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Abstract

The study of phenomes or phenomics has been a central part of biology. The �eld of automatic phenotype acquisition

technologies based on images has seen an important advance in the last years. As with other high-throughput

technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an

overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major

issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion.
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Background

The development of systems to monitor large �elds using the

Normalized Difference Vegetation Index (NDVI) started more

than 25 years ago when NDVI was used in the so-called remote

sensing �eld [1]. It was an important milestone in the advance

of automatic methods for analysing plant growth and biomass

[2]. Ever since, new technologies have increased our capacity

to obtain data from biological systems. The ability to measure

chlorophyll status from satellite images allowed plant health to

be measured in large �elds and predict crops and productivity

in very large areas such as the Canadian prairies, Burkina Faso,

or the Indian Basin in Pakistan [3–6]. Thus, the �eld of remote

sensing is an important basis where knowledge about data ac-

quisition and analysis started. The development of phenotyping

devices using local cameras for crops took off using an array of

technologies including Infrared thermography tomeasure stom-

atal opening or osmotic stress [7–9]. Extraction of quantitative

data from images has been developed to study root development

[10–12] and has found a niche to identify germplasm resistant to

abiotic stresses in plants such as cereals [13], Arabidopsis [14],

and large-scale �eld phenotyping [15]. There are several recent

reviews addressing the different types of growing setups [16–22],

and we will not cover them in the current review.

Two main aspects to consider are the type of image acquired

and how to process it. There are a number of recent reviews

on phenomics and high-throughput image data acquisition

[15, 23–26]. In contrast, the majority of the literature concerning

image processing and analysis is found in books where meth-

ods are described in detail [27–31]. There are some very good

reviews on aspects of data acquisition and analysis, i.e., imag-

ing techniques [32], machine learning (ML) for high-throughput

phenotyping [33], or software for image analysis [34], but a de-

tailed review on the different types of data analysis is lacking.

In this review, we cover the current and emerging methods of

image acquisition and processing that allow image-based phe-

nomics (Fig. 1).
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Figure 1: Basic work�ow in computer vision–based plant phenotyping.

Review

Image acquisition

Image acquisition is the process through which we obtain a dig-

ital representation of a scene. This representation is known as

an image, and its elements are called pixels (picture elements).

The electronic device used to capture a scene is known as an

imaging sensor. A charge-coupled device (CCD) and complemen-

tary metal oxide semiconductor (CMOS) are the most broadly

used technologies in image sensors. A light wavelength is cap-

tured by small analogic sensors, which will acquire major or mi-

nor charge depending on the amount of incident light. These

signals are ampli�ed, �ltered, transported, and enhanced by

means of speci�c hardware. A suitable output interface and a

lens in the same housing are all that is needed to perform image

acquisition. The elements enumerated above comprise the

main element of computer vision systems, the camera. Time

delay and integration (TDI) is an imaging acquisition mode

that can be implemented over CCD [35] or CMOS [36]. It im-

proves the features of the image acquisition system consid-

erably. TDI is used in applications that require the ability to

operate in extreme lighting conditions, requiring both high

speed and high sensitivity, e.g., inline monitoring, inspec-

tion, sorting, and remote sensing (for weather or vegetation

observation) [36].

The aforementioned technologies, CCD, CMOS, and TDI, con-

fer unique characteristics, which de�ne the type of data a cam-

era can provide with a degree of robustness. There are fun-

damental differences in the types of performance the differ-

ent sensors offer. In recent years, CMOS technology has outper-

formed CCDs in most visible imaging applications. When se-

lecting an imaging sensor (a camera), CCD technology causes

less noise and produces higher-quality images, mainly in scenes

with bad illumination. It has a better depth of colour due to the

higher dynamic range. On the other hand, the CMOS sensors are

faster at processing images. Due to the hardware architecture

for pixel extraction, they need less electrical power to operate,

they allow a region of interest to be processed on the device, and

they are cheaper than CCDs. Furthermore, TDI mode with CCD

or CMOS imaging sensors is used for high-speed and low–light

level applications [37]. The latest technological developments in

cameras show that the trend of themanufacturers such as IMEC,

world-leader in nanoelectronics, is to fuse TDI technology with

CCD and CMOS characteristics in the same device [38]. TDI tech-

nology is expected to be applied to high-throughput phenotyp-

ing processes in the near future.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/6
/1

1
/g

ix
0
9
2
/4

3
1
6
9
6
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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Table 1: List of software tools for image processing

Vision libraries Source Language

OpenCV http://opencv.org C++,

Python,

Java, C#

EmguCV http://www.emgu.com/

PlantCV http://plantcv.danforthcenter.org Python

Scikit-image http://scikit-image.org

Bioimagetools,

bayesimages, edci,

DRIP, dpmixsim,

raster, . . .

https://cran.r-project.org/ R

Cimg http://cimg.eu C++

Simplecv http://simplecv.org

Fastcv https://developer.qualcomm.com/

software/fastcv-sdk

Ccv http://libccv.org

Vxl http://vxl.sourceforge.net

BoofCV http://boofcv.org Java

OpenIMAJ http://openimaj.org

JavaCV https://github.com/bytedeco/

javacv

The �eld of image acquisition is extremely developed in the

literature, but image acquisition systems can be classi�ed into 7

groups that are suitable for phenotyping.

Mono-RGB vision

Mono-RGB vision systems are composed of a set comprising a

lens, imaging sensor, speci�c hardware, and input/output (IO)

interface. Depending on if they use a line or matrix of pixels,

they are classi�ed as line cameras (or scanners) or matrix cam-

eras. Most computer vision phenotyping devices are based on

mono-RGB vision systems. Examples of mono-RGB vision de-

vices include Smart tools for the Prediction and Improvement of

Crop Yield, an automated phenotyping prototype of large pep-

per plants in the greenhouse. The system uses multiple RGB

cameras to extract 2 types of features: features from a 3D recon-

struction of the plant canopy and statistical features derived di-

rectly from RGB images [39]. A different approach has been used

with 2 cameras inside a growth chamber to measure circadian

growth features of Petunia, Antirrhinum, and Opuntia [40]. Two

cameras with low and high magni�cations were used to carry

out phenotype studies of Arabidopsis thaliana seeds. The system

is mounted on a 3-axis gantry, and the rotation of the samples

allows the gravitropic bending response to be determined in the

roots, as well as its posterior quanti�cation [41]. Recently a high-

throughput RGB system has been developed to identify quanti-

tative trait loci (QTL) involved in yield in large recombinant in-

bred lines in maize [42], demonstrating the increasing impact of

this approach in phenomics.

These devices have excellent spatial and temporal resolu-

tion; i.e., they can produce a very large number of images in

very short periods and at a very low cost. They are portable,

and there are many software tools to perform image processing

(Table 1). Systems based onmono-RGB vision allow a quanti�ca-

tion of the plant canopy [43], as well as suf�cient computation of

vegetation indices for most purposes. The main disadvantages

are caused by the overlap of plant organs during growth and nu-

tation phases and the relative position of the organswith respect

to the device that makes the precise quanti�cation dif�cult. In

addition, these devices are affected by variations in illumination

when used outdoors. The trend in outdoor plant phenotyping

is to combine mono-RGB systems with other systems such as

light detection and ranging (LIDAR) devices (see below) or ther-

mal imaging, or adding new bands or �lters to the camera that

allow the segmenting of speci�c regions of the spectrum [44, 45].

Stereo vision

Stereo vision systems try to correct a drawback of mono-RGB

vision systems for distance measurement. The architecture of

stereo vision systems emulates the behaviour of human vision

using 2mono vision systems. Basically, after locating a point in 2

mono vision systems, it is possible to compute the distance from

the point to the system. Images produced are known as depth

maps [46]. A stereo vision system has been used by Biskup and

colleagues [47] to obtain structural features of plant canopies.

The 3D reconstruction has been successfully employed to obtain

3D models of plants, thus demonstrating the power of this ap-

proach [48]. Simple depth reconstructions help to de�ne stems,

leaves, and grapes, showing the potential of this technology [49].

An RGB camera mounted on a mobile robot is used as an auto-

mated 3D phenotyping of vineyards under �eld conditions. Se-

quentially, the system captures a set of images, which are used

to reconstruct a textured 3D point cloud of the whole grapevine

row [50]. Stereo vision has been developed to perform high-

throughput analysis of rapeseed leaf traits. The system uses 2

identical RGB cameras to obtain stereo images for canopy and

3D reconstruction [51]. Developing a 3D-mesh segmentation has

allowed cotton growth to be analysed [52], showing the further

possibilities of 3D imaging.

Themain advantage of 3D systems is their simplicity; 2 cam-

eras are enough to obtain depthmaps. Stereo vision has evolved

intomulti-view stereo (MSV) and has found a place in plant phe-

notyping [53]. Furthermore, MSV is a low-cost 3D image acquisi-

tion system compared with other technologies such as LIDAR or

tomography imaging [54]. Stereo vision systems have important

weaknesses. They are affected by changes of the scene illumi-

nation, they need a high-performance computational system to

carry out stereo-matching algorithms, and they have poor depth

resolution [55]. These limitations are increased in outdoor envi-

ronments, as image segmentation becomes more challenging.

Multi- and hyperspectral cameras

Multispectral and hyperspectral cameras have been used in nu-

merous �elds of science and in industrial applications [56–61].

The spectral resolution is the main factor that distinguishes

multispectral imagery from hyperspectral imagery [62]. Multi-

spectral cameras are devices able to capture images from a

number of discrete spectral bands. The number of bands has

increased in the last decade as technology has improved. Cur-

rently, themain cameramanufacturers offer multispectral cam-

eras acquiring between 3 and 25 bands, including visible RGB

channels, near infrared (NIR), or a set of custom bands, with a

tendency to provide increasing number of bands [63]. The spec-

tral bands may not be continuous; thus for 1 pixel we obtain a

vector of information comprising the number of elements cor-

responding to the number of bands registered. Hyperspectral

systems may reach resolutions of a few nanometers in wave-

length, obtaining for each pixel a digital signature that may

contain several hundreds of continuous bands within a speci�c

range of wavelengths [64]. Traditionally, both multispectral and

hyperspectral imaging have been used for remote sensing and

have an increased number of applications in phenomics. A mul-

tispectral system has been developed to improve the original

colour of images for fruit recognition [65]. The authors fused

the original colour image with an infrared image using nonlin-

ear Daubechies wavelet transform (DWT). Thus, the additional
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Figure 2: An overview of different spectra used for phenotyping and the associated cameras. The names of different indexes are found in Table 2.

information from the second image allows the original to be

improved.

The use of hyperspectral cameras is increasing in pheno-

typing experiments as they allow the identi�cation of physio-

logical responses, pathologies, or pests in a noninvasive way.

Using hyperspectral images, a system has been developed to

identify pathogens in barley leaves using probabilistic topic

models [66]. A hyperspectral microscope was used to deter-

mine spectral changes on the leaf and cellular level of barley

(Hordeum vulgare) during resistance reactions against powdery

mildew (Blumeria graminis f. sp. hordei, isolate K1) [67]. A detailed

description of the different wavelengths and combinations used

in multispectral and hyperspectral cameras can be seen in Fig.

2, and their uses in Table 2. We expect to see an increase in phe-

nomic setups using multispectral and hyperspectral cameras in

the future. An emerging issue will be the data analysis as the

number of pictures doubles with each additional spectrum used

for analysis (see below).

ToF cameras

The Time of Flight cameras (ToF cameras) have been one of the

last imaging devices to be incorporated into automatic plant

phenotyping [68]. ToF has as a general principle the measure-

ment of the distance between the objective of the camera and

each pixel. This is achieved by measuring the time it takes for a

signal emitted in NIR to come back, re�ected by the object. This

allows a precision 3D reconstruction. Stereo vision coupled with

ToF images has been implemented to increase the performance

of methods of image segmentation to obtain leaf areas [69].

Beyond the tedious hand work required for manual analysis,

sampling is done in a non-destructiveway. Depthmaps obtained

by a ToF camera, together with colour images, are used to carry

out the 3D modelling of leaves. The system is mounted on a

robotic arm, which allows image acquisition to be automated

[70]. A ToF has been successfully used to identify QTL regulating

shoot architectures of Sorghum by means of 3D reconstruction

[71].

Microsoft Kinect is a low-cost image acquisition system de-

signed for video gaming that can be used for characterization

and for tracking of phenological parameters [72]. The device is

composed of an infrared projector and a camera that generates

a grid fromwhich the location of a nearby object in 3D can be as-

certained [73]. Kinect has been used to measure plant structure

and size for 2 species growing in California grasslands [74]. The
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Table 2: A list of indexes, the corresponding wavelength ranges, and their use to analyse plant material

Index Range, nm Applications

CAI—Cellulose Absorption Index 2200–2000 Quanti�cation of mixed soil–plant litter scenes [178], estimation of

non-photosynthetic biomass [179]

LCA—Lignin-Cellulose Absorption

Index

2365–2145 Measure of the effects of soil composition and mineralogy of crop residue

cover [180]

NTDI—Normalized Difference

Tillage Index

2359–1150 Used for identifying crop residue cover in conventional and conservation

tillage systems [181]

LWVI-1 – Normalized Difference

Leaf water VI 2

1094–893 Discrimination of sugarcane varieties, allowed to detect large amounts of

non-photosynthetically active constituents within the canopy [182]

DLAI—Difference Leaf Area Index 1725–970 Used for estimating leaf area index based on the radiation measurements in

the visible and near-infrared [183]

PWI—Plant Water Index 970–902 Water content estimation and study of the characteristics of canopy

spectrum and growth status [184, 185]

NLI—Nonlinear Vegetation Index 1400–780 Measurement of plant leaf water content; in combination with others,

indexes can detect interaction of biochemicals such as protein, nitrogen,

lignin, cellulose, sugar, and starch [186]

DWSI—Disease Water Stress Index 1657–547 To predict larval mosquito presence in wetland [187] and detect sugarcane

“orange rust” disease [188]

NDVI—Normalized Difference

Vegetation Index

800–670 Measurement of signi�cant variations in photosynthetic activity and

growing season length at different latitudes [189]

MCARI—Modi�ed Chlorophyll

Absorption Ratio Index

700–670 Study of vegetation biophysical parameters, as well as external factors

affecting canopy re�ectance [190]

GI—Greenness Index 670–550 Characterization of corn nitrogen status [191]

CAR—Chlorophyll Absorption

Ratio

700–500 Estimating the concentration of individual photosynthetic pigments within

vegetation [192]

GNDVI—Green Normalized

Difference Vegetation Index

800–550 Providing important information for site-speci�c agricultural

decision-making [193] and for identi�cation of chlorophyll content and

tissue nitrogen [194]

OSAVI—Optimized Soil Adjusted

Vegetation Index

800–670 Measurement of highly sensitive chlorophyll content variations that are very

resistant to the variations of LAI and solar zenith angle [195]

CI r—Coloration Index red 780–710 Mapping of coastal dune and salt marsh ecosystems [196]

CI g—Coloration Index green 780–550 Characterization of the state of soil degradation by erosion [197]

quantitative 3D measurements of the architecture of the shoot

and structure of the leaves can be performed when proper seg-

mentation algorithms are developed, suggesting some potential

for ToF systems [75].

The main disadvantages of this acquisition system are the

low resolution, a reduced distance range of a few meters, and

the high dependence on the re�ecting surface for imaging. As

a result, it cannot operate under strong sunlight and is more

appropriate for indoor conditions. Its reduced cost and the

possibility of obtaining 3D structures of entire plants, as well as

of individual organs, make this system very attractive for indoor

phenotyping.

LIDAR technology

LIDAR is a remote sensing technology developed at the begin-

ning of the 70s to monitor the Earth’s surface [76]. LIDAR uses

a laser pulse light to measure the distance between the light

source and the object by calculating the time of emission and the

time of re�ected light detection. It allows the creation of a cloud

of points that reconstruct the 3D structure of an object [77, 78].

LIDAR has been used in image acquisition from distances of

thousands of kilometres to centimetres, demonstrating the

great potential of these types of devices. Satellite-based LIDAR

systems are used for the measurements of vegetation canopy

height, area, volume or biomass, etc. [79–81]. Recent develop-

ment using both manned and unmanned �ights has allowed

the estimation of biomass dynamics of a coniferous forest us-

ing Landsat satellite images, together with ground and airborne

LIDAR measurements [82]. Terrestrial LIDAR sensors are ap-

plied to detect and discriminate maize plants and weeds from

soil surface [83]. Short-range LIDAR can be deployed for high-

throughput phenotyping systems for cotton plant phenotyp-

ing in the �eld [84] or tomato leaf area by 3D laser recon-

struction [85]. Fully automated crop monitoring is feasible us-

ing centimetre ranges from robotized or gantry systems [43]. An

autonomous robotic system has allowed 3D mapping of plant

structures to be performed with millimetric precision [86]. A

LASER SCAN mounted on an XYZ gantry system was used to

estimate the growth measures and structural information of

plants through laser triangulation techniques [87]. Thus, using

different devices, LIDAR has an impressive range of possibilities

for plant phenomics.

Some shortcomings of LIDAR devices for plant phenotyping

are the absence of colour in the measurement, excessive time

to compute the cloud points, low precision for massive phe-

notyping, scanning noises caused by wind, rain, insects, and

small particles in the air, and the requirement of calibration.

Recent advantages suggest that the use of LIDAR technologies

could overcome some of the challenges for the next-generation

phenotyping technologies [88]. Developments in multispectral

LIDAR instruments show novel systems that are capable of

measuring multiple wavelengths and obtaining vegetation in-

dexes (see below) [89, 90] or measuring arboreal parameters [91].

The massive adoption of LASER technologies by autonomous

car manufactures has fostered the development of 3D high-

de�nition LIDAR (HDL) with real-time (RT) capacities. The new

3D HDLs are capable of generating 1.3 million points per second

with a precision of 2 cm and distances of up to 120 meters [92].

These new devices open the door to the RTmassive phenotyping

in outdoor and indoor crops.
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Thermography and �uorescence imaging

Thermography is a widely used technology in remote sensing

and plant phenotyping [93–96]. Thermographic cameras are able

to acquire images at wavelengths ranging from 300 to 14 000 nm

[97], thus allowing the conversion of the irradiated energy into

temperature values once the environmental temperature is as-

sessed. Plants open stomata in response to environmental cues

and circadian clock depending on the type of photosynthetic

metabolism they have [98, 99]. The evapotranspiration can be as-

sessedwith thermography [100], and quanti�cation can bemade

at different scales, such as a leaf, a tree, a �eld, or a complete

region. Water stress and irrigation management are 2 �elds of

application of thermography imaging [101–104]. Thermography

imaging can detect local changes of temperature produced due

to pathogen infection or defence mechanisms [105]. Oerke et al.

used a digital infrared thermography to correlate the maximum

temperature difference (MTD) of apple leaves with all stages of

scab development [106].

Fluorescence imaging has been used in a large number of ex-

perimental setups, as ultraviolet (UV) light in the range of 340–

360 nm is re�ected by different plant components as discrete

wavelengths [32]. The corresponding wavelengths emitted are

cinnamic acids in the range of green-blue (440–520 nm). Early

experiments using re�ected �uorescence allowed the identi�ca-

tion of phenylpropanoid synthesis mutants in Arabidopsis [107].

Chlorophyll �uorescence emits in red and far-red (690–740 nm).

It is an important parameter that has been studied as a proxy

for different biological processes such as circadian clock or plant

health [8, 108, 109]. A system based on a UV light lamp and a

conventional camera with a UV �lter to avoid RGB and infrared

(IR) images has been used to identify changes in UV absorbance

related to pollination [110]. Multicolour �uorescence detection

uses the combination of chlorophyll and secondary metabolite–

emitted �uorescence to determine plant health in leaf tissues

[111].

Thermography imaging results in an estimable tool for the

monitoring of genotypes and detection of plant diseases [112]

where all the specimens are located under strict control con-

ditions: Temperature, wind velocity, irradiance, leaf angle, and

canopy leaf structures are potential issues for quality image

acquisition. The next generation of thermography imaging for

phenotyping will have to resolve drawbacks related to tempo-

ral variations of environment conditions, aspects relating to an-

gles of view, distance, sensitivity, and the reproducibility of the

measurements [104]. Both thermographic and �uorescent im-

ages capture a single component, and images are in principle

easy to analyse as segmentation based on thresholds can be

applied to the acquired images. Combining thermographic and

�uorescent imaging requires sophisticated data analysis meth-

ods based on neural networks to obtain quality data, but it is an

emerging solution [111].

Tomography imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging

technique that uses radio frequency (RF) magnetic �elds to con-

struct tomographic images [113]. Commonly, MRI has been used

to investigate the anatomical structure of the body (especially

the brain) in both health and disease [114]. In plant phenomics,

MRI is used to visualize internal structures andmetabolites. This

method poses a great potential to monitor physiological pro-

cesses occurring in vivo [115]. MRI has allowed the development

of root systems over time in the bean to be mapped [116], mois-

ture distribution to be visualized during development in rice

[117], and water presence to be analysed during the maturity

process of barley grains [118].

Positron emission tomography (PET) is a nuclear medicine

imaging modality that allows the assessment of biochemical

processes in vivo, to diagnose and stage diseases and monitor

their treatment [119]. Karve et al. [120] presented a study about

C-allocation (carbon allocation from CO2 through photosysthe-

sis) in large grasses such as Sorghum bicolor. The study concluded

that the commercial PET scanners can be used reliably, not only

to measure C-allocation in plants but also to study dynamics in

photoassimilate transport.

X-ray computed tomography (x-ray CT) employs x-rays to

produce tomographic images of speci�c areas of the scanned

object. The process of attenuation of rays together with a rota-

tion and axial movement over objects produces 3D images [32].

A high-throughput phenotyping system based on x-ray CT is 10

timesmore ef�cient than human operators, being capable of de-

tecting a single tiller mutant among thousands of rice plants

[121]. The remarkable penetration of x-rays has made this tech-

nology a great ally of phenotyping carried out below ground.

The study of root systems and their quanti�cation has been a

�eld of habitual application of x-ray CT [122–126]. New develop-

ments address the reduction of penetrability and the increase of

the image resolution of x-ray CT in plant tissue using phospho-

tungstate as a contrast agent, due to its capacity of increasing

the contrast and penetrability of thick samples [127].

MRI, PET, and x-ray imaging techniques are available for

screening 3D objects. MRI and PET are 2 non-destructive and

non-invasive scanning technologies that have been applied in

plant sciences to acquire 3D structural information [128]. MRI

and PET data acquisition is time consuming, and software tools

need to be further developed to analyse data and obtain physi-

ologically interpretable results [97]. High-resolution x-ray com-

puted tomography (HRXCT) promises to be the broadest non-

destructive imaging method used in plant sciences. HRXCT will

provide 3D data at a resolution suited for detailed analysis of

morphological traits of in vivo plant samples and at a cellular

resolution for ex vivo samples [128]. In terms of the development

of devices, the trend will be to increase the resolution of images,

the size of the �elds of view, and increase the devices’ portability

[129].

Image analysis

Extracting information from images is performed through the

process of segmentation. The aim of a segmentation procedure

is to extract the components of an image that are of interest, i.e.,

object or region of interest from the rest of the image, i.e., back-

ground of the image or irrelevant components. Thus, we end up

with a partitioned image with signi�cant regions. The signi�-

cant regions may be de�ned as foreground vs background or by

selecting a number of individual components from an image.

The construction of the selected regions is based on the image

characteristics such as colour (colour spaces), spectral radiance

(vegetation indexes), edge detection, neighbour similarity [130],

or combinations that are integrated via a machine learning pro-

cess [131]. In some cases, preprocessing is required in order to

obtain a meaningful segmentation.

Image preprocessing

Image preprocessing is an important aspect of image analysis.

The aim of image preprocessing is to improve contrast and elim-

inate noise in order to enhance the objects of interest in a given

image [132]. This process can be extremely helpful to enhance

the feature extraction quality and the downstream image anal-

ysis [133]. Preprocessing can include simple operations such as

image cropping, contrast improvement, or other signi�cantly

more complex operations such as dimensionality reduction via
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principal component analysis or clustering [33]. One preprocess-

ing pipeline has been proposed for plant phenotyping based on

converting the image to grayscale, application of a median �l-

ter, binarization, and edge detection [134]. A similar preprocess-

ing method has been developed to identify plant species under

varying illumination conditions [135]. It comprises conversion

to grayscale, image binarization, smoothing, and application of

a �lter to detect edges. In a comparative study to analyze leaf

diseases, histogram equalization was found to be the best way

to obtain preprocessing of color images converted to grayscale

[136]. However, RGB images have been found to perform bet-

ter than grayscale conversions when identifying leaf pathogens

[137].

We cannot conclude that a single preprocessing method will

outperform other methods. The quality and type of image are

fundamental to selecting a type of preprocessing procedure.

Nevertheless, preprocessing is a basic step that can improve im-

age analysis, and sometimes make it possible. It should be de-

scribed in the materials and methods of image procedures to

make data comply to the new standards—Findability, Accessi-

bility, Interoperability, and Reusability (FAIR) [138].

Image segmentation

As we mentioned above, image segmentation is the core of

image processing for arti�cial vision-based plant phenotyping.

Segmentation allows the isolation and identi�cation of objects

of interest from an image, and it aims to discriminate back-

ground or irrelevant objects [139]. The objects of interest are de-

�ned by the internal similarity of pixels in parameters such as

texture, colour, statistic [133], etc. (See a list of Open software

libraries for image segmentation in Table 1.)

One of the simplest algorithms used is threshold segmen-

tation, based on creating groups of pixels on a grayscale ac-

cording to the level of intensity, thus separating the background

from targets. Such an approach has been used with Android OS

(ApLeaf) in order to identify plant leaves [140].

The Otsu’s method [141] is a segmentation algorithm that

searches for a threshold that minimizes the weighted within-

class variance [132]. This method has been used for background

subtraction in a system that records and performs automatic

plant recognition [142] and can give high-contrast segmented

images in an automatic fashion [143]. Under certain circum-

stances, it can underestimate the signal, causing under segmen-

tation, and is signi�cantly slower than other thresholdingmeth-

ods [132].

The Watershed [144] transformation is a popular algorithm

for segmentation. It treats an image as a topological surface that

is �ooded, and seed regions are included, usually by the user.

This generates an image with gradients of magnitudes, where

crests appear in places where borders are apparent (strong

edges) and causes segmentation to stop at those points [130].

It has been used to identify growth rate [145], recognition of

partially occluded leaves [56], individual tree crown delineation

[146], and leaf segmentation [147].

Grabcut [148] is a segmentation algorithm based on graph cut

[149]. It is created on graph theory to tackle the problem of sep-

arating an object or foreground from the background. The user

should mark a rectangle (bounding box) surrounding the object

of interest, thus de�ning the outrebound of the box as back-

ground [150]. This algorithm has been tested to extract trees

from a �gure, but it has been successful only with very sim-

ple backgrounds [151]. More recently, Grabcut has been deployed

as a segmentation algorithm in a pipeline for plant recognition

with multimodal information, i.e., leaf contour, �ower contour,

etc. [152]. Grabcut loses precision or even fails when pictures

have complex backgrounds but is highly precise with simple

backgrounds [151, 142].

Snakes are a special type of active contour [153] and are used

asmethods to �t lines (splines) either to open or close edges and

lines in an image. Thesemethods have been used for face recog-

nition, iris segmentation, and medical image analysis. Within

the �eld of plant phenotyping, there are procedures where ac-

tive contours are used inside a protocol constructing a vector of

features with data of colour intensity, local texture, and a previ-

ous knowledge of the plant incorporated via Gaussian mixture

models, previously segmented [154]. These steps give an initial

rough segmentation, upon which active contours can operate

with a much higher precision.

Active contours have used images of �owers for plant recog-

nition [155], based on a combination of the algorithm proposed

by Yonggang and Karl [156] and the model of active contours

without edges [157].Whilst thework proposed byMinervini et al.

[154] appears to give signi�cantly better results compared with

the results of Suta et al. [155], the usage of images with a nat-

ural background may be related to the apparent differences in

segmentation. Thus, a current problem concerning the compar-

ison of algorithms and procedures lies with the different back-

grounds used for image acquisition.

Features extraction

Features extraction constitutes one of the pillars of the identi-

�cation and classi�cation of objects based on computer vision.

Beyond the raw image, a feature is information that is used to re-

solve a speci�c computer vision problem. The features extracted

from an image are disposed in the so-called “feature vectors.”

The construction of feature vectors uses awide set ofmethods to

identify the objects in an image. Themain features are edges, in-

tensity of image pixels [39], geometries [158], textures [154, 159],

image transformations, e.g., Fourier [160] or Wavelet [65, 161] or

combinations of pixels of different colour spaces [131]. The end

goal of feature extraction is to feed up a set of classi�ers and

machine learning algorithms (see below).

One system proposed uses a feature vector composed of a

combination of RGB and CIE L∗a∗b∗ colour spaces to segment the

images captured during the day [131]. The night-time image seg-

mentation computed a vector composed of statistical features

over 2 decomposition levels of the wavelet transform using IR

images.

Iyer-Pascuzzi et al. presented an imaging and analysis plat-

form for automatic phenotyping to identify genes underlying

root system architecture. The authors employed a set of 16 sta-

tistical, geometric, and shape features obtained from 2297 im-

ages from 118 individuals such as median and maximum num-

ber of roots, the total root length, perimeter, and depth, among

others [162].

There are a number of algorithms to identify invariant fea-

ture detectors and descriptors. This type of image analysis en-

sures the detection of points of interest in a scale- and rotation-

independent manner. This is crucial for camera calibration and

for matching to produce a set of corresponding image points

in 3D image reconstruction. Furthermore, it allows the iden-

ti�cation of points of interest even when they change scale

and/or position or situations of uncontrolled illumination, a

common issue when phenotyping plants. The Scale Invariant

Features Transforms (SIFT) [163], Speeded-Up Robust Features

(SURF) [164], and the Histograms of Oriented Gradients (HoG)

[165] are algorithms used to extract characteristics in computer

vision, and they have been extended to plant phenotyping. Wei

et al. [166] presented an image-based method that automati-

cally detects the �owering of paddy rice. The method uses a
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8 Perez-Sanz et al.

Table 3: List of machine learning software libraries and their
languages

Libraries ML/DL Source Language

MICE, rpart, Party,

CARET,

randomForest, nnet,

e1071, KernLab,

igraph, glmnet,

ROCR, tree, Rweka,

earth, klaR,

https://cran.r-project.org/ R

Scikit-learn http://scikit-learn.org/stable/ Python

Tensor�ow https://www.tensor�ow.org/

Theano http://deeplearning.net/software/

theano

Pylearn2, http://deeplearning.net/software/

pylearn2

NuPIC http://numenta.org/

Caffe http://caffe.berkeleyvision.org/

PyBrain http://pybrain.org/

Weka http://www.cs.waikato.ac.nz/

ml/weka/

Java

Spark http://spark.apache.org/

Mallet http://mallet.cs.umass.edu/

JSAT https://github.com/EdwardRaff/

JSAT

ELKI http://elki.dbs.i�.lmu.de/

Java-ML http://java-ml.sourceforge.net/

Accord http://accord-framework.net/ C#, C++, C

Multiboost http://www.multiboost.org/

Shogun http://shogun-toolbox.org/

LibSVM http://www.csie.ntu.edu.tw/

∼cjlin/libsvm/

mlpack http://mlpack.org/

Shark http://image.diku.dk/shark/

MLC++ http://www.sgi.com/tech/mlc/

source.html

scale-invariant feature transform descriptor, bag of visual

words, and a machine learning method. The SIFT algorithm has

been used to combine stereo and ToF images with automatic

plant phenotyping. It can create dense depth maps to identify

pepper leaf in glasshouses [69]. SIFT and SURF algorithms have

been tested for detecting local invariant features for obtaining

a 3D plant model from multi-view stereo images [167]. A HoG

framework allows the extraction of a reliable quantity of pheno-

typic data of grapevine berry using a feature vector composed of

colour information [168].

So far, feature extraction has been an arduous and dif�cult

task, requiring the testing of hundreds of feature extraction al-

gorithms and a greater number of combinations between them.

This task demands expert skills in different subjects. The suc-

cess in the identi�cation does not depend on the robustness of

the classi�cation methods, but on the robustness of the data.

Machine learning in plant image analysis

The amount of data generated in current and future phenomic

setups with high-throughput imaging technologies has brought

the use of machine learning (ML) statistical approaches. Ma-

chine learning is applied in many �elds of research [169–171].

As phenotyping can generate terabytes of information, ML tools

provide a good framework for data analysis. A list of ML libraries

can be found in Table 3. A major advantage of ML is the possi-

bility of exploring large datasets to identify patterns using com-

binations of factors instead of performing independent analysis

[33].

Among the ML algorithms, a predictive model of regression

has been used to phenotype Arabidopsis leaves, based on geo-

metric features as a training dataset [158]. Three different algo-

rithms were tested, k Nearest Neighbour (kNN), Support Vector

Machine (SVM), and Naı̈ve Bayes, to segment Antirrhinum majus

leaves. Colour images have a characteristic vector intensity in

the RBG and CIE L∗a∗b∗, while the NIR vector is obtained with

the wavelet transform. The best results were obtained with kNN

for colour images and SVM for NIR. This shows that segmen-

tation has several components, as mentioned before, including

the wavelength of image acquisition [131].

As the speci�c wavelength used for image acquisition plays

a key role in the type of data obtained, hyperspectral cameras

are becoming important tools; however, hyper images can be in

the order of gigabites of size, making ML a necessity. Examples

of coupling hyperspectral and thermal imaging with ML have al-

lowed the early detection of stress caused by Alternaria in Bras-

sica [172]. The best image classi�cation was obtained doing a

second derivative transformation of the hyperspectral images

together with a back propagation of neural networks, allowing

the identi�cation of fungi on leaves days after infection [172].

A current concept derived from ML is deep learning (DL),

comprising a set of algorithms aimed to model with a high level

of abstraction. This allows the development of complex con-

cepts starting from simpler ones, thus getting closer to the idea

of arti�cial intelligence (AI) [173]. Convolutional neural networks

(CNN) are an example of DL derived from arti�cial neural net-

works (ANN). These multi-layered networks are formed by a

layer of neurons that work in a convolutional way, reducing the

sampling process to end with a layer of perception neurons for

�nal classi�cation [174]. Recently DL has been implemented us-

ing a CNN to automatically classify and identify different plant

parts [175], thus obtaining both classi�cation and localization

that signi�cantly improve the current methods. A CNN has been

used to detect plant pathogen attacks [176]. Although the train-

ing period is computationally heavy, requiring several hours of

CPU clusters, classi�cation was performed in less than 1 second

[176]. Nevertheless, DL is a step forward in ML and has great po-

tential to allow the management and analysis of the data pro-

duced in phenomic experiments.

Although direct testing maybe the best way to determine the

superior algorithm in each case, there are a number of exam-

ples that may guide initial approaches [33, 177, 178]. As a gen-

eral rule, discriminating methods such as SVM, ANN, and kNN

give better results in large datasets that are labelled [33]. Gen-

erative methods such as Naive Bayes, Gaussian mixture mod-

els, and Hide Markov models give better results with smaller

datasets, both labelled and unlabelled. The use of unsupervised

algorithms, i.e., k-means, may help identify unexpected charac-

teristics of a dataset. As mentioned above, preprocessing plays

a fundamental role in increasing the ML output. A summary of

the complete pipeline of image analysis, including sensors, pre-

processing, segmentation procedures, feature extractions, and

machine learning algorithms, can be found in Table 4.

Conclusions and Future Prospects

The implementation of phenomic technologies is a welcome

change toward reproducibility and unbiased data acquisition in

basic and applied research. A successful approach requires in-

tegrating sensors with wavelength and image acquisitions that

will allow the proper identi�cation of the items under analy-

sis. A lot of work has been conducted in indoor setups, where

reasonable conditions can be created to obtain high-quality im-

ages amenable to further processing. The dif�culty with outdoor
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setups increases as a result of limitations in the actual image ac-

quisition devices and the uncontrolled conditions that directly

affect image quality. The new technologies such as the high-

de�nition LIDAR or the multi-hyperspectral cameras have great

potential to improve in the near future, especially in outdoor en-

vironments.

Preprocessing and segmentation data are 2 aspects of data

treatment and acquisition that require careful design in order

to avoid distortions and reproducibility [138]. As images are

machine-produced data, but image types and processing proce-

dures may be very different, the standardization of image cap-

ture, preprocessing, and segmentation may play an important

role. Furthermore, a single procedure for image analysis can-

not be considered a better choice, and it is the researcher that

needs to assess the different algorithms to come up with an op-

timized procedure for their speci�c setup. It is a matter of time

until databases with raw images become part of the standard in

phenomics; using images very much like NCBI or Uniprot plays

a key role in genomic and proteomic projects. With the decrease

in the price of hyperspectral devices, new experiments may be

performed that produce even larger datasets, and these datasets

will have to go through arti�cial intelligence–based data analysis

in order to give the researchers results interpretable by humans.

We guess that, like in other omic approaches, therewill be a con-

�uence of standard procedures that are not currently common

ground, making the current literature look intimidatingly di-

verse. Nevertheless, most of the basic processes described here

are shared by the different experimental setups and data anal-

ysis pipes.
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