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Abstract

All metal oxide nanoparticles influence the growth and development of plants. They generally enhance or reduce
seed germination, shoot/root growth, biomass production and physiological and biochemical activities. Some plant
species have not shown any physiological change, although significant variations in antioxidant enzyme activity
and upregulation of heat shock protein have been observed. Plants have evolved antioxidant defence mechanism
which involves enzymatic as well as non-enzymatic components to prevent oxidative damage and enhance plant
resistance to metal oxide toxicity. The exact mechanism of plant defence against the toxicity of nanomaterials has
not been fully explored. The absorption and translocation of metal oxide nanoparticles in different parts of the
plant depend on their bioavailability, concentration, solubility and exposure time. Further, these nanoparticles may
reach other organisms, animals and humans through food chain which may alter the entire biodiversity. This review
attempts to summarize the plant response to a number of metal oxide nanoparticles and their translocation/distribution
in root/shoot. The toxicity of metal oxide nanoparticles has also been considered to see if they affect the production of
seeds, fruits and the plant biomass as a whole.
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Review
Introduction
Because of huge production and inadvertent use of
nanomaterials, the whole environment is affected. Al-
though, many of them are useful, some are toxic to
plants, algae and microorganisms. They may, therefore,
pose potential risk to the environment. Nanomaterials
are frequently used in plant growth, cosmetics, drug de-
livery, photonic crystals, analysis, food, coatings, paints,
bioremediation, catalysis and material science [1–12].
Keller and Lazareva [13] have reported that about 3000
tons of titanium dioxide (TiO2) nanoparticles are pro-
duced every year and more than 50% of which is used in
personal care products [14]. Copper oxide (CuO) nano-
particles cause membrane damage to Escherichia coli as
demonstrated by K+ leakage [15]. A study on Zebrafish
(Danio rerio) has shown that as exposure days of TiO2

nanoparticles were increased, the number of viable em-
bryos was decreased [16]. Some nanomaterials are toxic

to flora and fauna as they are used to inhibit their
growth to prevent further multiplication [17, 18]. Bioup-
take and accumulation of nanomaterials in plants may
increase shoot length and decrease root length and their
proliferation [19, 21]. The toxicity response depends on
the concentration, particle size and shape of the nano-
materials [22]. Some studies have demonstrated that
nanoparticle exposure improves free-radical scavenging
potential and antioxidant enzymatic activities and alters
microRNAs expression that regulates different morpho-
logical, physiological and metabolic processes in plants
[22]. The toxicity of the free metal ions has been shown
to be greater than that of the nanoparticles. For instance,
silver nanoparticles are less toxic to plants than the sil-
ver ions [23] mainly due to greater solubility of AgNO3

and greater mobility of Ag+ ions in aqueous medium.
Lipid peroxidation is an important parameter which in-
dicates the cell membrane integrity [24–26]. Reactive
oxygen species (ROS) generation is known to damage
cell membrane through lipid peroxidation leading to ion
leakage and disruption of the cellular metabolism lead-
ing to cell death. ROS also cause oxidative damage to
photosynthetic apparatuses and biomolecules [27, 28].
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Thus, plants protect cellular and sub-cellular system
from the cytotoxic effects of active oxygen radicals with
antioxidative enzymes (superoxide dismutase, SOD;
catalase, CAT; peroxidase, POD and ascorbate peroxid-
ase; etc.) and low molecular weight antioxidants (ascor-
bate, glutathione, proline, carotenoids, a-tocopherols and
phenolics, etc.) and non-enzymatic components (carot-
enoids, ascorbate and tocopherol, etc.) [26, 29–31].
These components minimize the oxidative damage dur-
ing exposure to metal oxide nanoparticles [18, 32, 33].
Zea mays exposed to CeO2 nanoparticles [34] did not
show lipid peroxidation and any physiological changes,
although activity of catalase, ascorbate and upregulation
of heat shock proteins was observed. However, no eleva-
tion of lipid peroxidation in rice treated with CeO2

nanoparticles (0–500 mg/L) was recorded but ion leak-
age was observed at higher doses [35].
In recent years, the efficiency of photosystem II

(PSII), considered as chlorophyll fluorescence (max-
imum quantum yield Fv/Fm), has been used as a diag-
nostic tool in various studies to check the impact of
abiotic stress as well as metal or metal oxide nanoparti-
cle toxicity in various plant species [26, 36–40]. Thus,
potential variations in Fv/Fm act as an indicator of
seedling-stock quality/physiological status of plants, in
vivo [30, 41–44]. Shaw et al. [40] have shown that CuO
nanoparticles reduced shoot and root growth of Hor-
deum vulgare seedlings with passage of time in a dose-
dependent manner. However, exposure of CuO nano-
particles in barley seedlings exhibited insignificant al-
teration in the Fv/Fm ratio. They have also reported
that the CuO nanoparticles induced the release of ROS,
membrane damage and overall enzymatic activity not
enough to cope with stress at 20-day exposure.
Superparamagnetic iron oxides, Fe3O4 nanoparticles

(SPION) owing to their magnetic properties, are widely
used in instruments, medical devices, as drug carrier,
and the treatment of many diseases [9]. Like other metal
oxide nanoparticles, SPION are cytotoxic to many aquatic
organisms and terrestrial plants because they also generate
ROS [32]. Bioaccumulation of SPION and other toxic
nanoparticles may reach animals through feed and may
alter biodiversity. Mushtaq [45] has reported that Fe3O4

nanoparticles inhibited the seed germination and root
elongation of cucumber over a wide range of concentra-
tion (500, 2500, 5000 μg/mL). In cucurbits, aggregation of
Fe3O4 nanoparticles occurred followed by their transloca-
tion in stem and roots [46].
Replacing biofertilizers by bionanomaterials may some-

time be beneficial if they increase the fruit count, seed and
biomass without producing toxic effects. Hydroponically
grown soybean plants bioaccumulate metal ions, metal
nanoparticle such as Zn/ZnO and CeO2 [47], which influ-
ence soil and microbes associated with plants and biomass

[48]. The nitrogen-fixing bacteria are most affected be-
cause certain nanoparticles (CeO2) eliminate the nitrogen
fixation potential and plant growth in soybean. Thus, the
soil contaminated with huge quantity of waste material
containing a variety of metal/metal oxide nanoparticles
may impact both microbes and plants.
Biotransformation of nanomaterials may either en-

hance toxicity or detoxify the living system [49]. Such
transformations are related to redox reaction, sulfida-
tion, phosphorylation and molecular modification [50].
The sulfidation of silver nanoparticles decreased toxicity
of E. coli owing to lower solubility of Ag2S. Similarly, the
formation of AgCl from AgNO3 in presence of chloride
ions also has the same effect.

AgNO3 þHCl →
AgCl þ HNO3

Solid

The plants grown in presence of nanoparticles may ab-
sorb and translocate them in different tissues. It has
been shown that CuO nanoparticles were reduced to
Cu2O and Cu2S in maize plants [51]. Similar transform-
ation and phytotoxicity of La2O3 and Yb2O3 in cucum-
ber have been reported by Ma et al. [52] and Zhang et
al. [53]. They were converted to their phosphates in the
cucumber roots. The solubility of La2O3 and Yb2O3 was
enhanced by the organic acids secreted by the cucumber
roots. If there are phosphate salts, the biotransformation
of oxides to phosphates is enhanced. From a 3-week
study of corn plant grown in presence of CeO2 nanopar-
ticles, Zhao et al. [34] showed that H2O2 was accumu-
lated in phloem, xylem and epidermal cells of shoots.
Catalase and ascorbate peroxidase activities were also
enhanced in the shoot. Since the plants treated with 400
and 800 mg CeO2/kg triggered the upregulation of heat
shock protein 70 (HSP70) in roots, it is believed that it
was due to systemic stress response. The increased activ-
ities of enzymes and that of HSP70 are due to the in-
duced reaction against CeO2 nanoparticle. CeO2

nanoparticle-plant-root interaction and translocation in
hydroponically grown wheat and pumpkin plant for
8 days (17–100 nm) at 100 mg/L in the absence and
presence of fulvic acid and gum arabic have been re-
ported by Schwabe et al. [54]. The above plants did not
exhibit any reduction in root growth. However, the
CeO2 nanoparticles were translocated in pumpkin shoot
but not in wheat plants. SEM and TEM images showed
the deposition of nanoparticles on the root surfaces of
both the plants which suggested that fulvic acid or gum
arabic does not interfere with translocation of CeO2

nanoparticles but helps in sticking them to the roots. It
has been ascribed to specific alterations in root structure
and its interaction with nanoparticles in presence of root
exudates [55, 56].
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Recently, Rico et al. [57] have shown that CeO2 nano-
particles promoted plant development (H. vulgare) to
the extent of 331% increase in shoot biomass without
showing any toxic effect; nevertheless, at higher concen-
tration (500 mg/kg), the plant did not produce grain
which is a big loss. Effect of a variety of metal nanoparti-
cles (Ag, Co, Ni) and metal oxide nanoparticles (CeO2,
Fe3O4, SnO2, TiO2) on the translocation of nutrients in
tomato plant has been investigated. Higher concentra-
tion of metal nanoparticles was found to be accumulated
in roots as well as shoots. However, Fe3O4 nanoparticles
promoted root growth and SnO2 reduced it [58]. Plant
response against some metal oxide nanoparticles is sum-
marized in Table 1.
The main aim of this review article is to present the

impact of a number of metal oxide nanoparticles on
plants and their distribution in root/shoot. Their toxic
effect has also been considered to see if they produced
oxidative stress and inhibited the growth of plant, seed
or fruit.

Cerium Oxide Nanoparticles
The CeO2 metal oxide nanoparticles are present in the
soil by default due to biosolids disposal from wastewater
treatment plant, which are released from the exhaust
pipe of automobiles. Priester et al. [59] have studied the
impact of nano-CeO2 and ZnO nanoparticles on the
growth and yield of soybean which is a major crop con-
taining protein. Hydroponically grown soybean plants
accumulate metal and metal oxide nanomaterials. It has
been found that TiO2 and ZnO nanomaterials influence
the useful microbes and biomass of the plant especially
the nitrifying symbiotic bacteria in the root nodules of
soybean and many other plants of fabaceae family. Sub-
stantial amount of bioaccumulated ZnO nanoparticles
was translocated into leaves and beans while CeO2 accu-
mulated into root nodules of soybean plant reduced ni-
trogen fixation potential and growth. The soil fertility
and plant growth are equally affected, and therefore, the
controlled amount of metal and metal oxide nanoparticles
must only be released in the environment [55]. ZnO and
CeO2 nanoparticles affect hydroponic plants [18, 47, 60]
and microorganisms [7, 48, 61], but their affect on plant
growth and crop yield has not been fully explored [62].
There was an increase in the number of pods of soybean
treated with cerium oxide (0.1–1.0 g/kg of soil) and
nano-ZnO (0.05–0.5 g/kg of soil). It has been noted
that CeO2 generally reduced the pod and biomass
while ZnO nanoparticles increased the pod count and
had stimulatory effect on soybean.
Zhao et al. [34] have studied the stress response and

tolerance of Zea mays to CeO2 nanoparticles. It has
been reported that CeO2 nanoparticles are toxic to bac-
teria, green algae, fish and soybean plants [47, 63, 64].

The plants and fishes are, therefore, equally affected by
the toxicity of these nanoparticles due to contamination
of water or soil by CeO2. Since the pores of corn pri-
mary roots have an average diameter of 6.6 nm, the
CeO2 nanoparticles with a diameter [65] smaller than
these may penetrate root and could be transferred from
root to corn shoots [33]. The nanoparticles attached to
the roots of corn plant inhibit the water transpiration to
the leaves [65]. The above ground parts of plants showed
low toxicity. The maize plants were grown for 20 days in
soil with CeO2 at 400 and 800 mg/kg level, and stress-
related responses such as H2O2, antioxidant enzyme,
heat shock protein 70 (HSP70), lipid peroxidation and
cell death were recorded every 5 days. About ten times
over production and accumulation of H2O2 in shoots was
recorded which indicated a concentration-dependent oxi-
dative stress. In the later stages (after 20 days), the H2O2

production was reduced, perhaps, the plant growth
and adaptation prevented over expression of H2O2.
The enzyme catalase and ascorbate peroxidase detox-
ify the plant by converting H2O2 to water and oxygen
as shown below:

2H2O2→
Catalase

Ascorbate peroxidase
2H2OþO2

The catalase activity in shoots of plants at lower CeO2

concentration (400 mg/kg) was 39 times higher but at
higher concentration (800 mg/kg), it was reduced to
only 30 times. It seems that the enzyme is activated by
CeO2 but at higher concentration, the activity gradually
decreased. Similarly, the ascorbate peroxidase activity
also declined with 800 mg/kg dose with a concomitant
decrease in H2O2 level. However, both the enzymes
eliminate the excess of H2O2 to prevent the lipid damage
by CeO2 nanoparticles.
Biotransformation of CeO2 in cucumber has been

thoroughly investigated by Zhang and co-workers [66].
During this process of biotransformation, either the tox-
icity of the nanoparticles is enhanced or it is detoxified
[49]. The environmental and the biological systems to-
gether alter the toxicity of nanoparticles to organism
[67]. Several steps, such as redox reaction sulfidation,
phosphorylation and molecular modification, are in-
volved in biotransformation [50]. Biotransformation of
Ni(OH)2 to Ni2+ in plant shoots and leaves was observed
by Parsons et al. [68], but no transformation occurred in
roots. Some metal nanoparticles or metal oxide nanopar-
ticles are oxidized or reduced depending on the chem-
ical compounds present in certain parts of the plant. For
instance, silver nanoparticles were oxidized to Ag(1) by
Lolium multiforum [69] while CuO nanoparticles were
reduced to Cu2O and Cu2S in maize plants [51]. The
toxicity is therefore dependent on the form of element if
they are in reduced or oxidized form. Root elongation of

Siddiqi and Husen Nanoscale Research Letters  (2017) 12:92 Page 3 of 18



Table 1 Plant response to some metal oxide nanoparticles

Nanoparticle Size (nm) Plant Concentration Plant response Key references

CeO2 7 Soybean 0, 500, 1000,
2000, 4000 mg/L

Genotoxicity recoded at 2000 and 4000 mg/L
concentration; a new band in the roots’ RAPD
profile was observed

[47]

7 Alfalfa, corn, cucumber,
tomato

0, 500, 1000,
2000, 4000 mg/L

In corn, tomato and cucumber seed germination
was reduced at 2000 mg/L; promoted root
elongation for corn and cucumber; reduced root
growth of alfalfa and tomato

[60]

8.0 ± 1.0 Coriander 125 mg/kg Increased shoot, root length and biomass; increased
ascorbate peroxidase activity in roots and catalase
activity in shoots

[175]

<8.0 ± 1.0 Rice 0, 62.50, 125,
250, 500 mg/L

Reduced H2O2 generation in shoots and roots;
increased electrolyte leakage and lipid peroxidation
in shoots

[35]

8 ± 1 Corn 0, 400, 800
mg/kg

No impact on chlorophyll contents and gas exchange [176]

8 ± 1 Barley 0, 125, 250,
500 mg/kg

Increased the plant height, chlorophyll contents,
biomass, reduced spike production; increased Ca,
K, Zn, Mg, Cu, Al, Fe, P and S in grains

[57]

8 ± 1 Wheat 0, 100, 400 mg/kg Changes in microstructure of leaf cells, swollen
chloroplasts, squeezed nuclei, bent and loosely
arranged thylakoids; decreased chlorophyll contents
and exhibits variation in protein content

[177]

10 ± 3.2 Bacillus thuringiensis
transgenic cotton

0, 100, 500 mg/L Swollen and destructed chloroplasts, reduced Zn,
Mg, Fe and P levels in xylem sap of cotton

[178]

50–105 Tomato 20 mg/kg Increased Ca, K, Mg, P in roots; Ca, Mg in stems;
decreased Na contents stems; K, Na, P and S in leaves

[58]

8 ± 1 Wheat 0, 125, 250,
500 mg/L

Changes the amounts S and Mn in grains, amino
acid composition and linolenic acid contents

[179]

ZnO 8 Soybean 0, 500, 1000,
2000, 4000 mg/L

No change in germination; genotoxicity recoded at
4000 mg/L concentration; a new band in the roots’
RAPD profile was observed

[47]

10 Soybean 0–500 mg/kg Reduced Fe at all treatments; Mg and K were decreased
at 500 mg Zn/kg treatment

[180]

<50 Soybean 500 mg/kg Reduced roots and shoots; had smaller surface area and
volume; no seed formation

[181]

20 Radish, rape, ryegrass,
lettuce, corn, cucumber

2000 mg/L Reduced root growth and elongation [19]

<10 Zucchini 1000 mg/L Reduced biomass (78–90%) [182]

10 Cucumber 400–800 mg/kg No impact on growth, gas exchange or chlorophyll
contents

[183]

90 Corn 800 mg/kg Reduced growth and inhibition of arbuscular mycorrhizal
fungi

[184]

10 Alfalfa 250, 500,
750 mg/kg

Reduced root biomass (80%) [185]

44.4 Arabidopsis 400, 2000,
4000 mg/L

Reduced seed germination, root elongation and number
of leaves

[93]

<100 Arabidopsis 100 mg/L Reduced biomass (81.4%), seed germination, 660
up-regulated
genes and 826 down-regulated genes

[92]

<50 Garden pea 100–1000 mg/L No impact on germination; root length, stem length,
leaf surface area, transpiration and root nodulation
was affected

[186]

1.2–6.8 Clusterbean 10 mg/L Increased biomass (27.1%), shoot length, root length,
root area, chlorophyll content and total soluble
leaf protein

[98]
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Table 1 Plant response to some metal oxide nanoparticles (Continued)

25 Tomato 0–1000 mg/L Plant height was increased (24%) at 250 mg ZnO/Kg;
increased root length in foliar sprayed plants with
250 mg ZnO/L; concentrations above 250 mg ZnO/kg
affected root length in both methods of application

[99]

<100 Wheat 50 mg/kg Reduced biomass [103]

<100 Wheat 500 mg/kg Reduced root growth, increased reactive oxygen species
production

[187]

CuO <50 Arabidopsis 0, 0.5, 1, 2, 5, 10,
20, 50, 100 mg/L

Reduced biomass, root growth retardation, increased
reactive oxygen species production

[116]

<50 Indian mustard 0, 20, 50, 100,
200, 400,
500 mg/L

Reduced shoot and root growth [128]

10–50 Mung bean 0, 20, 50, 100,
200, 500 mg/L

Reduced biomass and root length at all concentrations;
reduced chlorophyll content above 100 mg/L; no
changes in carotenoid content; increased H2O2 and lipid
peroxidation; increased reactive oxygen species
production with increase in concentration; modulations
in gene expression

[127]

<50 Wheat 500 mg/kg Inhibition in root and shoot growth; produced
oxidative stress possibly due to Cu released from
nanoparticles, Cu bioaccumulates

[187]

<50 Squash 0, 100, 500 mg/L Reduced growth and transpiration (60–70%) [188]

<100 Radish, grasses 10, 100, 500,
1000 mg/L

Growth inhibition; DNA damage [21]

TiO2/inorganic
bentonite clay

30/1–60 Maize 300, 1000 mg/L Inhibited hydraulic conductivity, leaf growth and
transpiration

[65]

Activated carbon-
based TiO2

30–50 Tomato 0–500 mg/L Improved germination, reduced germination time [189]

30–50 Mung bean 0–500 mg/L Improved germination, reduced germination time [189]

TiO2 – Soybean 0, 0.01, 0.03,
0.05%

Increased height (0.05%) and dry weight [190]

<100 Wheat ~91 mg/kg Reduced biomass, nanoparticles found mostly stick
on surface of roots

[103]

<25 Tobacco 0, 0.1, 1, 2.5, 5% Reduced biomass, inhibited germination and root
length; upregulation of alcohol dehydrogenase and
ascorbate peroxidase

[191]

4–6 Spinach 0.25% Improved growth; increased glutamate dehydrogenase,
glutamine synthetase and glutamic piruvic transaminase
activity

[146]

7–40 Chickpea 2–10 mg/kg Reduction in electrolyte leakage and malondialdehyde
content at 5 mg/kg treatment

[192]

6.22 Ulmus elongata 0.1–0.4% Increased Cu accumulation in leaves; reduced net
photosynthetic rate; increased carbohydrates and lipids

[193]

27 ± 4 Cucumber 0, 250, 500,
750 mg/kg

Enhanced catalase; activity in leaves; enhanced P and K
availability in fruit

[194]

Fe3O4 20 Pumpkin 500 mg/L No toxic effect; nanoparticles are translocated
throughout the plant tissues, detected in stem
and leaves, accumulated on the surface of root

[46]

7 Cucumber, lettuce 62, 100, 116 mg/L Low to zero toxicity on germination [195]

6 Lettuce, radish,
cucumber, spinach,
tomato, leek, peppers

0.67 mg/mL Reduced germination [196]

25 Ryegrass, pumpkin 30, 100 and
500 mg/L

Increased root elongation; no uptake; block of aquaporins;
oxidative stress

[32]

Fe2O3 20–100 Sunflower 50, 100 mg/L No uptake and translocation; reduced root hydraulic
conductivity

[158]
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cucumber seedlings were inhibited by La2O3 and Yb2O3

nanoparticles as a consequence of their biotransform-
ation to rare earth phosphates in the cucumber roots
[52, 53] due to the phosphorous compounds exuded by
the root of plant.
The CeO2 nanoparticles are not toxic to cucumber

plants up to 2000 mg/L; however, the major part is accu-
mulated in the root, and about 35% is translocated to
leaf and stem, perhaps, because of size constraints. The
CeO2 nanoparticles mixed with needle-like clusters were
found on the outer epidermis of the root. The image of
the cluster showed the presence of CePO4. It has been
reported that the absorbed Ce3+ ions on the cell wall of
the Saccharomyces cerevisiae can react with phosphate
released from inside the yeast cells and form Ce(III)
phosphate nanocrystallites [70]. Since CePO4 is insol-
uble, it remains on the surface of the root which has
been confirmed from TEM/EDS results. The nanocrys-
tals were found to be deposited on the root epidermis
and in the intercellular spaces of the cucumber plant.
During the biotransformation of CeO2 to CePO4 in bio-
logical system, CeO2 undergoes a valence change from
Ce4+ to Ce3+ as a consequence of one electron reduction
and formation of CePO4.

4þCeO2→
3þCePO4

Both positive and negative results of the CeO2 nano-
particles on plant system have been reported [71].
Lopez-Moreno et al. [60] have shown that CeO2 nano-
particles of 7 nm were taken up into seedlings of cucum-
ber, alfalfa, tomato and corn at concentrations of up to
4000 mg/L. Particles of 7 to 25 nm were found to be
translocated to the shoots of cucumber. It is perhaps the
variation in the interaction of nanoparticles with macro-
molecules present in the root which causes aggregation
around the root tips. Besides, uptake and translocation
of nanoparticles also depend on the shape, solubility,
agglomeration and surface chemistry [5, 22].
Schwabe et al. [54] exposed wheat and pumpkin (hydro-

ponic plant culture) to uncoated CeO2 nanoparticle (of 7–

100 nm of 100 mg/L) suspension in the presence of fulvic
acid and gum arabic. Although the suspension alone was
stable, changes in pH, particle agglomeration rate and
hydrodynamic diameter in nanoparticles occurred in pres-
ence of wheat and pumpkin plants. CeO2 nanoparticles
were found to be translocated into pumpkin shoots but
not in wheat plants. However, no toxic effect was observed
in both plants. In a recent experiment, Anderson et al.
[72] have chosen ten plant species and found that CeO2

and TiO2 nanoparticles do not cause widespread acute
toxicity during germination and early growth stage.
Fulvic acid and gum arabic stabilize the CeO2 nanoparti-

cles on one hand and reduce their adsorption by root on the
other. However, CeO2 nanoparticles of 17 to >1 μm are par-
tially available for uptake by pumpkin similar to those found
by Zhu et al. [46] and Zhang et al. [73]. Translocation of Ce
into shoot of wheat was not detected as the monocots are
less likely to take up nanoparticles because water uptake by
them (wheat) is only 25% to that of pumpkin.
A recent study on the uptake and accumulation of CeO2

nanoparticles in different parts of barley (Hordeum vulgare L.)
has beenmade by Rico et al. [57]. The effect of CeO2 nanopar-
ticles on the vegetative growth and production of barley
grown in soil treated with different quantities of CeO2 nano-
particle has been reported (Table 1). It is important to note
that at higher dose (500 mg/kg), there occurred rapid shoot
development resulting in 331% enhancement of biomass. It is
more surprising that at this concentration (500 mg/kg), the
barley did not produce grain. It is, however, encouraging that
at lower concentration of CeO2-amended soil (125 and
250 mg/kg) and also in control-produced grains with large
quantity of Ce accumulated in leaves and grains (Table 2)
alongwith P, K, Ca,Mg, S, Fe, Zn, Cu andAl.
Barley treated with CeO2 nanoparticles (250 mg/kg)

enhanced methionine, aspartic acid, threonine, arginine
and linolenic acid contents in the grain. It is clear that
the moderate concentration (125–250 mg/kg) of CeO2

nanoparticles is highly beneficial while the higher doses
(500 mg/kg) are toxic to barley. The accumulation of
other metal ions in barley leaves and grains (e.g. P, K,
Ca, Mg, S, Fe, Zn) is catalyzed by CeO2 nanoparticles. It

Table 1 Plant response to some metal oxide nanoparticles (Continued)

22–67 Arabidopsis 4 mg/kg Reduced biomass and chlorophyll contents [197]

– Soybean 0, 0.25, 0.5, 0.75,
1.0 g/L

Increased leaf and pod dry weight; increased
grain yield (48%)

[167]

246 Lettuce, radish,
cucumber

1000 mg/L Found to be adsorb on the surface of seed [198]

Al2O3 13 Maize, cucumber, carrots,
cabbage

2000 mg/L Reduced root growth [168]

– Corn 2000 mg/L Reduced root length [19]

– Tobacco 0, 0.1, 0.5, 1% Increased root length, biomass; decreased leaf count;
the seedlings significantly decreased; 1% Al2O3 exposure
has shown extreme increase in microRNA expression

[171]
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is perhaps due to the biomolecules coordinated with
these metals to make them available as trace elements
which also act as nutrient for the plant. CeO2 nanoparticles
promoted plant growth in soybean and tomato [59, 74] but
did not affect the growth of cucumber.
Cerium uptake in root of rice (Oryza sativa), wheat

(Triticum aestivum) and barley (H. vulgare) at different
doses has been determined. Although CeO2 are not
translocated in shoots of wheat, they are taken up by
rice and barley [35] in fairly large quantity. Recent study
[57] suggests that rice, wheat and barley could accumu-
late CeO2 in their root tissues without influencing the
rate of germination and root elongation of the seedlings.
CeO2 nanoparticles may induce modification in plants at
molecular levels [35, 75, 76]. Oxidative stress and mem-
brane damage of rice roots have been observed. It has
been found from FTIR spectra of the rice, wheat and
barley germinated in cerium oxide suspension that
changes in amide I and amide II bands (1700–1600 cm−1

and 1600–1500 cm−1) are significant due to the presence
of phenols and proteins [76, 77]. These results suggest that
the cerium oxide nanoparticles produce modification in
the root xylem of the cereal crops.
The impact of CeO2, Fe3O4, SnO2, TiO2 and metallic Ag-

, Co-, Ni-engineered nanoparticle uptake and translocation

in tomato plant has thoroughly been investigated in the re-
cent years [58]. The plant exposed to different quantities of
nanoparticles showed different vegetative growth (Table 3).
CeO2-treated plants showed a very slight increase in stem
growth. Fe3O4 nanoparticles significantly promoted the
growth and elongation of tomato plant but reduced its
green biomass. SnO2 remarkably decreased root growth
and the dry stem and leaf weight. Though Fe3O4 was not
significantly translocated into stem and leaf, fairly large
amount of iron was found to be deposited in fruit and root
of tomato plants. However, titanium, tin and cerium were
not translocated even under control or treated plants. It is
important to note that in all cases of nanoparticles treated
tomato plants, the Ca contents in stem and root increased
from 25.6 to 69.8% with respect to control. The bioavail-
ability of nanoparticles depends on the coating, original
matter in the soil or even clay because they can alter their
behaviour leading to aggregation. Thus, the toxicity of
nanoparticles is reduced due to their slow release. It is,
therefore, concluded that soil polluted by metals can pro-
duce adverse effects if they are present above permissible/
tolerance limits.
Priester et al. [59] have already reported that soybean

plants grown in organic farm soil containing ZnO or
CeO2 nanoparticles absorb and translocate Zn and Ce in
all parts of the plant. The results indicated that the low
amount of Ce is translocated in soybean pods [78]. The
Ce in pods and nodules exists mainly as Ce4+ and some
amount as Ce3+, which suggests that nearly 20% CeO2 is
reduced to Ce3+ [34]. Zhao et al. [34] have shown that
Ce was coordinated as CeO2 nanoparticles inside the
roots of corn plants grown in organic soil amended with
alginic acid coated with CeO2 nanoparticles. They also
showed, from confocal microscopy images, the presence
of CeO2 nanoparticles in the cell wall of the corn root
cortex. They termed it passive uptake of the CeO2 nano-
particles. It must be made clear at this juncture that the

Table 3 Effect of metal and metal oxide nanoparticles on dry matter of roots, stems and leaves of Lycopersicon esculentum plants
grown in pots

Treatment Root Stem Stem Root elongation Plant height

g SD g SD g SD cm SD cm SD

Control 1.9 b 0.1 20.5 b 0.9 25.2 a 1.1 22 ab 1.3 98 a 3.8

Ag-NPs 1.6 b 3.3 26.2 a 1.2 24.2 a 0.9 19 b 1.5 82 b 5.3

Co-NPs 1.5 b 0.3 10.3 d 1.1 18.3 b 1.5 15 b 2.8 84 b 4.2

Ni-NPs 1.0 bc 0.3 26.1 a 1.2 12.1 d 0.9 15 b 3.2 93 ab 5.1

CeO2-NPs 2.2 ab 0.2 13.1 cd 1.4 15.7 c 0.7 23 ab 2.1 109 a 3.1

Fe3O4-NPs 4.8 a 0.2 18.1 c 0.8 18.9 b 1.3 25 a 2.3 106 a 3.5

SnO2-NPs 0.7 c 0.2 5.4 e 0.7 16.8 c 1.5 11 b 3.7 104 a 3.4

TiO2-NPs 1.4 b 0.1 19.2 b 1.1 18.8 b 0.8 17 b 2.1 110 a 4.1

Means followed by a different letter within a row are significantly different at p < 0.05 according to Duncan’s multiple range test [58]

Table 2 Cerium concentrations (μg/kg dry wt) in different organs
of Hordeum vulgare cultivated to grain production in cerium oxide
nanoparticles-amended soil

Soil treatments (mg/kg) Leaves Grains

0-control 571 ± 40 200 ± 5 c

125-nCeO2-L 595 ± 140 449 ± 51 b

250-nCeO2-M 524 ± 73 787 ± 58 a

500-nCeO2-H 701 ± 92 –

Values are means ± SE (n = 3). Same letters mean no statistical difference
between treatments at Tukey’s test (p ≤ 0.05) [57]
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CeO2 nanoparticles are neutral species which cannot co-
ordinate with any ligand carrying lone pair of electrons or
negative charges because these electrons are to be partially
donated to an electron pair acceptor. However, it is quite
likely that the CeO2 nanoparticles are translocated to the
root cortex with support of the alginic acid coating.

Zinc Oxide Nanoparticles
Riesen and Feller [79] have shown the accumulation of zinc in
the phloem of wheat plant and also in the soybean grain, but
not zinc oxide (ZnO) nanoparticles. Zinc is supposed to be
bonded to the oxygen of the carboxyl acid as ZnO [80, 81].
Thangavel et al. [82], from a study of red spruce cell culture,
suggested that in living cells, it is more likely that Zn ions bind
to the sulphur of phytochelatins rather than the oxygen of or-
ganic acids. However, Zn(II) in soybean plants has been found
to be associatedwith oxygen of acids which has also been con-
firmed on the basis ofmodel compounds [78].
Kopittke and co-workers [83] analyzed cowpea exposed to

Zn and found that nearly 65–85% of the zinc was coordi-
nated as a zinc-phytate complex. Phytic acid is present in all
beans and is a source of phosphorous storage [84]. It is
known that the Zn(II) ions activate the enzyme phytase but
it may be bonded to phytic acid to give zinc phytate. Phytic
acid is highly unstable and therefore it is stabilized in the
form of a metal salt. The free zinc ions are therefore bonded
to phytic acid through oxygen giving zinc-phytate complex.
Hu and co-workers [85] have recently investigated the

adverse effects of ZnO nanoparticles of 25 nm diameter
on the aquatic plant, Salvinia natans (L.). During 7-day
exposure of plant to different concentrations of ZnO
nanoparticles, no significant difference was observed in
growth. However, the ZnSO4-treated plants showed
marked decrease in growth. Generally, 50 mg/L ZnO
nanoparticles were found to produce oxidative stress and
depressed the photosynthetic pigments. SOD and CAT ac-
tivities were increased but chlorophyll pigments decreased
in the leaves of S. natans. It has been already reported that
the antioxidant enzymes SOD, CAT and POD can protect
plant cells against adverse effects of ROS [26, 28, 29, 32].
While POD acts as scavenger of ROS, SOD and CAT
jointly convert O2

− and H2O2 to H2O and O2 and also re-
duce overall free ·OH radical. Zinc has been reported [86,
87] to increase the biosynthesis of antioxidant enzymes in
the duckweed, Spirodela polyrhiza. The POD activity was
remarkably inhibited by large quantity of ZnO nanoparti-
cles (50 mg/L). In a recent study Zafar et al. [88] have re-
ported that ZnO nanoparticles (500 to 1500 mg/L)
negatively affects the Brassica nigra seed germination and
seedling growth; and also increased antioxidative activities
and non-enzymatic antioxidants contents. The toxicity of
ZnO nanoparticles depends on the quantum of dissolved
zinc in the solution [89, 90]. It is true that only a fraction of
dissolved zinc is bioavailable which can be absorbed and

translocated in different parts of the plants; nevertheless,
the solubility of zinc oxide is pH dependent because being
amphoteric in nature, it dissolves in both the acidic and
alkaline media as shown below:

ZnOþ 2HCl
ZnOþ 2NaOH

→

→

ZnCl2 þH2O
Na2ZnO2 þH2O

The ZnO nanoparticles diffuse in the plant cells if size
is relatively smaller than the pores in the plant cells.
Phytotoxicity of ZnO nanoparticles has been investigated
by Watson et al. [91] under both acidic and alkaline
soils. In acid soil, inhibition of elongation of roots of
wheat (T. aestivum) was observed whereas phytotoxicity
was mitigated in the alkaline soil, although absorption of
ZnO nanoparticle was doubled even when Zn concen-
tration in soil was low. Soluble zinc in the acid soil was
200-fold higher and shoot levels were tenfold higher
than those in the alkaline soil. Phytotoxicity was ob-
served in soil spiked with humic acid but it did not
influence the plant responses. The ZnO nanoparticle ag-
gregation with humic acid provides bioavailable zinc.
But these nanoparticles may be distributed to the plant
only if they are taken up through diffusion. The plant
roots are stunted in the acid soil as the quantity of sol-
uble zinc was 100 times higher in acid soil than the alka-
line soil. However, higher dose of Zn (500 mg/L) causes
phytotoxicity to the plants.
ZnO nanoparticles (100 mg/L) treated Arabidopsis

seedlings showed reduced biomass to 81.4 ± 11.5% after
2 weeks [92]. Lee et al. [93] have also reported that ZnO
nanoparticle at 400 mg/L inhibited the germination, root
growth and leaf development in Arabidopsis similar to
other plants [20]. ZnO nanoparticles also caused re-
markable transcriptomic changes in terms of number of
genes and their expression. It has been suggested that
ZnO nanoparticles release Zn2+ ions and damage root
tissues. Under such stress conditions, the plant initiates
new root growth as an alternative to the damage by
ZnO nanoparticles/Zn2+. ZnO nanoparticles promote
ROS production in exposed roots [94, 95]. The presence
of Zn2+ ions is either due to the presence of zinc salt in
the ZnO nanoparticle or due to the conversion of ZnO
nanoparticles to Zn2+ ions. It is, therefore, proposed that
stress and defence responses of plants are due to a com-
bined effect of ZnO nanoparticles and Zn2+ ions.
Higher toxicity of ZnO nanoparticles with respect to the

Zn2+ ion in hydroponic solution using Allium cepa has
been attributed to higher release of ROS [96]. Further, a
study with Vigna unguiculata in soil amended with either
ZnO nanoparticles or Zn2+ showed no difference in plant
growth, accumulation or speciation between the zinc ion
and ZnO nanoparticle treatment [97]. However, foliar ex-
posure of ZnO nanoparticles to Cyamopsis tetragonoloba
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and Solanum lycopersicum has revealed a positive response
in terms of biomass production, chlorophyll and total
soluble leaf protein contents [98, 99].
Effect of citrate-coated Ag and ZnO nanoparticles and

uncoated AgNO3 and ZnSO4 on Zea mays L. and Brassica
oleracea var. capitata L. has been explored in vitro. The
Ag nanoparticles have been shown to be more toxic to
plants than free AgNO3. Considerable changes in metaxy-
lem count of maize were observed with Ag nanoparticle,
AgNO3 and ZnSO4 treatments. However, ZnO nanoparti-
cles did not show any significant change in maize. In case
of cabbage and maize, the germination and root elong-
ation measurements revealed that nanoparticles were
more toxic to plants than the free metal ions [100]. ZnO
nanoparticles reduce seed germination [19] and damage
tissues [20] in hydroponically grown plants. Kim and co-
workers [101] have reported that ZnO nanoparticles at
2000 mg/kg did not affect the root length and biomass
production of Cucumis sativus grown in a loamy sand soil
at pH 5.5. Manzo et al. [102] have reported that ZnO
nanoparticles at 286 mg/kg affected the root elongation in
Lepidium sativum sown in an artificial standard soil. How-
ever, Du et al. [103] reported that at only 45.45 mg/kg
(5 g/110 kg soil), these nanoparticles reduced the biomass
production of wheat (T. aestivum) cultivated in loamy clay
soil at pH 7.36. X-ray absorption spectroscopic studies
have shown absence of ZnO nanoparticles in roots [47,
81]. However, confocal microscopic study showed the
presence of FITC-stained ZnO nanoparticles in the stele
of corn roots, although these particles were not found in
the shoots [33]. It indicated that the ZnO nanoparticles
were absorbed and incorporated into the plant transport
system.

Copper Oxide Nanoparticles
The phytotoxicity of CuO nanoparticles in a 1:1 mixture
of CuO and ZnO nanoparticles in plants colonized by
Pseudomonas chlororaphis in a sand matrix has been in-
vestigated by Dimkpa et al. [104]. Bean root growth was
inhibited and shoot was elongated by CuO nanoparticles
[105, 106]. The CuO nanoparticles were found to release
copper to the shoot where maximum copper loading
was noted with the minimum dose of 100 mg/kg CuO
nanoparticles and lower level of copper with higher
doses of 250 and 500 mg/kg. The accumulation of Cu
was 10–20-fold higher than the normal level (10 mg/kg).
At higher CuO nanoparticle concentration, the major
part was accumulated in the root which inhibited its
growth. The other essential metal ions in presence of
CuO or Cu2+ ions are either unavailable to the plant or
their absorption was reduced. For instance, accumulation
of Fe and Ca in the shoot tissue decreased as a conse-
quence of antagonistic effect of Cu on Fe and Ca [107]. In
fact, copper increases the absorption of Fe in animals if

iron is available in ferrous form. The reduction of ferric to
ferrous occurs by the enzyme ferric reductase but if Cu is
in excess, it may be bonded to the enzymes making it un-
available for the reduction of Fe3+ to Fe2+. As a result, the
iron and calcium accumulation in shoot of plant declines
[108, 109]. Dimkpa et al. [104] have suggested that Cu(II)
is partially reduced to Cu(I) by citrate present in roots of
beans and cucumber but chemically Cu(I) is highly sus-
ceptible to oxidation in presence of water and air which
cannot be avoided in plant system. The redox process is
very rapid and hence, the presence of Cu(I) is extremely
difficult. CuO/ZnO nanoparticle exposure of bean plants
affected both root and shoot. Improved plant growth has
been attributed to lower solubility of CuO nanoparticles.
It has been suggested that due to alkaline soil, the other
metals (Cu and Fe) may be precipitated as their hydrox-
ides and may not be available for absorption by plants.
The reduction and accumulation of iron may be due to its
hydroxide formation. The exposure of CuO nanoparticles
to bean plants reduced Mn, Zn and Ca concentration and
increased Na levels in the shoot tissues without disturbing
Mn and K levels. In the bacterial culture medium, CuO
nanoparticle treatment showed root growth perhaps due
to bacteria which formed a protective layer around the
root which does not allow copper to be absorbed. How-
ever, the plant cells act against the toxic effects of cop-
per nanoparticles and in doing so, certain metals are
absorbed and certain others are precipitated. Phytotox-
icity of commercial CuO (<50 nm) and Zn nanoparti-
cles (<100 nm) against sand-grown wheat (T. aestivum)
has been investigated. Since these nanoparticles con-
tained some metallic and non-metallic substances, they
may also influence the growth rate of the plant. Changes
in shape of ZnO nanoparticles were noted when mixed
with sand in aqueous medium.
The sand amended with CuO and ZnO (500 mg/kg)

significantly reduced root growth. Dissolved Cu from
CuO nanoparticles showed toxic behaviour towards
wheat plant but zinc did not influence the shoot growth.
CuO and Cu(I)-sulphur complexes were found to be ac-
cumulated in the shoot while zinc was detected as Zn
phosphate. Oxidative stress in the nanoparticle-treated
plants was reflected by an increase in lipid peroxidation
and oxidized glutathione and higher peroxidase and
catalase activities in roots. The solubility of nanoparticles
decreased with increasing aggregation causing morpho-
logical changes in ZnO nanoparticles [110]. It has been
shown that the amount of Cu and Zn ions released from
CuO and ZnO are almost negligible to cause phytotox-
icity to plants. Plants grown with nanoparticles showed
increased accumulation of Cu and Zn (20 fold Cu and
24 fold Zn) which altered root metabolism in wheat
plants. Both CuO and ZnO nanoparticles have been de-
tected in shoot of the plants. However, the quantitative
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difference between the two metals is mainly due to their
solubility/diffusion. The zinc as zinc-phytate accumu-
lates in the plants.
CuO nanoparticles have been shown to induce DNA

damage in plants [21]. Growth inhibition in radish
(Raphanus sativus), perennial ryegrass (Lolium perenne)
and annual ryegrass (Lolium rigidum) under laboratory
conditions has been reported. Germination of radish
seeds in presence of CuO nanoparticles induces substan-
tial accumulation of mutagenic DNA lesions. Radish and
similar other plants produce oxygen-derived species (O2

−,
H2O2,·OH) during germination [111]. H2O2 enhances
seed germination but in presence of peroxidase or transi-
tion metal ions such as iron or copper produce an excess
of OH via the Fenton reaction [112]. It is therefore sug-
gested that copper ions produced from CuO nanoparticles
may catalyze the formation of OH. CuO nanoparticles
inhibited the radish root growth to the extent of 79%
which is relatively much larger than that observed for Cu2
+ ions alone. The stunted growth has been observed
mainly in the root/shoot [113].
CuO nanoparticles have been shown to be cytotoxic

and genotoxic [114, 115] to mammalian cells. It is
thought to be due to nanoparticles which produce oxida-
tive stress within living cells and cause DNA damage in
plants or animals. Nair and Chung [116] have studied
the impact of CuO nanoparticles on the growth of Ara-
bidopsis thaliana and changes at molecular level. The
seedlings were exposed to different concentrations of
CuO nanoparticles (0.5 to 100 mg/L) for 3 weeks under
laboratory conditions. Total chlorophyll contents were
significantly reduced at all concentrations starting from
2 to 100 mg/L. Root growth was reduced even with
0.5 mg/L CuO nanoparticles. Superoxide and hydrogen
peroxide increased in roots and leaves with increasing
concentration of nanoparticles in plant. Oxidative stress,
sulphur assimilation of glutathione and proline biosyn-
thesis were also influenced by CuO nanoparticle expos-
ure. In another study, A. thaliana plants exposed to
cerium oxide and indium oxide showed reduction in
plant biomass and total chlorophyll contents [117]. The
increase in anthocyanin (the flavonoid) concentration in
A. thaliana plant exposed to CuO nanoparticles may be
due to oxidative stress. Anthocyanin acts as antioxidant
to protect the plant cells against ROS-induced oxidative
stress [29]. It is obvious that when a foreign matter is
absorbed by the plant, it acts against this material
through defensive mechanism for protection. Thus, it
produces antioxidants which act as scavenger of ROS.
As a result of stress by CuO nanoparticles, lignin was
also deposited in A. thaliana.
It has been proposed that CuO nanoparticles would

have been translocated via the vascular tissues and subse-
quently dissolved to produce Cu ions which resulted in

deposition of lignin. Translocation of CuO nanoparticles
is apparent but the production of Cu ions by dissolution is
impossible because generation of Cu ions from copper
nanoparticles is a redox process which requires a reducing
agent such as hydrogen, phenol, protein or an acid.
However, CuO being weakly basic dissolves in HCl to
give ions as follows:

CuOþ 2HCl
CuCl2

→

→

CuCl2 þH2O
Cu2þ þ 2Cl−

A comprehensive study of uptake and toxic effects of
CuO nanoparticles, Cu2+ ions and also in combination
with UV radiation has been done on the aquatic macro-
phyte, Elodea nuttallii [118]. Growth of the plants was
inhibited when treated with CuSO4 or CuO nanoparti-
cles. However, the amount of copper accumulated in E.
nuttallii was lower in CuSO4-treated plants than those
treated with CuO nanoparticles (Fig. 1). The difference
has been attributed to the solubility of Cu2+ in CuO
nanoparticle medium. Surprisingly, the relation between

Fig. 1 a Accumulation ratios ([Cu]plant/[Cu]medium) and b accumulation
of Cu in shoots of Elodea nuttallii exposed to 256 μg/L Cu(II) or 10 mg/
L CuO nanoparticles for up to 24 h. UV was applied additionally to test
for effects on Cu accumulation. UV exposure lasted maximal 8 h: in
the 24-h treatment, a 16-h period without UV followed the 8-h
UV treatment before sampling. Different letters indicate statistically
significant differences between the values as obtained by ANOVA
and Tukey’s post hoc test (p < 0.05), where the letter a is assigned to
the groups with the highest mean values [118]
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accumulated Cu and dissolved Cu2+ was higher in plants
exposed to 256 μg/L Cu2+ than those exposed to 10 mg/
L CuO nanoparticles containing nearly 2.0 mg/L dis-
solved Cu (Fig. 1). The accumulated Cu is directly pro-
portional to the amount of Cu dissolved in the medium
but it is not related to higher concentration of Cu in the
solution [119]. Perhaps at higher concentration, agglom-
eration occurs which is prevented from absorption.
When the dissolved copper is in small quantity, it has
greater degree of freedom for movement and can be
accumulated in different parts of the plant. However, en-
hanced Cu uptake in plants exposed to CuO nanoparti-
cles with dissolved Cu concentration has also been
reported which is contradictory to above results [120]. It
has been suggested that plants exude some acid to dis-
solve additional Cu from CuO nanoparticles which is
transported and accumulated in different parts of the
plant [121]. Formation of large agglomerates prevents
the dissolution of Cu. It is interesting that Cu accumula-
tion is enhanced, under UV radiation, in shoots after 4 h
but there is no direct evidence of enhanced solubility of
Cu2+ in CuO nanoparticle suspension. Accumulation of
Cd under UV radiation has been ascribed to membrane
damage of the plant [122]. Rai et al. [123] suggested al-
tered membrane permeability due to lipid peroxidation
in cell membranes of UV-exposed cells in cynobacteria.
In plants, under UV radiation, photosynthetic capacity is
strongly reduced. When higher quantity of Cu is accu-
mulated in plants, the response of the oxidative stress-
related enzymes peroxidase and superoxide dismutase is
also high.
Duckweed exposed to CuO nanoparticles showed in-

hibition of photosynthetic activity due to the Cu2+ ions
released from it [120]. Andreotti et al. [124] have found
that Phragmites australis can relocate Cu from roots to
shoots. CuO nanoparticle exposure to cotton and Bt
cotton has shown significant alterations of the concen-
trations of indole-3-acetic acid and abscisic acid [125].
Cu-based nanoparticles have been found to increase P
and S in alfalfa shoots but decreased Fe and P in lettuce
shoots [126]. Carotenoids remained unchanged and
chlorophyll reduction began at 100 mg/L CuO nano-
particles in mung beans [127]. Carotenoid contents di-
minished at 400 mg/L CuO nanoparticles in soybean
plants, but chlorophyll started decreasing at 400 mg/L
[116]. In another study, CuO nanoparticles reduced
carotenoids and chlorophylls in mustard [128] while
Cu-based nanoparticles did not affect chlorophyll pro-
duction in cilantro [129].

Titanium Oxide Nanoparticles
Although TiO2 is used in many consumable materials
like cosmetics, sunscreen and colouring matter in medi-
cine, paints, surface coating and water contamination

process, it causes pulmonary inflammation in man if in-
haled [130–132]. The quantity and exposure time of
TiO2 significantly increase toxicity. Clément and co-
workers [133] have reported that TiO2 nanoparticles
(25 nm) with anatase crystal structure are more toxic to
cladocerans, algae, rotifers and plants. At high concen-
tration, they promoted growth of roots in plants. Since
the rutile crystalline structures of TiO2 nanoparticles
form aggregates in aqueous medium and are less avail-
able for absorption, they are less toxic than the anatase
TiO2 (1 μm). When the exposure time is increased from
24 to 72 h, toxic effect is enhanced. However, at higher
concentration (100 mg/L) of anatase TiO2 nanoparticles,
the germination of seeds and root growth of flax seeds
was enhanced. The positive effect has been suggested to
be due to antimicrobial properties of anatase TiO2 which
increases plant resistance to stress. Similar results have
also been obtained by Zheng et al. [134].
Larue et al. [135] have studied the effect of anatase

and rutile TiO2 on the development and germination of
wheat (Triticum aestivum) over a period of 7 days. It has
been observed that anatase TiO2 nanoparticle of diam-
eter lower than 140 nm is accumulated in wheat roots.
They are translocated to leaves if their diameter is
smaller than 36 nm even if it is below the detection
limit. TiO2 nanoparticles neither dissolve nor their crys-
tal phase undergoes any change during translocation.
The exposure of wheat plant to 14 and 22 nm TiO2

nanoparticles causes enhancement in root elongation
without influencing seed germination, vegetative growth,
photosynthesis or redox reaction. These are short-term
effects of TiO2 nanoparticles but during the whole cycle
of the plant, it may have some adverse effects.
Accumulation and translocation of TiO2 nanoparticles

in plants suggest that it is not biodegradable. Long-term
deposition may interfere with biological function of
plants. Servin and co-workers [136] have studied the ef-
fect of TiO2 nanoparticles in cucumber plants (Cucumis
sativus) over a large accumulation range (0–4000 mg/L).
They found that root was significantly increased up to a
concentration of 500 mg/L but above this concentration,
it ceases to grow further. Nitrogen in the root was con-
verted to organic nitrogen showing an increase of about
51.1%, compared to control. It is thought that TiO2

nanoparticles promote plant root growth by stimulating
nitrogen accumulation.
Nanomaterials of the same metal with different struc-

tural motifs have different effects on plants, although
there is no distinction in their chemical behaviour. Of
the three crystalline structures of TiO2 nanoparticles
(anatase, rutile and brookite), anatase exhibits the highest
catalytic activity [137] and can inhibit the growth of many
microbes such as algae, fungi and bacteria. It promotes
carotene and chlorophyll synthesis in cucumber. TiO2
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nanoparticles increase the Hill reaction and chloroplast ac-
tivity by enhancing light absorption in chlorophyll a, elec-
tron transfer and oxygen evolution rate in spinach leaves
[138–142]. Ba [143] showed that nano-TiO2 solution can
inhibit the germination and growth of cucumber seedlings
due to accumulation of nanoparticles. However, rutile TiO2

nanoparticles can protect chloroplast membrane against
reactive oxygen and free radicals and enhance the protect-
ive activities of antioxidant enzymes such as SOD, CATand
POD [144, 145].
Nano-anatase TiO2 promotes the activity of spinach

nitrate reductase and accelerates the conversion of nitro-
gen as nitrates or ammonium salts to organic nitrogen
(protein, etc.) [146] but the uptake of other essential
metals like Mg and Mn is not affected. TiO2 nanoparti-
cles, however, stimulated the synthesis of carbohydrates
and lipid as a consequence of stress caused by nanoma-
terials. Tomato seeds treated with TiO2 nanoparticles
and Ag nanoparticles did not influence the germination,
perhaps, the thick seed coat did not allow the absorption
of nanomaterials. The Ag nanoparticles, at higher con-
centration (500 to 5000 mg/kg), are toxic to tomato
plant during germination and the plant could not grow
to full length. Silver nanoparticles in the mature tomato
plants showed lower chlorophyll contents, higher SOD
activity and less fruit productivity, while nanoTiO2 ex-
hibited higher SOD activity at the highest concentration
(5000 mg/kg). Both nano-Ag and nano-TiO2 were also
taken up into plant stem, leaves and fruits [147]. The
soil fortified with TiO2 nanoparticles enhances the
chlorophyll content, POD, CAT and nitrate reductase of
many plant species [148, 149].

Iron Oxide Nanoparticles
Hazeem et al. [150] have studied the effect of Fe3O4

nanoparticles on the growth of Picochlorum sp. in aque-
ous medium. The small (20 and 40 nm) and large
(>100 nm) particles at 200 mg/L were used to examine
the growth and chlorophyll content at different stages of
growth of algae. The nanoparticles of 20 nm with differ-
ent concentrations promoted the algal growth besides
their aggregation and sedimentation. It prompted the
authors to believe that this phenomenon can be used in
bioremediation of environment from nanoparticles.
The metal oxide nanoparticles are more toxic to mi-

croorganisms than the bulk material of the same metal
[151], despite the fact that bulk Fe3O4 is used as an algal
fertilizer and also a source of iron as nutrient [152]. The
smaller nanoparticles penetrate into plant cells or micro-
bial cells but larger ones adhere to cell wall causing
agglomeration.
The toxicity of SPION against an aquatic plant Lemna

gibba has been investigated [153]. It was found that
chlorophyll contents decreased, photosynthetic activity

reduced and growth was hampered. The toxicity of nano-
particles is mainly dependent on their size and solubility
in aqueous medium. Inhibitory effects of Fe3O4 nanoparti-
cles after 6 days on cucumber (Cucumis sativus) seed ger-
mination and root elongation have also been reported
[45]. Germination index of seeds was decreased by ex-
posure of Fe3O4 nanoparticles at 500, 2500 and
5000 μg/mL. The effect of manufactured iron oxide
nanoparticles on uptake and accumulation in pumpkin
(Cucurbita maxima) plants grown hydroponically was
investigated by Zhu and co-workers [46]. They showed
that different amounts of Fe3O4 nanoparticles were
taken up and translocated throughout the root, stem
and leaves and indicated the nanoparticle transport
pathways and bioaccumulation into the plant system.
Chen et al. [154] have shown that Fe3O4 nanoparticles
caused a decrease in net photosynthetic rate and
chlorophyll a content when alga Chlorella vulgaris was
exposed for 72 to 100 h and 200 × 103 μg/L of Fe3O4

nanoparticles. Iron oxide nanoparticles at 3.2 mg/kg
showed reduced mycorrhizal clover biomass by 34% by re-
ducing the glomalin content and root nutrient acquisition
of Arbuscular mycorrhizal fungi [155]. Wang et al. [32] re-
ported that Fe3O4 nanoparticles induced oxidative stress
as compared to Fe3O4 bulk particles in the ryegrass and
pumpkin roots and shoots as indicated by increased SOD
and CAT activities and lipid peroxidation. Authors have
shown that the tested Fe3O4 nanoparticles were unable to
translocate in the ryegrass and pumpkin plants. The clog-
ging effects of iron oxide nanoparticles reduce the root hy-
draulic conductivity by inhibiting the adequate water
uptake [117, 156, 157]. Iron oxide nanoparticles have been
found to reduce macronutrients such as Ca, K, Mg and S
in sunflower’s shoots [158]. It has been suggested that it
was due to the water blocking effects of nanoparticles,
which altered the dissolved nutrients in water. Wang et al.
[32, 159] have reported an increase in lipid peroxidation
and attributed to Fe3O4 blockage of the aquaporins and
disturbance of the respiration rate in the root. Many
other studies on the use of iron oxide nanoparticles
have shown reduced accumulation of chlorophylls in
the leaves. However, this response is also associated
with the reduction of the root hydraulic conductivity
and the transport of dissolved nutrients, particularly of
Mg since this nutrient is an essential constituent of the
chlorophyll pigment [158, 117, 156, 160].
In a recent study, Shankramma et al. [161] have shown

enhanced growth parameters of S. lycopersicum exposed
to Fe2O3 nanoparticles. They found nanoparticles depos-
ited preferentially in root hairs, root tips followed by
nodal and middle zone of plant. They have suggested
biomineralization of nanoparticles due to rich phytochem-
icals in plants. However, in another study, Nhan et al.
[162] showed that 1000 mg/L Fe2O3 exposure to Bt
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transgenic and non-transgenic cotton exhibited presence
of dark dots (particles) primarily localized in the endoder-
mis and vascular cylinder (Fig. 2). Absorption of Fe2O3

nanoparticles and their aggregation in the roots were ap-
parent. Iron contents in the shoots and roots increased
with increasing concentration of Fe2O3 nanoparticles. It
has been suggested that the bioaccumulation of Fe2O3

nanoparticles in Bt transgenic and non-transgenic cotton
may cause potential risk for environment and human
health. Affect of citrate-coated Fe3O4 nanoparticles on
hydroponically grown wheat plant (T. aestivum) has re-
cently been studied by Iannone et al. [163]. TEM images
of root section showed the deposition of Fe3O4 in epider-
mal cell wall via apoplastic route. Fairly large quantities of
magnetite (2.01–8.07 mg/g) iron were found in wheat
roots. Since no paramagnetic signal was detected in stem
and leaves, it suggested that nanoparticles were not translo-
cated through vascular tissues. However, Fe3O4 nanoparti-
cles affect the germination, chlorophyll content and plant
growth and also did not produce lipid peroxidation or
H2O2 accumulation. Antioxidant enzyme activity of plant
reasonably increased in root and shoot which indicates that
the Fe3O4 nanoparticles are not toxic to wheat plant under
the given experimental conditions. The efficacy of Fe2O3

nanoparticles as iron fertilizer for peanut (Arachis hypo-
gaea) has been studied to check if it can replace the con-
ventional iron fertilizer [164]. The Fe2O3 nanoparticles and
Fe2O3-EDTA were found to increase root length, height
and biomass of the plant by regulating phytohormones and
antioxidant enzyme activity. Fe2O3 nanoparticles are
adsorbed onto the soil increasing easy availability of iron to
peanut plant. The adsorption of nanoparticles in presence
of organic matter is enhanced. It has been demonstrated
from hydroponically grown spinach in presence of Fe2O3

nanoparticle and Fe(NO3)3·9H2O salt that the growth rate
of plant is dose and time dependent [165]. The lengths of
spinach stem under different concentrations of Fe2O3 (100,

150, 200 mg) were 1.45, 1.91 and 2.27-fold greater than those
of the control after 45 days. There was, however, no significant
change in the plant growth treated with Fe(NO3)3. The vege-
tative growth in the non-fruit-producing plants/vegetables
such as cabbage, radish and beat root is highly useful because
they increase the rate of photosynthesis. Hu et al. [166] found
uptake of Fe2O3 nanoparticles in plant roots but no transloca-
tion from roots to shoots was observed. In the case of soybean,
an increase in leaf and pod production due to uptake of Fe2O3

has also been shown in previous studies [167]. The mechan-
ism of uptake of Fe2O3 nanoparticles has been explained in
terms of reduction of Fe2O3 to Fe

2+. Since Fe3+ is insoluble in
aqueousmedium, it is converted to Fe2+ in the soil when it be-
came slightly acidic and absorbed. In hydroponic condition,
the acidity is produced due to the addition of the nutrient,
NH4H2PO4. The presence of iron phosphate has been evi-
denced from IR spectrum of the nutrient (containing
NH4H2PO4 and Fe2O3) which is absorbed and translocated to
different parts of the plant.

Aluminium Oxide Nanoparticles
In the beginning, Yang andWatts [168] reported inhibition of
root elongation in maize, cucumber, soybean, cabbage and
carrot exposed to 13 nm Al2O3 nanoparticles. Thereafter, Lin
and Xing [19] observed no phytotoxicity after 60-nm-sized
Al2O3 nanoparticle application in radish, rape, ryegrass, let-
tuce and cucumber, although root elongation was reduced by
35% in maize. In contrast, studies with Phaseolus vulgaris and
Lolium perenne have shown that 100-nm-sized Al2O3 nano-
particles had no adverse effect on plant growth [169]. Phyto-
toxicity of 150-nm-sized Al2O3 nanoparticles in A. thaliana
has been investigated by Lee et al. [93] and no toxic effect was
observed. Sadiq et al. [170] have reported the negative effect of
below 50-nm-sized Al2O3 nanoparticles on the development
of microalgae (Scenedesmus sp. and Chlorella sp.). Effect of
Al2O3 on the growth and development ofNicotiana tabacum
and role of microRNAhas been investigated [171]. It has been

Fig. 2 Transmission electron microscopy images of root sections of non-transgenic cotton (a) and Bt transgenic cotton (b) plants after 10 days of
treatment with Fe2O3 nanoparticles [162]
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observed that as the concentration of Al2O3 nanoparticles in-
creases from 0.1 to 1.0%, the root length, average biomass and
the leaf count of each tobacco seedlings decrease. The seed-
lings form multiple roots with increasing concentration of
Al2O3, perhaps, as defensive mechanism to avoid contact
with excess nanoparticles. They proposed that the micro-
RNA genes were upregulated and played a key role in plants’
ability to withstand under Al2O3 stress. Al2O3 nanoparticles
(40 nm) had no effect on root elongation of Triticum aesti-
vum [172]. However, in a recent study, Yanık and Vardar
[173] have reported that Al2O3 nanoparticles inhibit root
elongation, callose formation, lignin deposition, cellular de-
formation, enhancement of peroxidase activity, decrease in
total protein content and DNA fragmentation in T. aesti-
vum. It has been suggested that the negative effects of Al2O3

nanoparticles were time and dose dependent. Impact of
Al2O3 nanoparticles of 30–60 nm on soybean plant under
flooding condition has been investigated by Mustafa and
Komatsu [174]. The root length was found to increase while
proteins related to glycolysis were suppressed. Al2O3 nano-
particles mediated the scavenging activity of cells by regulat-
ing the ascorbate/glutathione pathway. The results suggested
that Al2O3 of varying size and shape affects mitochondrial
proteins. Since it is a very short-term experiment on soybean
seedlings, the plants may recover and tolerate the adverse ef-
fects of Al2O3 when they are fully grown.

Conclusions
The inadvertent use and release of nanomaterials into the
environment affect plant growth and developmental
process from seed germination to crop/fruit production. A
variety of metal oxide nanoparticles (CeO2, ZnO, CuO,
TiO2, Fe3O4 and Al2O3, etc.) has been examined against
seed germination, growth of shoot/root, biomass produc-
tion and physiological and biochemical activities. They have
shown beneficial as well as adverse effects on the plant sys-
tem and production. Plants absorb them on the surface and
subsequently translocated and stored in different tissues.
Quite often, the innocuous types of nanoparticles at low
concentration have not exhibited any significant adverse ef-
fect and seem to be beneficial. However, at higher concen-
tration, it produces stress/toxicity and enhances the
generation of reactive oxygen species which results in the
disruption of the cellular metabolism. In those conditions,
plants protect cellular and sub-cellular system from the
cytotoxic effects of active oxygen radicals with antioxidative
enzymes and non-enzymatic components. Most of the
studies have been carried out on the early developmental
stages of the plant which requires full-term study to reach
final results. It is hoped that some of the nanomaterials will
minimize the use of toxic chemicals and fertilizers in near
future. Additionally, detailed research investigations are re-
quired to examine the impact of these nanoparticles on the
environment and human health.
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