
Data and text mining

Plant photosynthesis phenomics data quality

control

Lei Xu1, Jeffrey A. Cruz2, Linda J. Savage2, David M. Kramer2,3,* and

Jin Chen1,2,*

1Department of Computer Science and Engineering, 2Department of Energy Plant Research Laboratory and
3Department of Biochemistry and Molecular Biology, Michigan State University, MI, East Lansing 48824, USA

*To whom correspondence should be addressed

Associate Editor: Robert F. Murphy

Received on August 21, 2014; revised on December 1, 2014; accepted on December 23, 2014

Abstract

Motivation: Plant phenomics, the collection of large-scale plant phenotype data, is growing

exponentially. The resources have become essential component of modern plant science.

Such complex datasets are critical for understanding the mechanisms governing energy intake

and storage in plants, and this is essential for improving crop productivity. However, a major issue

facing these efforts is the determination of the quality of phenotypic data. Automated methods

are needed to identify and characterize alterations caused by system errors, all of which are difficult

to remove in the data collection step and distinguish them from more interesting cases of altered

biological responses.

Results: As a step towards solving this problem, we have developed a coarse-to-refined model

called dynamic filter to identify abnormalities in plant photosynthesis phenotype data by compar-

ing light responses of photosynthesis using a simplified kinetic model of photosynthesis. Dynamic

filter employs an expectation-maximization process to adjust the kinetic model in coarse and

refined regions to identify both abnormalities and biological outliers. The experimental results

show that our algorithm can effectively identify most of the abnormalities in both real and synthetic

datasets.

Availability and implementation: Software available at www.msu.edu/%7Ejinchen/DynamicFilter

Contact: jinchen@msu.edu or kramerd8@cns.msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plants capture sunlight to fix CO2 into energy rich molecules, thus

supplying our ecosystem with O2 and essentially all of its biological

energy, including 100% of our food. Recent work has focused on

improving the efficiency of photosynthesis to meet our growing

needs for food and fuel (Bonner, 1962; Kramer and Evans, 2011;

Von Caemmerer and Farquhar, 1981). To develop efficiency-

boosting mechanisms that reduce energy losses or enhance CO2

delivery to cells during photosynthesis, advanced technologies in

high-throughput plant photosynthetic phenotyping and pheno-

informatics have been developed (Cruz et al., 2014; Houle et al.,

2010; Tessmer et al., 2013; Zhu et al., 2010). These technologies

have allowed plant photosynthesis phenotypic variability to be char-

acterized and to be related to putative biological functions, leading

to a better understanding of the underlying mechanisms that control

photosynthetic properties under various environmental conditions.

Plant phenomics is a first-class asset for understanding the mechan-

isms regulating energy intake in plants (Fiorani and Schurr, 2013;

Rascher et al., 2011).

Plant phenotyping systems monitor photosynthetic performance

for many plants both continuously and simultaneously. Phenomics

datasets are large and continue to grow as we increase duration

of sampling and resolution. Yet despite the size and richness of the

data, small clusters of erroneous values, which give the appearance

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1796

Bioinformatics, 31(11), 2015, 1796–1804

doi: 10.1093/bioinformatics/btu854

Advance Access Publication Date: 22 January 2015

Original Paper

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
1
/1

1
/1

7
9
6
/2

3
6
4
8
1
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

www.msu.edu/%7Ejinchen/DynamicFilter
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu854/-/DC1
;
Kramer and Evans,
2011
In order 
, Houle et
al.,
2010;
Tessmer et
al.,
2013
;
Cruz et
al.,
2014
;
Fiorani and Schurr,
2013
http://www.oxfordjournals.org/


of real differences in biological responses, can skew the analysis

towards an invalid interpretation (Herbert et al., 2004). There are

several ways in which a measurement can be in error: errors origi-

nating from instrumentation malfunctions, biased values from mis-

calibrated sensors and inevitable errors of precision. All these issues

compromise the downstream data analysis tasks. Given the value of

clean data for any operation, the ability to improve data quality is

a key requirement for effective knowledge mining from large-scale

phenotype data.

In this article, we focus on data abnormalities detection, which is

a type of measurement errorto demonstrate how clean phenotype

data can be obtained. Similar to sensor data, abnormalities in plant

phenotype data deviate significantly from expected patterns and are

visible outliers in the whole dataset (Shanahan, 2005; Subramaniam

et al., 2006). The majority of abnormalities in plant phenotyping

originate from instrumentation malfunctions (e.g. loss of sensor

synchronization during measurement) or non-biological statistical

outliers caused by data collection limitations (e.g. deterioration

of signal-to-noise ratio for a sample as it progresses through the

experiment).

Data abnormalities are often viewed as outliers in the whole

dataset. Recent work has shown the effectiveness of applying data

mining techniques, especially outlier detection, for the purpose of

data cleaning (Maletic and Marcus, 2000), making it possible to

automate the cleansing process for a variety of domains (Chu et al.,

2005; Ebaid et al., 2013; Mayfield et al., 2010; Pearson, 2002).

In these methods, by detecting the minorities of values that do not

conform to the general characteristics of a given data collection, out-

liers are identified and are considered violations of association rules

or other patterns in the data. However, the existing models are not

suitable for phenotype data cleaning. These methods, while applied

to phenotype data, may remove outliers including both measure-

ment errors and true biological discoveries, since true biological dis-

coveries, to some extent, are outliers as well. Furthermore, detecting

abnormalities from long time-series phenotype data requires han-

dling a high temporal dimension, which increases the model

complexity.

To identify and remove abnormalities in phenotype data and to

minimize the deletion of biological discoveries, we have developed a

coarse-to-refined residual analysis algorithm, called dynamic filter.

Dynamic filter has three key steps: (i) identify abnormal candidates

at the coarse level, (ii) refine abnormality identification in a pro-

jected feature space and (iii) iteratively identify abnormalities at

the refined level. Dynamic filter can speed up the data preparation

process and make it more effective. Such improvements will minim-

ize time-consuming and labour-intensive data preparation and

increase the significance and confidence in biological discoveries.

In summary, our model has the following advantages:

• To our knowledge, dynamic filter is the first work to integrate

biological constraints with time-series phenotype data for data

cleaning.
• Our model can identify both abnormalities and biological

discoveries.
• Dynamic filter outperforms the existing solutions by optimizing

the fitness between phenotype data and biological constraints.

2 Background

Data cleaning is the process of identifying incorrect or corrupted re-

cords in a dataset. The goal of data cleaning is to ensure an accurate

representation of the real-world constructs to which the data refer.

Removing impurities from data is traditionally an engineering prob-

lem, where ad hoc tools made up of low-level rules (such as detect-

ing syntax errors) and manually tuned algorithms are designed

for specific tasks (such as the elimination of integrity constraints vio-

lations) (Muller and Freytag, 2005). Detection and elimination

of complex errors representing invalid values, however, go beyond

the checking and enforcement of integrity constraints. They often

involve relationships between two or more attributes that are very

difficult to uncover and describe by integrity constraints. Recent

work has shown the effectiveness of applying techniques from statis-

tical learning for the purpose of data cleaning. In particular, outlier

detection methods have made it possible to automate the cleansing

process for a variety of domains (Chu et al., 2013; Ebaid et al.,

2013; Koh et al., 2007; Maletic and Marcus, 2000; Mayfield et al.,

2010; Pearson, 2002).

However, none of the existing outlier-detection based methods

are suitable for phenotype data cleaning. First, both biological dis-

coveries and errors of detection are difficult to separate from distri-

bution. Second, the cohesiveness rule used in temporal data cleaning

is not applicable for the phenotype data, because (i) a non-cohesive

time-serial could represent an interesting phenotype pattern rather

than an error; (ii) all the observations at the same time point may

be similarly affected by a systematic abnormal event (Muller and

Freytag, 2005).

Alternatively, rather than checking the raw values, residue ana-

lysis can be employed to model the differences between the real val-

ues and the theoretical curve, which is usually derived from

biological constraints such as generalized light reactions (Jassby and

Platt, 1976; MacIntyre et al., 2002). This is often called the good-

ness-of-fit model. The goodness-of-fit based data cleaning models

can be classified into two categories. First, statistical distribution

characters such as mean, standard deviation, confidence interval or

range have been used to find unexpected values indicating possible

invalid values (Maletic and Marcus, 2000). Such simple methods

can be efficiently applied to big data. However, these parameters

(such as mean) are inclined to be biased by abnormalities with large

deviations. Since it does not take into account local characteristics

of data, there is a risk of mislabelling a range of normal data as

abnormalities and vice versa. Second, combined data-mining tech-

niques are used to identify patterns that apply to most residual re-

cords. A pattern is defined by a group of residuals that have similar

characteristics (behaviour for certain percentage of the fields in the

dataset). Outliers are then identified as values that do not conform

to the patterns in the data. Among them, the Hampel filter uses the

median of neighbouring observations as a reference value and looks

for local outliers in a streaming data sequence (Pearson, 2002,

2005). While the Hampel filter is suitable for temporal data clean-

ing, it assumes that the data are independent and identically distrib-

uted, which is not valid under dynamic environmental conditions.

It should be noted that while the goodness-of-fit based data

cleaning models focus on the modelling of deviation, they are not

aware that the theoretical curve, which is used as the reference, may

not always be precise. Typically, theoretical curves derived from

biological knowledge are simple compared with the real-world

situation. It is therefore inappropriate to directly use the imperfect

theoretical curve to infer abnormalities.

In this article, we develop a coarse-to-refined residual analysis

model called dynamic filter to effectively identify abnormalities in

plant photosynthesis phenotype data. Our model derives a theoret-

ical curve from the photosynthetic biological constraints; adjusts

the theoretical curve to fit the phenotype data via optimization

and studies the deviations of individual phenotype values from

Plant photosynthesis phenomics data quality control 1797
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theoretical curve. The resulting patterns in residuals indicate abnor-

malities, which are types of errors of detection, and the optimized

theoretical curves reveal true biological outliers.

3 Methods

In this section, we first introduce the theoretical curve of time-series

steady-state quantum yield data and then introduce a framework

for abnormality detection.

In this article, the time-series steady-state quantum yield of photo-

systems II (denoted as UII) is chosen for abnormality detection for three

reasons. First, UII can be readily measured using fluorescence video

imaging making it useful for high-throughput phenotyping. Second, be-

cause it reflects light-driven electron transfer, it can be used as an indica-

tor of photosynthetic rates and efficiency, albeit with the caveat that it

reflects the sum of CO2 fixation, photorespiration and other processes

(Ögren and Evans, 1993). Finally, UII is a good demonstration of the

approach because it tends to follow, to a reasonable degree, relatively

simple saturation behaviours. Given an adequate model, the cleaning

procedure described in the manuscript may also be applied to other

photosynthetic parameters like non-photochemical quenching (NPQ),

which can display complex behaviours.

3.1 Theoretical photosynthetic curve

An abnormality in residual analysis is an observation exhibiting a

large difference between the theoretical value and the observed value

and may indicate a data entry error from the phenotyping sensors.

To derive the theoretical curve, we model UII with the photosynthe-

sis-irradiance (PI) curve (see Fig. 1a) (Jassby and Platt, 1976;

MacIntyre et al., 2002).

As a derivation of Michaelis–Menten kinetics, one of the best-

known models of enzyme kinetics in biochemistry (Menten and

Michaelis, 1913), PI is modelled as a hyperbolic curve (see Fig. 1a)

in Equation (1), revealing the empirical relationship between solar

irradiance and photosynthesis (MacIntyre et al., 2002).

P ¼
Pmax½I�

i1=2 þ ½I�
(1)

where P is photosynthetic rate at a given light intensity, Pmax is the

maximum potential photosynthetic rate per individual, ½I� is a given

light intensity and i1=2 is half-saturation constant. Figure 1a shows

the generally positive correlation between light intensity and photo-

synthetic rate. The PI curve has already been applied successfully to

explain ocean-dwelling phytoplankton photosynthetic response

to changes in light intensity (Jassby and Platt, 1976) as well as ter-

restrial and marine reactions.

We describe the photosynthetic rate P in terms of linear elec-

tron flow (Kramer and Evans, 2011) and associate both temporal

steady-state quantum yield of photosystems II UII and temporal light

intensity i with time t, as shown in Equation (2):

UIIðt; i1=2Þ ¼
max ðUIIÞ

1þ iðtÞ
i1=2

(2)

where t is a time point in a user-defined temporal region T (t 2 T);

UIIðtÞ and i(t) represent the steady-state quantum yield of photosys-

tems II and light intensity at t; max ðUIIÞ is the maximal UII in T;

and the half-saturation constant i1=2 is the light intensity at

which the photosynthetic rate proceeds at half Pmax. See proof in

Supplementary Section S1.

One may reasonably ask if the NPQ or photoinhibition would

affect the theoretical model for light saturation. In fact, NPQ has

(surprisingly) little effect on the relationship between UII and light

intensity, as can be readily seen in the fact that the UII light satur-

ation curves for wild type and the npq4 mutant of Arabidopsis

are essentially identical despite large differences in qE (i.e. rapidly

reversible photoprotection of NPQ) (Li et al., 2000). The reason for

this apparent disconnect is that, at high light, the slowest step in the

light reactions of photosynthesis occurs subsequent to light absorp-

tion at the cytochrome b6f complex and is finely regulated by the

pH of the lumen (Takizawa et al., 2007). Light absorption become

rate limiting only at NPQ levels much higher than those observed

here. The biological role of NPQ under most conditions appears

to be in regulating electron transfer but in preventing the build up

of reactive intermediates within the photosystem II reaction centre

(Muller et al., 2001). Thus, the effects of moderate levels of NPQ

and photoinhibition should have little effect on the behaviour of

the wild-type system. However, under extreme conditions of in mu-

tant lines with altered behaviour producing high levels of NPQ or

photoinhibition, we expect to see behaviour that deviates from that

produced by the model. These instances will be detected as outliers

and flagged for further investigation of possible biological

discoveries.

Consequently, the half-saturation constant i1=2 can be learned

using all UIIðtÞ and i(t) in T with a non-linear regression method

(Seber and Wild, 2003). Note that the half-saturation constant

can be dramatically different between plants and between leaves in

plants. Thus, the general shape of the curve is typically maintained

but not its maximal or half-saturation light intensity.

Finally, given i1=2, the residual value at each time point t is

defined as

rsdðtÞ ¼ UIIðtÞ � U0IIðt; i1=2Þ (3)

where rsd(t) is the residual value at time t; and UIIðtÞ is the observed

value and U0IIðtÞ is the theoretical value of steady-state quantum

yield at t calculated using Equation (2).

We note that there are multiple models for PI curves, which give

similar responses to light (de Lobo et al., 2013; Govindjee et al.,

2005; Lambers et al., 2008; Long and Hällgren, 1993; Zeinalov).

In this article, we chose the Michaelis–Menten kinetics model

because it is convenient to use and fits plant photosynthesis rate

data well (see Fig. 1b). It should be noted that an important feature

of our approach is that these alternative models can be easily added

or substituted for comparison.

3.2 Framework of dynamic filter

Dynamic filter is a coarse-to-refined residual analysis ap-

proach, which has three major steps as shown in Figure 2. We define

(a) (b)

Fig. 1. PI curve. (a) Hyperbolic PI curve. (b) Measured photosynthetic rates of

Col-0 and the fitted PI curve. R2 is computed based on the unexplained

variance
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abnormalities using a definition to that proposed in Mayfield

et al. (2010):

DEFINITION 1: Abnormality. Let fUnorg be a set of normal

phenotype data, and frsdnorg be the corresponding residual set. An

abnormality Uabn is a phenotype value whose residual falling off the

a confidence interval of the major normal distribution of frsdnorg.

Note that confidence interval a¼99% is commonly used in lit-

erature (Mayfield et al., 2010; Sohn et al., 2005), but is adjustable

by users. In this article, by adopting the concept of confidence inter-

val, we assume that (i) the majority of the phenotype values are

correct, and (ii) they form the major distribution in the residual

data, which is also distinctly different from the distribution(s) of the

residual data of the abnormalities.

Step 1. Coarse process to identify abnormal candidates

Given a set of phenotype data UII, we adopt Equation (2) to generate

the theoretical values of steady-state quantum yields for each plant,

denoted as fU0IIg, by using the whole time-serial as temporal region T,

aka the coarse level. For the dataset used in Section 4, the smallest

value of time interval is 10 min, and the scale of T in the whole dataset

is 3 days. Consequently, we generate the residual data of all plants

{rsd} using Equation (3), and model them using a Gaussian mixture

model (GMM) (see details in Section 3.3 and example in Fig. 3a).

Finally, we generate the abnormality candidate set fUabng with

Definition 1. In Figure 3b, solid points are abnormality candidates in

the coarse process. Clearly, because of the simplified PI curve model,

not all the abnormality candidates are correctly identified.

Step 2. K-Nearest Neighbors (KNN) process to refine abnormality

identification

Abnormality candidates may have certain intrinsic patterns of distri-

bution highly related to certain ranges of feature space. For example,

accidental dysfunction of data-capturing devices may cause abnor-

malities concentrated around some regions, which form statistical

patterns on the distribution plot of the feature space. From a statis-

tical viewpoint, abnormalities should be away from normal values

in the feature space, and values with similar features tend to have

the same labels. This leads to a refinement process to exploit the

patterns of abnormalities candidates on selected feature space, and

to make use of these patterns to refine abnormality identification, as

described in Algorithm 1.

Specifically, we first select the optimal features from UII, rsd, i, t,

etc., in which abnormalities and normal values are maximally sepa-

rated. To solve this feature reduction problem, linear discriminant

analysis (LDA) is adopted to get the principal components of the op-

timal feature space (Algorithm 1 line 9–20, see details in Section

3.3). Second, we apply K-nearest-neighbour approach on the se-

lected feature space, such that each abnormality candidate will be

relabelled as its majority label of k-nearest-neighbours (Algorithm 1

line 4–7) (Altman, 1992).

Step 3. Refined process to identify abnormalities in local regions

Because the theoretical values fU0IIg are learned with the simplified

PI curve model at the coarse level, not all the assignments of the

Fig. 2. The framework of dynamic filter (DF)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. An example of DF. The solid points are abnormalities and the hollow

points are normal values. (a) GMM in coarse process. (b) Candidates in

coarse process. (c) Before regional refinement. (d) Apply EM on local region.

(e) Output of EM. (f) After regional refinement. (g) Candidates in refined pro-

cess. (h) Final outputs

Plant photosynthesis phenomics data quality control 1799
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abnormal candidates are correct. Consequently, we separate the

abnormal candidates fUabng to temporal checking regions (see

Definition 2) and refine abnormality identification in each region.

DEFINITION 2: Temporal Checking Region. A checking region r

consists of at most m normal values flanking the selected abnormal

candidates, depending on data availability, denoted as fUnorg, and

at most n abnormal candidates such that the last abnormal candi-

date is constrained to be at most l-timepoints away from the first

one, denoted as fUabng.

In Definition 2, m, n and l are user-defined parameters

that determine the size of a temporal checking region. A check

region has at most mþ l � n normal values and at most n

abnormities. Note that abnormal candidates can be continuous or

discontinuous, and two checking regions may share common

normal values.

In the refined process, an expectation-maximization (EM) pro-

cess is employed to repeatedly optimize the results in each temporal

region r. Pseudo-code of the EM process is shown in Algorithm 2.

In the E step, using the local normal values fUnorg in checking region

r as inputs, we regenerate the theoretical values fU0g with Equation

(2). Then the residuals {rsd} for both the abnormal candidates

fUabng and the normal values fUnorg are regenerated using Equation

(3) (Algorithm 2 line 6–8). In the M step, we redefine the abnormal

candidate set fUabng with the statistical distribution of the new

residual data {rsd} according to Definition 1. Specifically, a value

falls off the confidence interval threshold of the major distribution

of the normal residual values will be moved to fUabng; and if an ab-

normal candidate is within the confidence interval threshold of the

major distribution of the normal residual values, it will be labelled

as normal and be moved to fUnorg (Algorithm 2 line 10 and 11).

The EM process will stop when the label assignment is stable.

Figure 3(c–f) shows the iterative process in a checking region. Since

checking regions may share common values, the results from differ-

ent regions may be conflicted. For example, a phenotype value is

identified as an abnormality in one region but is considered a normal

value in another region. To solve conflicts and consequently im-

prove performance, we employ an information sharing process in

the end of the EM process to broadcast all the local results to all

the checking regions. If conflict exists, voting results will be used to

redefine abnormal candidates in the selected feature space (Step 2),

and the EM process will rerun on the new checking regions. The

process will repeat till the results converge. Figure 3g and h demon-

strate that all the abnormalities are identified.

3.3 Related Works

We introduce the GMM and the LDA used in Section 3.2 as follows.

3.3.1 Gaussian mixture model

A GMM is a parametric probability density function represented as

a weighted sum of Gaussian component densities (Reynolds, 2009).

GMMs are commonly used as a parametric model of the probability

distribution of continuous features (Reynolds, 2009). The probabil-

ity density function is given by the equation:

pðxjkÞ ¼
X

M

i¼1

xigðxjli;RiÞ (4)

where x is a D-dimensional continuous-valued vector, xi,

i ¼ 1; . . . ;M, are the mixture weights, and gðxjli;RiÞ; i ¼ 1; . . . ;M

are the component Gaussian densities. Each component density is a

D-variate Gaussian function of the form:

gðxjli;RiÞ ¼
1

ð2pÞD=2jRij
1=2

exp �
1

2
ðx� liÞ

T
R�1i ðx� liÞ

� �

(5)

with li be the mean vector and Ri be the covariance matrix

(i ¼ 1; . . . ;M). The mixture weights satisfy the constraint that
PM

i¼1 xi ¼ 1. GMM parameters are estimated from training data

using the maximum likelihood parameter estimation or maximum

a posteriori estimation (Reynolds, 2009). In this article, residuals are

1D scalar data, we use li and ri to represent the mean and variance

of residuals.

3.3.2 LDA for feature selection

LDA is a method used in statistics, pattern recognition and ma-

chine learning to find a linear combination of features, which

Algorithm 1 KNN process to refine results

1: procedure Refine(W;C ; k)

2: . W is original feature space, C is the

set of labels (abnormality or normal)

3: Wproj  FeatureSelection ðW;CÞ

4: for wi in Wproj do

5: Ci  majority label of k-nearest-neighbours

6: end for

7: return C

8: end procedure

9: procedure FeatureSelection(W;C )

10: l 1
jC j

P

w

11: for i from 1 to 2 do . process both kinds

of labels in C

12: Wi  Features of ith label

13: ni  jWi j; li  
1
ni

P

wi

14: SWi  
1
ni

P

ðwi � li Þðwi � li Þ
T

15: end for

16: SW 
P2

i¼1 SWi

17: SB 
P2

i¼1
ni

jC jðli � lÞðli � lÞT

18: Wproj  eigðSB=SWÞ �W

19: return Wproj . Wproj is projected space

20: end procedure

Algorithm 2 EM optimization on each local region r

procedure EM_Optimization(U; i ; a)

2: . U is phenotype values in a local re-

gion, i is light, a is confidence interval

Let Unor and Uabn be normal values and abnormal-

ities in U

4: repeat

E-step:

6: ½rsdnor; i1=2nor �  PI_CurveFitting ðUnor; iÞ . Eq. 2

½lnor;rnor�  GMMðrsdnorÞ

8: ½rsdmin; rsdmax�  getConfidenceInterval

ðlnor;rnor;aÞ

M-step:

10: rsdabn  getResidual(Uabn; i1=2nor ) . Eq. 3

½Unor;Uabn�  UpdateCandidate(rsdnor; rsdabn;

rsdmin; rsdmax)

12: until Unor and Uabn are stable

end procedure
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characterizes or separates two or more classes of objects or events,

such that the inter-class variance is maximized and the intra-class

variance is minimized (Webb, 2002). The resulting combination

may be used as a linear classifier, or more commonly, for dimension-

ality reduction before later classification. In this article, we seek

combination of features, with which normal values (one class) are

centred around one area, while abnormalities (another class) are

centred around a distinctively separated area.

Suppose there are C classes, and each class has ni points, mean li

and intra-class variance Ri. Then the inter-class variance may be

defined by the sample covariance of the class means:

SB ¼
X

C

i¼1

ni
jCj
ðli � lÞðli � lÞT (6)

and the intra-class variance of whole dataset is SW ¼
PC

i¼1 SWi

(McLachlan, 2004). The class separation in a direction x
!
in this case

will be given by:

S ¼
x
!T

SBx
!T

x
!T

SWx
!T

(7)

The objective function is to maximize S and it can be shown that

when x
!

is the eigenvector of SW�1SB, S will have maximized value

corresponding to eigenvalue (Rao, 1948).

4 Experiment

We compared dynamic filter on both real and synthetic datasets

with two widely used data cleaning algorithms: (i) a statistical ap-

proach that classifies abnormalities based on standard variance

(Maletic and Marcus, 2000) and (ii) Hampel filter that identifies

abnormalities based on digress from median of trends (Pearson,

2002, 2005). Note that all the three methods were applied on the

same phenotype residual data for a fair comparison.

For performance evaluation, we used both the precision-recall

curve and the Matthews correlation coefficient (MCC) (Baldi et al.,

2000). The MCC that can appropriately represent a confusion

matrix is computed with:

MCC ¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p (8)

4.1 Real phenotype dataset

We first tested the performance of dynamic filter using the plant

photosynthetic phenotype data consisting of 106 Arabidopsis

thaliana plants (confirmed T-DNA insertion mutants and wild

types) sampled at 64 time points under dynamic light conditions

(Ajjawi et al., 2010; Alonso et al., 2003). The photosynthetic pheno-

type values vary dramatically across plants, reflecting potential dif-

ferences in development, stress responses or regulation of processes

such as stomatal conductance, photodamage and storage of photo-

synthate (Kramer and Evans, 2011). Experts went through the data

and manually marked the ground truth of abnormalities, and found

the error rate is 6.5%.

The experimental results shown in Figure 4a indicated that dy-

namic filter is significantly better than the other two approaches in

the precision-recall curve. Specifically, dynamic filter yields Area

Under Curve (AUC) as high as 0.964, higher than the AUC of simple

statistics and Hampel filter (0.147 and 0.543, respectively).

Figure 4b shows our model is also significantly better according to

MCC. Furthermore, it shows that dynamic filter is insensitive to the

selection of the confidence interval threshold, which is distinctly dif-

ferent from the other algorithms that rely on well-picked parameters.

Note that the AUC of dynamic filter without KNN is 0.862

(Fig. 4a), implying that KNN refinement (Step 2) is a key component

of dynamic filter. Specifically, Figure 5 shows how KNN refinement

improved the performance of data cleansing. On the UII versus

residual plot shown in Figure 5a (detailed visualization on

Figure 5b), some isolated normal values are misclassified as abnor-

malities, and certain abnormalities misclassified as normal values.

Clearly, these values do not conform with the most nearby values.

By applying KNN refinement, this misclassification is effectively

corrected (Fig. 5c and d).

We systematically tested the performance of the different compo-

nents of dynamic filter. Figure 6 shows the performance improve-

ment by comparing dynamic filter with a model without KNN

refinement (v5), iteration of EM (v4), consensus on all regions (v3),

reassignment of normal values and abnormalities in EM (v2) or even

without the whole refined process (v1). It implies that the refined

process, especially the KNN and EM refinement, is the key of per-

formance improvement.

Figures 7 and 8 show case studies on the real data. In Figure 7, the

experiment was run on a wild-type reference plant, Arabidopsis Col-0.

(a) (b)

Fig. 4. Performance evaluation of precision-recall and MCC on real dataset.

DF represents dynamic filter. (a) Precision-recall curves. (b) MCC w.r.t. confi-

dence interval threshold

(a) (b)

(c) (d)

Fig. 5. Performance improvement by applying the KNN refinement process.

(a) Abnormalities in coarse process. (b) Detailed view of (a). (c) Abnormalities

after KNN. (d) Detailed view of (c)
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In the coarse process, the residual analysis was applied to identify

the abnormal candidates (Fig. 7a and solid points in Fig. 7b).

Clearly, six solid points on the bottom were incorrectly labelled

as abnormalities, which were gradually corrected in the refined

process (Fig. 7c and d). Figure 8a shows a true biological discov-

ery on the real data. Our screen revealed accession ELY exhibit-

ing photosynthetic characteristics markedly different from the

reference (Col-0). It would however be labelled as abnormal and

subsequently deleted by the existing outlier-detection based data

cleaning methods, resulting in over-clean problem. Dynamic fil-

ter identifies ELY correctly and suggests that the differences in

its quantum yield are caused by the monotone decrease of i1=2 re-

gardless the change of sunlight (see Fig. 8b). The non-negligible

deviation between the observed values and the theoretical curve

learned from the coarse phase of dynamic filter (see Fig. 8c)

implies the theoretical model is simple compared with the real-

world situation. Instead of directly use the PI curve to infer

abnormalities, we optimize the fitting results in the refined phase

of dynamic filter, resulting in almost perfect match between the

observed values and the theoretical curve (see Fig. 8d).

Furthermore, we varied the size of the temporal checking region

and compared the performance in Figure 9. The results in Figure 9a

reveal that dynamic filter achieves the best performance when m is

between 10 and 15. This number allows enough training data for

the refinement process, meanwhile avoiding NPQ variation over

long time interval. Figure 9b shows that performance of dynamic

filter is relatively stable against max number of abnormalities n,

implying that robustness of dynamic filter is high.

4.2 Synthetic dataset

Since the true biological discoveries in the real data are unknown,

we further tested dynamic filter on serials of synthetic datasets.

The synthetic datasets were generated by varying four parameters

systematically: lights and i1=2 being smoothly or abruptly changed,

abnormalities being continuously or discontinuously distributed,

and error ratio being low or high. Furthermore, we added variations

representing abnormalities and biological discoveries (different i1=2
values) in the synthetic datasets. In total, 63 kinds of synthetic data-

sets in nine groups were generated, and for each kind of synthetic

data, we repeatedly generated 100 datasets.

Figure 10 shows the robustness of dynamic filter on different

synthetic datasets generated under nine different settings. The per-

formance is evaluated using MCC on both abnormalities and on

biological outliers. Each figure represents synthetic data generated

under different settings (see details in supplementary section S2).

Each point in Figure 10 represents a MCC score of biological

Fig. 6. Performance comparison. Each version corresponds to a different ver-

sion of DF without: KNN refinement (v5), iteration of EM (v4), consensus on

regions (v3), reassignment of normal/abnormal labels in EM (v2), or the

whole refined process (v1)

(a) (b)

(c) (d)

Fig. 7. A case study on the real data shows that DF correctly identifies all the

abnormalities. (a) GMM in coarse process. (b) Candidates in coarse process.

(c) Candidates in refined process. (d) Final outputs

(a) (b)

(c) (d)

8 10 12 14 16 18 20 22 24
0.2

0.4

0.6

0.8

time(h)

Φ
II

Col−0

ELY

 

 

Fig. 8. A case study on the real data shows that DF identifies true biological

discoveries under the diurnal light condition. Lines with the same marker

represent biological replicates. (a) Phenotype of ELY and Col-0. (b) i1/2 learned

by our method. (c) ELY observed & modelled data in the coarse phase.

(d) ELY observed & modelled in the refined phase

(a) (b)

Fig. 9. Performance test on temporal checking region size. (a) Fixing max

number of abnormalities and varying max number of normal values;

(b) Fixing max number of normal values and varying max number of abnor-

malities. (a) Performance versus m. (b) Performance versus n
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discovery identification at x-axis and a MCC score of abnormality

identification at y-axis. The highest possible value is (1.0,1.0). The

experimental results show that dynamic filter (red circle) is better

than the other two methods in almost all the synthetic datasets. This

is because dynamic filter can identify and remove abnormalities

while reserving biological discoveries (see supplementary Tables S1

and S2 for performance comparison on MCC and true positive rate,

respectively).

5 Conclusion

With an aim towards identifying targets for improving energy yield,

advanced technologies in high-throughput plant photosynthetic phe-

notyping have been developed (Cruz et al., 2014; Houle et al.,

2010). These systems can be used to quantify photosynthetic behav-

iour in genetically diverse populations and to draw relationships

among genotype, phenotype and biological function, leading to a

better understanding of the underlying mechanisms that control the

photosynthetic properties under various environmental conditions

(Fiorani and Schurr, 2013; Rascher et al., 2011). As a consequence

of the long-time high-throughput plant phenotyping, the scale of

plant phenomics data grows exponentially. However, the quality

of phenotype data may be skewed by sources of noise that are diffi-

cult to remove in the data collection step.

The purpose of plant phenotyping is to discover phenotype val-

ues that are significantly different from a reference. But phenotype

values leading to biological discoveries may be obscured by abnor-

mal values caused by errors during detection. To ensure high data

quality, effective data cleaning should be considered a primary task.

However, since advanced data cleaning algorithms are primarily

based on indiscriminate outlier detection, they may remove both

abnormalities and biological discoveries not separable in the data

distribution.

We have developed a new coarse-to-refined model called dy-

namic filter to effectively identify both abnormalities and biological

discoveries by adopting a widely used photosynthetic model.

Specifically, dynamic filter is a residual analysis approach by dynam-

ically tracing statistical distributions of all samples rather than

individuals, and incorporating EM for performance optimization in

refined checking regions.

We note that certain events, such as transient changes in growth

environment, could introduce signals similar to growth lighting

malfunction, which could be wrongly labelled as abnormalities by

dynamic filter. Therefore, instead of automatically deleting all the

predicted abnormalities, we send all of them to domain experts for

confirmation. Meanwhile, all raw data are kept for any rollback

operation.

Experimental results show that our model is significantly better

than the existing data cleaning tools on both real-phenomics data

and synthetic data. Dynamic filter may have a wide impact because

of the rapid increase of large-scale phenotyping technologies.

It should be noted that although we used a photosynthesis-specific

Fig. 10. The MCC of biological discoveries and abnormalities on synthetic data
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curve, the model itself is independent of actual biological con-

straints. In principle, our approach can be used to clean data for any

number of phenotypes as long as suitable theoretical curves can be

derived for their behaviour. Implementation for new use cases

would involve substituting the appropriate theoretical curve into

the program, calculating the residuals of fits to the datasets and

optimizing the fitting procedure as described in Figure 2.
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