11: 535-542.
Copyright Springer.
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CuAOs in Arabidopsis thaliana whose presence in

peroxisomes has been experimentally confirmed

(Takahashi et al. 2010; Planas-Portell et al. 2013;

Kusano et al. 2015).
The existence of PAO in animal peroxisomes has

been known for many years (Schrader and Fahimi 2004)
but in plant peroxisomes its presence and potential

function have been more recently reported (Moschou
et al. 2008). In plants, PAOs are not only involved in the
terminal catabolism of polyamines but they can also
catalyze the polyamine back-conversion pathway.
Among the five PAO genes present in Arabidopsis
(AtPAO1-AtPAO5), the gene that encodes AtPAO3
contains the tripeptide (SRM) at the C terminus which

Figure 3. Peroxisomal polyamine (PA) metabolism in Arabidopsis thaliana
In peroxisomes there are some isoenzymes of polyamine oxidase (PAO) and copper-dependent amino oxidase
(CuAO) which are involved in PA catabolism as well as its back-conversion. In this pathway the signaling molecule
g-aminobutyric acid (GABA) can be generated, and in all steps H2O2 is produced. 3AP, 3-aminopropanal;
AtALDH10A9, peroxisomal aldehyde dehydrogenase; 4-AB, 4-aminobutanal; 1,3-DP, 1,3-diaminopropane.

Table 1. Hydrogen peroxide-generating peroxisomal isoenzymes of copper-containing amine oxidases (CuAOs)
and FAD-dependent polyamine oxidases (PAOs) identified in Arabidopsis thaliana

Enzymes Gene locus PTS1 Substrate /mode of reaction
Location or conditions
of gene expression

AtCuAO2 At1g31710 Without PTS1 Put, Spd/ Terminal catabolism MeJA, Wounding
AtCuAO3 At2g42490 SKL Put, Spd/ Terminal catabolism ABA, SA, flagelin, MeJA
AtPAO2 At2g43020 SRL Spd, Spm/ Terminal catabolism

and Back-conversion pathway
Roots (Quiescent center,
Columella), pollen

AtPAO3 At3g59050 SRM Spd, Spm/ Terminal catabolism
and Back-conversion pathway

Guard cells, pollen

AtPAO4 At1g65840 SRM Spm/ Terminal catabolism and
Back-conversion pathway

Roots and flowers

PTS1, peroxisomal targeting signal 1; Put, putrescine; Spm, spermine; Spd, spermidine.
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is a peroxisomal targeting signal type I (PTS1) and its
presence in peroxisomes has been experimentally
demonstrated (Moschou et al. 2008). AtPAO3 catalyzes
the sequential conversion/oxidation of Spm to Spd, and
Spd to Put, and JA, salicylic acid, wounding and flagellin
strongly induce the AtPAO3 expression. This suggests a
role for the peroxisomal H2O2-producing AtPAO3 in
stress defense responses (Moschou et al. 2008).
Moreover, the peroxisomal AtPAO3 is critical for the
elongation of pollen tube by modulating a plasma
membrane H2O2-dependent Ca2þ-influx channel (Wu
et al. 2010), a process where peroxisomal NO is also
involved (Prado et al. 2004). Even more, it has been
reported that the Arabidopsis mutant of peroxisomal
Atpao3 had an enhanced superoxide (O2

� �) production
by a NADPH-oxidase with a concomitant activation of
the mitochondrial alternative oxidase pathway affect-
ing the electron transfer chain (Andronis et al. 2014).
This suggests that the peroxisomal AtPAO3 is involved
in the cellular ROS homeostasis affecting both peroxi-
somal and mitochondrial metabolism (Andronis et al.
2014). Complementary data have also shown the
peroxisomal localization of AtPAO2 and AtPAO4, the
latter being involved in polyamine catabolism in root
peroxisomes (Andronis et al. 2014). Gene expression
analyses also connected AtPAO4 with the response to
drought stress and flavonoid biosynthesis (Kamada-
Nobusada et al. 2008). Similarly, rice (Oryza sativa)
genome also contains genes of seven OsPAO isoforms
that are termed OsPAO1–OsPAO7, and the proteins
OsPAO3, OsPAO4, and OsPAO5 are localized in
peroxisomes (Ono et al. 2012). In tomato (Solanum
lycopersicum) there are also seven PAO genes (SlPAO1–
SlPAO7), and isoforms SlPAO2, SlPAO3, SlPAO4 and
SlPAO5 each contain a C-terminal PTS1, SRM, suggesting
their peroxisomal localization (Hao et al. 2018). Gene
expression analyses showed that SlPAO2, SlPAO3,
SlPAO4 and SlPAO5 are specially induced under low
temperature (4 °C) and heat, but SlPAO4 is also over-
expressed under drought stress (Hao et al. 2018).

The Arabidopsis peroxisomal localized CuAO2 and
CuAO3 are also sources of H2O2 (Table 1). Considering
that the polyamine back-conversion pathway (Spm to
Put) takes place in peroxisomes, one of the physiologi-
cal functions of both peroxisomal CuAOs should be to
avoid the accumulation of Put which seems to inhibit
the PAs back-conversion pathway (Planas-Portell et al.
2013). Nevertheless, these two CuAOs catalyze the

conversion of Put to 4-aminobutanal (4-AB) which is
then transformed into g-aminobutyric acid (GABA) by
an aldehyde dehydrogenase (ALDH) (Figure 3). These
reactions connect peroxisomes with the accumulation
of this non-proteinogenic amino acid which is usually

accumulated as a mechanism of response to biotic and

abiotic stresses (Ramesh et al. 2015). In Arabidopsis ten

ALDHs have been identified, and AtALDH10A9 has been

demonstrated to be present in peroxisomes (Zarei et al.

2016) which again evidences the relationship of

peroxisomes with signaling molecules, such as GABA,

and the response to stress conditions (Shelp and Zarei

2017). Moreover, Arabidopsis thaliana contains another

peroxisomal copper amine oxidase z (CuAOz) and the

H2O2 generated by this enzyme is essential for lateral

root development since it affects the auxin distribution

in the plant tissue (Qu et al. 2017).

In recent years it has been reported that polyamine

catabolism induces the synthesis of NO in different

plant organs (Tun et al. 2006; Wimalasekera et al. 2011a;

Yang et al. 2014; Diao et al. 2016; Agurla et al. 2018). In

the catabolism of polyamines, polyamine oxidases and

Cu-containing amine oxidases are involved, and in

Arabidopsis thaliana isoform CuAO1 contributes to

polyamine-induced NO biosynthesis, although the

mechanism of this process is unknown (Wimalasekera

et al. 2011b). The presence of PAOs and CuAOs in plant

peroxisomes has suggested that these enzymes

perhaps could be additional sources of NO generation

in peroxisomes (Kaur et al. 2013), although this still has

to be demonstrated.

PEROXISOMAL URIC ACID METABOLISM
WITH DUAL FUNCTIONS: GENERATION
OF ROS AND PEROXYNITRITE
SCAVENGING

Purines are part of nitrogen metabolism and include
molecules such as adenine, guanine, hypoxanthine,
xanthine and uric acid, among others. The purine
pathway allows the recycling of the end products
(glyoxylate and ammonia) to synthesize new organic
compounds necessary to plant growth (Theimer and
Beevers 1971; Nguyen 1980; Werner and Witte 2011;
Hafez et al. 2017). Moreover, purine metabolism has
also been associated with the mechanism of response
to environmental stresses such as drought tolerance

6 Corpas et al.
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(Stasolla et al. 2003; Watanabe et al. 2010; Irani and
Todd 2016). The pathway is compartmentalized among
cytosol, peroxisomes and endoplasmic reticulum but
some of the key enzymes, such as the ROS-generating
xanthine oxidoreductase and urate oxidase, as well as
the metabolites xanthine, uric acid and allantoin, have
been demonstrated to be present in peroxisomes
(Corpas et al. 1997) (Figure 4).

Xanthine oxidoreductase (XOR) converts xanthine
into uric acid. This enzyme is an FAD-, molybdenum-,
iron- and sulfur-containing hydroxylase enzyme which
exists in two inter-convertible forms. They are desig-
nated as NAD-dependent xanthine dehydrogenase
(XDH) and oxygen-dependent xanthine oxidase

(XOD). Consequently, in this reaction either NADH or
superoxide radicals (O2

� �) could be generated. It was
first believed that XDH, the non-producer of O2

� �, was
the only form present in plant cells and was exclusively
localized in the cytosol. However, further experimental
evidence showed that this enzyme was present in
peroxisomes of several plant species such as water-
melon cotyledons (Sandalio et al. 1988), pea leaves (del
R�ıo et al. 1989; Corpas et al. 2008) and pepper fruits
(Mateos et al. 2003), and had the capacity of generating
O2

� � radicals (Sandalio et al. 1988; Yesbergenova et al.
2005; Corpas et al. 2008; Zarepour et al. 2010; Ma et al.
2016), being associated with a defense function.

Mammalian xanthine oxidase (XOD) is a complex
enzymewhich is regulated by NO and peroxynitrite (Lee
et al. 2000). However, it is important to remark that in
animal cells and under anaerobic conditions, this
enzyme can catalyze nitrite reduction with the concom-
itant generation of NO (Li et al. 2003, 2005), but this
reaction has been erroneously extended to NO
metabolism in plant peroxisomes. To our knowledge,
in plant cells there are no experimental data that
support the existence of this reaction, and particularly
in peroxisomes that are characterized by an intense
oxidative metabolism.

Urate oxidase (UO, EC 1.7.3.3), also called uricase, is a
copper-containing enzyme that catalyzes the oxidation
of uric acid to allantoin and H2O2 (Figure 4). This enzyme
has been purified and characterized in different plant
species (Tajima et al. 1991; Montalbini et al. 1997, 1999).
The presence of urate oxidase in plant peroxisomes has
been known for many years (Parish 1971; Theimer and
Beevers 1971), and in peroxisomes isolated from pea
leaves the content of xanthine, uric acid and allantoin
has also been determined by high-performance liquid
chromatography (Corpas et al. 1997). The relevance of
this enzyme has been demonstrated in an Arabidopsis
urate oxidase (uox) mutant which lacked the capacity of
seedling establishment due to the accumulation of uric
acid in all the plant tissues (Hauck et al. 2014).

However, urate is recognized to be an effective
peroxynitrite (ONOO-) scavenger in animals and plants
(Alamillo and Garc�ıa-Olmedo 2001; Koch and De Keyser
2006; Signorelli et al. 2016). It is noteworthy that
ONOO-, which is the product of the reaction between
NO and O2

� �, has been proposed to regulate the
conversion of XDH into the superoxide-generating form
XOD (Sakuma et al. 1997). In addition, ONOO- also

Figure 4. Interrelationship between uric acid metabo-
lism and reactive oxygen species (ROS) and reactive
nitrogen species (RNS) produced in plant peroxisomes
Xanthine oxidoreductase (XOR) activity generates uric
acid with the concomitant generation of superoxide
radical (O2

� �). Then urate oxidase (UO) activity
produces allantoin and H2O2

, which is decomposed by
catalase. On the other hand, the larginine-dependent
NOS-like activity generates nitric oxide (NO) that can
react with superoxide (O2

� �) to generate peroxynitrite
(ONOO-) which is a powerful oxidant that can mediate
post-translational modifications (such as tyrosine nitra-
tion) in some enzymes like catalase with inhibition of its
activity. At the same time, uric acid has a recognized
capacity to scavenge ONOO- and consequently allows
prevention of its nitrating effects.

Peroxisomal NO and H2O2 metabolism 7
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mediates the process of protein tyrosine nitration
(Bartesaghi and Radi 2018). The presence of ONOO- in
peroxisomes has also been demonstrated (Corpas and
Barroso 2014). Furthermore, some peroxisomal en-
zymes, including catalase, hydroxypyruvate reductase
and monodehydroascorbate reductase (MDAR) have
been shown to undergo post-translational modifica-
tions (PTMs) mediated by ONOO- that inhibit their
activity (Corpas et al. 2017).

Accordingly, this purine pathway is necessary to
generate superoxide radicals and consequently ONOO-

which could inhibit catalase activity and provoke H2O2

accumulation, but at the same time it also generates
uratewhich is an additional mechanism of control of the
ONOO- level in peroxisomes (Figure 4). Thus, the
equilibrium between these molecules could be very
relevant under stress conditions.

PEXOPHAGY AND ROS

Etymologically “phagy” is the process of “eating” and in
the cell context is referred to as amechanism to remove
specific damaged components, from macromolecules
to subcellular compartments. Consequently, the term
pexophagy refers to a major pathway that removes
damaged peroxisomes. This process seems to be
especially important when peroxisomes undergo meta-
bolic transitions, like for example glyoxysomes to leaf
peroxisomes (Avin-Wittenberg and Fernie 2014; Kim
et al. 2014; Lee et al. 2014; Fahy et al. 2017). In this sense,
experimental data support the involvement of ROS
metabolism in the mechanism of pexophagy since
Arabidopsis peroxisomes with highly oxidized proteins
are selectively degraded via autophagy (Shibata et al.
2013, 2014; Young and Bartel 2016). Very recently, using
the animal cell line HepG2 as a model where catalase
was inhibited by small interfering (si)RNA with the
consequent accumulation of H2O2, the induction of
pexophagy was observed (Lee et al. 2018). All these
data suggest that the status of ROS metabolism could
be a sensor of peroxisomal homeostasis which could
serve as a regulator of pexophagy.

To our knowledge there is no information on the
specific involvement of NO in pexophagy. However,
recent data indicate that NO canmediate the autophagy
of certain proteins. Thus, in the enzyme S-nitrosoglu-
tathione reductase (GSNOR), which regulates the level
of S-nitrosoglutathione (GSNO), it has been found that

S-nitrosylation inhibits its activity (Guerra et al. 2016).
And in Arabidopsis plants under stress by hypoxia, this
NO-mediated PTM triggered the specific degradation of
GSNOR via autophagy (Zhan et al. 2018). Considering
the active NO metabolism existing in peroxisomes, it
seems plausible that some peroxisomal enzymes, such
as catalase or hydroxypyruvate reductase, that undergo
NO-derived PTMs (Corpas et al. 2017) could also reveal a
similar process, particularly under stress conditions.

PERSPECTIVES

Plant peroxisomes have a very active nitro-oxidative
metabolismwhereNOandH2O2 have a relevant function
under physiological and stress conditions. Some compo-
nents of the pathways mentioned in this work, such as
polyamines or purinesmetabolism, have been known for
a long time but the presence in plant peroxisomes of NO
and other enzymatic components has raised new
questions about the mechanisms of regulation of these
pathways by new post-translational modifications, like S-
nitrosylation (or S-nitrosation) and nitration. All these
data point out the complexity of plant peroxisomal
metabolismwhich seems to bemuchmore intricate than
expected, as well as new functions for peroxisomes in
the connectionwith different subcellular compartments.
In this sense, very recent data obtained in our laboratory
indicated that plant peroxisomes also contain the
gasotransmitter hydrogen sulfide (H2S) which is a
catalase inhibitor (Corpas et al. 2019 ), and raised new
questions on the potential physiological function of
H2S in the metabolism of plant peroxisomes.
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