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Salinity is a major threat to modern agriculture causing inhibition and impairment of crop 

growth and development. Here, we not only review recent advances in salinity stress 

research in plants but also revisit some basic perennial questions that still remain 

unanswered. In this review, we analyze the physiological, biochemical, and molecular 

aspects of Na+ and Cl− uptake, sequestration, and transport associated with salinity. 

We discuss the role and importance of symplastic versus apoplastic pathways for ion 

uptake and critically evaluate the role of different types of membrane transporters in Na+ 

and Cl− uptake and intercellular and intracellular ion distribution. Our incomplete knowledge 

regarding possible mechanisms of salinity sensing by plants is evaluated. Furthermore, 

a critical evaluation of the mechanisms of ion toxicity leads us to believe that, in contrast 

to currently held ideas, toxicity only plays a minor role in the cytosol and may be more 

prevalent in the vacuole. Lastly, the multiple roles of K+ in plant salinity stress are discussed.

Keywords: salt stress, role of K+, transport of Na+ and Cl−, mechanisms of salt tolerance, membrane transporters, 

ion uptake, symplastic and apoplastic pathway

GENERAL ASPECTS OF PLANT SALT STRESS

Soil salinity is one of the most important global problems that negatively a�ects crop productivity. 
Salinity impairs plant growth and development via water stress, cytotoxicity due to excessive 
uptake of ions such as sodium (Na+) and chloride (Cl−), and nutritional imbalance. Additionally, 
salinity is typically accompanied by oxidative stress due to generation of reactive oxygen 
species (ROS) (Tsugane et  al., 1999; Hernandez et  al., 2001; Isayenkov, 2012).

Plant responses to salinity have been divided into two main phases. An ion-independent 
growth reduction, which takes place within minutes to days, causes stomatal closure and 
inhibition of cell expansion mainly in the shoot (Munns and Passioura, 1984; Munns and 
Termaat, 1986; Rajendran et  al., 2009). A second phase takes place over days or even weeks 
and pertains to the build-up of cytotoxic ion levels, which slows down metabolic processes, 
causes premature senescence, and ultimately cell death (Munns and Tester, 2008; Roy et  al., 
2014). Tolerance to both types of stress is governed by a multitude of physiological and 
molecular mechanisms: osmotic tolerance, ionic tolerance, and tissue tolerance (Rajendran 
et  al., 2009; Roy et  al., 2014). Osmotic tolerance initiates relatively quickly and includes a 
rapid decrease in stomatal conductance to preserve water. It employs fast long-distance (root 
to shoot) signaling mechanisms (Ismail et  al., 2007; Maischak et  al., 2010; Roy et  al., 2014), 
which largely do not discriminate between osmotic e�ects created by NaCl, KCl, mannitol, 
or polyethylene glycol (Yeo et  al., 1991; Chazen et  al., 1995).
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�e entering of salt into the root system triggers activation 
of several signal cascades that generate ionic tolerance by restricting 
(net) Na+ in�ux into the root and reduce (net) Na+ translocation. 
Lastly, tissue tolerance is enhanced by compartmentation of toxic 
ions into vacuoles to avoid detrimental e�ects on cytoplasmic 
processes. �e above strategies have been observed in many 
types of plant, and di�erences in tolerance between glycophytes 
and halophytes are predominantly due to the greater robustness 
of the employed mechanisms in the latter, rather than a qualitative 
di�erence (Flowers and Colmer, 2008, 2015; Maathuis et  al., 
2014). Most of these aspects have been covered in previous 
reviews; here, we  will focus particularly on the quantitative role 
of symplastic and the apoplastic pathways regarding salt in�ux, 
an evaluation of how mechanisms of chloride uptake, transport, 
and distribution, compare to that of sodium and a critical 
re-evaluation of ion toxicity.

HOW DOES SALT ENTER THE PLANT?

Salinity creates a dilemma for plants; increased levels of inorganic 
minerals in the environment create osmotic and water stress 
but at the same time provide cheap osmoticum to lower the 

cell osmotic potential and hence prevent water loss. In spite 
of decades of research, one of the most enigmatic questions 
relating to plant salt stress remains the mechanism(s) by which 
Na+ and Cl− enter roots.

Ion uptake can occur via the symplastic and the apoplastic 
pathway (Figure 1; Gao et al., 2007; Negrão et al., 2011; Maathuis 
et  al., 2014). �e apoplastic pathway is a direct �ow continuum 
between the outside and the xylem (Yeo et  al., 1987; Anil et  al., 
2005; Krishnamurthy et  al., 2009). In most conditions, the 
contribution of this “bypass” �ux is less than 1% of the 
transpirational volume �ow (Hanson et  al., 1985; Moon et  al., 
1986; Yeo et  al., 1987). Nevertheless, this can be  much greater 
when transpirational demand is high (Pitman, 1982; Sanderson, 
1983). In rice, it is particularly pronounced and could be responsible 
for up to 50% of total Na+ uptake (Yeo et  al., 1987; Malagoli 
et  al., 2008; Krishnamurthy et  al., 2009; Kronzucker and Britto, 
2011). Signi�cant apoplastic Na+ �ux has also been reported in 
other species (Peterson et  al., 1981, 1986), and recently, it was 
shown that up to 50% of Cl− translocation to rice shoots is also 
apoplastic (Shi et  al., 2013). Although particularly pronounced 
in rice, the combined data suggest that nonsymplastic Na+ and 
Cl− uptake may be  very relevant in monocots. However, solute 
permeability coe�cients in Arabidopsis roots are not that di�erent 

FIGURE 1 | Schematic representation of possible transport pathways for Na+ and Cl− uptake and their cellular and long-distance distribution. Red arrows represent 

Na+ and Cl− entry sites and route through cell walls – apoplastic bypass �ow. Black arrows represent Na+ and Cl− entry sites and cytoplasmic route through plasma 

membrane-symplastic pathway. Various transporters (AKT, HKT2, NSCC, PIP2;1, NHA, LCT1, HAK5) may be involved in Na+ uptake and movement through the 

plasma membrane. Compartmentalization of Na+ in vacuoles is mediated by tonoplast transporters (CCX, NHX). The further Na+ redistribution over long distances may 

rely on members of several membrane transporter families (NSCC, HKT, NHA, CHX). Cl− entry to the root cells through the plasma membrane may be mediated by  

Cl−/H+ co-transporter NRT. Vacuolar Cl− sequestration may possibly be performed by two anion tonoplast transporters (ALMT and CLC). Cl− membrane transport over 

long distances may be conducted by membrane transporters from different protein families (NPF, SLASH, ALMT, NPF, CCC). AKT, Arabidopsis K+ transporter; HKT, 

High-af�nity K+ transporter Type; NSCC, Nonselective cation channels; PIP 2,1, Plasma membrane intrinsic protein (Aquaporin); NHA, Na+/H+ antiporter (SOS1); LCT1, 

Low-af�nity cation transporter; HAK, High-af�nity K+ uptake transporter; CHX, cation/H+ exchanger; NHX, Na+/H+ exchanger; NRT, Nitrate transporter; ALMT, Aluminum-

activated malate transporter; CLC, Chloride channel; NPF, Nitrate transporter 1/peptide transporter; CCC, Cation/chloride cotransporter; SLASH, Anion channel 

associated homolog 1.
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from those in rice (Ranathunge and Schreiber, 2011), and detailed 
experimentation is needed to test the contribution of the apoplastic 
pathway in this model and other dicots (Figure 1).

Net uptake via the symplastic pathway of Na+ (Cl−) into 
roots is assumed to be  catalyzed by a speci�c complement of 
transporters (Figure 1). Evidence points to a large number of 
di�erent systems, but their relative contribution, and therefore 
physiological relevance, is o�en unclear. Nonselective cation 
channels (NSCCs) are encoded by two gene families: glutamate 
receptor-like channels (GLRs) and cyclic nucleotide-gated channels 
(CNGCs) and blocked by Ca2+ (Leng et  al., 2002; Demidchik 
et al., 2004, 2018; Demidchik and Maathuis, 2007). �e apoplastic 
Ca2+ concentration in root cells is probably in the region of 
0.2–0.4  mM (Legué et  al., 1997), which is enough to reduce 
NSCC-mediated �ux by 30–50% (Essah et al., 2003). �e remaining 
�ux can be further diminished not only by a number of channel 
blockers like Gd3+ and La3+ (Demidchik and Maathuis, 2007) 
but also by organic compounds like cyclic GMP. �us, in plants 
like Arabidopsis, it appears that a large fraction of inward Na+ 
�ux is carried by NSCCs but either the genetic identity of the 
contributing channels is obscure or their putative role has not 
been quanti�ed. For example, though AtCNGC3 channels impacted 
on salt-related growth (Gobert et al., 2006), whether they directly 
a�ected Na+ uptake was not measured.

In monocotyledonous plants, the situation is likely to 
be  di�erent. In contrast to Arabidopsis, which contains only 
the subclass 1, Na+ selective, AtHKT1 isoform, monocots have 
multiple HKT isoforms. Arabidopsis HKT1 functions in long-
distance transport of Na+ via xylem and phloem (Berthomieu 
et  al., 2003; Sunarpi et  al., 2005), but in several cereals HKTs 
can mediate Na+ uptake: In rice, OsHKT2;1 catalyzes Na+ 
uptake in low K+, low Na+ (<2  mM) conditions (Horie et  al., 
2007). Overexpression of HvHKT2;1  in barley causes increased 
Na+ uptake in salt stress conditions (Mian et  al., 2011) with 
a Km for Na+ transport in the low-a�nity region (3–6  mM). 
Similarly, altered expression of TaHKT2;1  in wheat a�ected 
Na+ accumulation in the low-a�nity range (Laurie et al., 2002), 
but detailed �ux studies are lacking (Figure 1).

Intriguingly, electrophysiological experiments in Xenopus 
oocytes showed considerable Na+ conductance when heterologously 
expressing the aquaporin AtPIP2;1 from Arabidopsis (Byrt et al., 
2017). �is interesting phenomenon was PIP isoform speci�c. 
A dual ion and water conducting capability, as suggested for 
AtPIP2;1, could couple ion and water �ux, which would have 
obvious physiological relevance. However, in intact roots, 
unidirectional Na+ in�ux is typically in the range of 20–200 μmol 
gFW−1  h−1 (Kronzucker and Britto, 2011). Using a conversion 
factor of 5  ×  10−4  m2 gFW−1 (Ahmad et  al., 2015), this equates 
to 0.1–1  mol  m−2  s−1. In comparison, PIP2;1 generated �uxes 
in oocytes were in the order of 0.2–0.5  μmol  m−2  s−1 (Byrt 
et  al., 2017), ~6 orders of magnitude smaller. �us, the extent 
to which aquaporins contribute to Na+ uptake in intact plants 
appears to be  negligible (Figure 1).

�e low-a�nity cation transporter LCT1 (Schachtman et al., 
1997; Clemens et al., 1998; Kronzucker and Britto, 2011), when 
expressed in yeast, functions as a nonselective cation carrier 
and is capable of transporting K+, Rb+, Na+, and Ca2+ (Schachtman 

et  al., 1997; Clemens et  al., 1998). Moreover, its expression 
in yeast resulted in increased salt sensitivity (Amtmann et  al., 
2001), promoting the hypothesis that LCT1 could mediate Na+ 
uptake in planta. Nevertheless, more recent analyses suggest 
that LCT1 is not directly involved in Na+ transport (Figure 1;  
Plett and Moller, 2010).

A combination of high salinity and low K+ could cause Na/K 
ratios over 103 fold, a value that exceeds the K/Na selectivity 
of many K+ channels (Maathuis, 2014). Shaker type K+ channels, 
such as KAT1 and AKT1, are involved in K+ uptake and, on 
the basis of detailed electrophysiological studies, were deemed 
not to participate in Na+ transport (Schachtman et  al., 1991; 
Amtmann and Sanders, 1998). However, later studies found that 
in intact tissue the Na-in�ux inhibitor pro�le mostly aligned 
with that of AKT1 type channels in the halophytic plant Suaeda 
maritima (Wang et  al., 2007) and in rice (Kader and Lindbergh, 
2005). Data from the halophyte study showed 30–40% reduction 
in unidirectional Na+ in�ux in the presence of “classical” K+ 
channel blockers such as Cs, Ba2+, and TEA, suggesting that up 
to 30–40% of Na+ in�ux could occur via AKT1 type channels. 
However, these types of studies are notoriously di�cult to interpret 
because most blockers show only limited selectivity. Furthermore, 
�ux assays did not show any lower Na+ in�ux in akt1 KO mutants 
compared to WT Arabidopsis (Figure 1; Essah et  al., 2003).

In contrast to Na+, Cl− is an essential nutrient for plants. 
It has been postulated that Cl− is transported into the cell by 
a H+/Cl− symport, but its molecular nature is unknown. When 
plants are exposed to salinity, the external [Cl−] may 
be  su�ciently high for a fraction of Cl− to enter passively 
through anion channels, but the relevant transport mechanism 
is this case too is unknown. Another class of potential Cl− 
transporters is the cation chloride cotransporters (CCCs), a 
notion that has so far received little attention but is supported 
by the observation that 100 μM bumetanide drastically reduces 
Na+ uptake in Suaeda maritima (Zhang et  al., 2011). In 
Arabidopsis, AtCCC has been studied in some detail, showing 
that it is expressed in root and shoot tissues and most likely 
involved in coordinated K+, Na+, and Cl− symport (Colmenero-
Flores et al., 2007; Zhang et al., 2010). However, loss of function 
in AtCCC led to an increase in Cl− uptake (Colmenero-Flores 
et  al., 2007), arguing against a role of AtCCC in Cl− uptake 
(Figure 1). �is study indicates that CCC transporters from 
grapevine and Arabidopsis are targeted to the Golgi and Trans-
Golgi network and indirectly in�uence long-distance ion transport 
and plant salt tolerance (Henderson et  al., 2015). According 
to these data, the AtCCC like VvCCC is involved in the 
transport of Na+, K+, Cl− and contributes to Na+ and Cl− 
homeostasis (Henderson et  al., 2015).

In summary, for the majority of species and conditions, 
there is considerable evidence suggesting that NSCCs are a 
main pathway for Na+ in�ux into roots in glycophytic plants 
but these may subsume multiple channels from multiple channel 
families. �is complexity impedes the construction of a detailed 
picture regarding “who does what” and by how much. In 
monocots, members of the HKT family could contribute to 
Na+ uptake. �e usage of mutants should allow us to make 
progress regarding Cl− uptake. Existing data show that for 
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aquatic plants like rice with its speci�c root anatomy, the 
apoplastic bypass of Na+ and Cl− can be  considerable.

EARLY COMPONENTS OF SALINITY 
SENSING IN PLANTS

�e plant response to salinity is complex but presumably 
includes some mechanism to report increasing levels of ions, 
either in the external medium or within the symplast. However, 
how Na+ or Cl− is sensed by plants remains unknown. In 
animal systems, primary Na+ sensors typically rely on functioning 
of speci�c Na+ selective ion channels with Na+ binding sites 
that modulate the gate and thus are capable of functioning 
as reporters of body �uid Na+ levels. In other cell types such 
as taste buds, Enac-type Na+ channels cause depolarizations 
proportionate to the amount of Na+ that is present (Maathuis, 
2014) while sensory cells of nematode cilia have “transmembrane 
channel like” (TMC) channels activated by Na+ concentration 
higher than 140  mM causing an avoidance reaction 
(Chatzigeorgiou et  al., 2013).

�us, primary sensors in animals typically rely on Na+ 
speci�c binding sites that modulate transporter activity. As 
yet, no similar mechanisms have been identi�ed in plant species 
but other, rapid responses such as salt-induced membrane 
depolarization and Ca2+ signals could form early components 
of salt sensing relays. However, membrane depolarizations do 
not confer any speci�city so are unlikely to be  physiologically 
relevant. Increases in extracellular NaCl cause rapid Ca2+ elevation 
in the cytosol (Knight et  al., 1997), but these are o�en similar 
to signals induced by equiosmolar levels of osmotica such as 
mannitol. However, in some cases, the Ca2+ signals are salt 
speci�c (e.g. Choi et al., 2014), although tests for ionic speci�city 
are usually lacking. Unfortunately, the upstream components 
of the Ca2+ signal are entirely unknown. New insights such 
as those from Choi et  al. (2016) show that long-distance Ca2+ 
waves in response to salinization might form useful tools to 
devise mutant screens that could point to upstream components. 
Reactive oxygen species (ROS) may constitute another potential 
component upstream of the Ca2+ signal: Annexin1 (AtANN1) 
from Arabidopsis thaliana responds to high extracellular NaCl 
by mediating ROS-activated Ca2+ in�ux through the plasma 
membrane of plant cells (Laohavisit et al., 2013). �us, annexin 
1 could be  an early key component of root cell adaptation to 
salinity (Laohavisit et  al., 2013). Downstream, Ca2+-dependent 
signaling can be  propagated by calcium-dependent protein 
kinases (CDPKs) and calcineurin B-like proteins (CBLs) (Weinl 
and Kudla, 2008) with CBL-interacting protein kinases (CIPKs) 
(Boudsocq and Sheen, 2013), which in turn modulate protein 
activity and gene transcription (Figure 2).

One CBL (CBL4 or SOS3; salt over sensitive) is responsible 
for sensing calcium signals caused by salinity (Figure 2). �e calcium 
binds to CBL4 causing dimerization of this protein and enhancing 
the activity of CIPK24 (SOS2) serine/threonine protein kinase. 
�e resulting CBL4/CIPK24 (SOS3/SOS2) complex activates the 
Na+/H+ antiporter–SOS1 via phosphorylation (Zhu, 2002; Martínez-
Atienza et  al., 2007; Munns and Tester, 2008). Interestingly, the 

cytoplasmic C-terminal of SOS1 has been suggested to function 
as an intracellular Na+ sensor (Shi et  al., 2002; Qiu et  al., 2002; 
Shabala et  al., 2005), but hard evidence for this is lacking. �e 
SOS pathway has additional components – SOS4 and SOS5 (Shi 
et  al., 2003; Mahajan and Tuteja, 2005), which may be  involved 
in Na+ and K+ homeostasis (Mahajan et  al., 2008). �e sos4 
mutants exhibit higher Na+/K+ ratio in comparison with wild-
type plants (Mahajan et  al., 2008). Due to the outer membrane 
localization, SOS5 is another potential candidate for (extracellular) 
Na+ sensing (Figure 2; Shi et  al., 2003; Mahajan et  al., 2008).

�us, the SOS pathway is a key regulator of Na+ homeostasis, 
for example via SOS1. But, due to interaction with other 
regulatory proteins, it also participates in regulation of additional 
mechanisms of ion homeostasis: mutations in AtHKT1, which 
is responsible for Na+ translocation to the shoot (Hal�er et  al., 
2000), suppress the sos3 mutation (Rus et  al., 2001). �us, 
the SOS2-SOS3 complex is involved in negative regulation of 
AtHKT1 during salinity stress. SOS2, in addition to modulating 
SOS1, can interact with vacuolar Na+/H+ exchanger (NHX) 
antiporters and signi�cantly elevate their exchange activity (Zhu, 
2002). SOS2 may also interact with the N-terminus of CAX1 
(a H+/Ca2+ exchanger) (Qiu et  al., 2002; Figure  3).

It seems likely that SOS1 activity induced by salinity not only 
relies on the SOS3–SOS2 complex but could be  phosphorylated 
in a phospholipase D (PLD) signaling pathway-dependent manner 
(Yu et  al., 2010): High Na+ concentrations cause an increase in 
enzyme activity of PLDα1 that lead to fast accumulation of 
phosphatidic acid (PA) as a lipid second messenger. PA in turn 
activates mitogen-activated protein kinase 6 (MPK6), which is 
capable of directly phosphorylating SOS1 (Yu et  al., 2010). Loss-
of-function mutants of PLDα1 and MPK6 exhibit sensitivity to 
salinity and accumulate more Na+ accumulation in the shoots.

A further SOS1 regulating mechanism originates in nuclear 
Ca2+ signaling in response to high salinity (Guan et  al., 2013). 
Nuclear Ca2+ activates the Ca2+-binding protein RSA1, which 
complexes with RITF1 (RSA1 interacting transcription factor). 
Subsequently, the activated complex RSA1-RITF1 binds at the 
SOS1 promoter to augment its transcription (Figure 2; Guan 
et  al., 2013).

Other early components in NaCl-induced sensing and 
signaling may be  the previously mentioned ROS and cyclic 
nucleotides such as cGMP. Both cGMP and ROS show rapid 
transient increases in cytoplasmic levels a�er salinity stress 
onset (Kiegle et  al., 2000; Donaldson et  al., 2004). �e rise 
of cellular cGMP can be detected within seconds a�er application 
of salinity and osmotic stress (Donaldson et  al., 2004). 
Furthermore, cGMP inhibits Na+ in�ux in several plant species 
(Maathuis and Sanders, 2001; Essah et  al., 2003; Rubio et  al., 
2003) while it can regulate transcription of various genes related 
to salinity stress and promote K+ uptake (Maathuis, 2006, 2014; 
Isner and Maathuis, 2016). Indeed, the work by Donaldson 
et  al. (2004) strongly suggests cross talk between Ca2+ and 
cGMP signaling (Figure 2).

A rise in ROS is detected within minutes a�er the onset 
of salinity stress (Hong et  al., 2008), and this phenomenon 
can activate downstream MAPK cascades (Miller et  al., 2010; 
Maathuis, 2014). Recent studies demonstrate participation of 
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ROS in transcriptional regulation. For example, ROS generated 
by plasma membrane-localized NADPH oxidase can help to 
stabilize AtSOS1 transcripts (Chung et  al., 2008). �e 
ROS-sensitive transcription factor ERF1 (ethylene response 
factor) in rice can bind to multiple promoters, including those 
of MAPKs, and improves general performance of plants under 
salinity stress (Schmidt et  al., 2013). ROS are also thought to 
alter ion �uxes; for example, outward rectifying K+ channels 
are directly activated by ROS in Arabidopsis roots (Demidchik 
et  al., 2010). �e model further postulates that moderate K+ 
decrease in the cytosol will generate a low level of ROS 
designated for signaling, while high levels of salinity generate 
damaging ROS that activate K+ e�ux channels and accelerate 
cellular K+ leak. �us, fast and signi�cant K+ loss could lead 
to acute ROS toxicity and development of programmed cell 
death (PCD). Indirectly, ROS such as the superoxide anion 
a�ect GORK channel transcription, providing yet another 
feedback loop (Tran et  al., 2013).

ION TOXICITY: HOW RELEVANT IS IT 
AND WHERE DOES IT OCCUR?

Some measure of the two main components of salt damage, 
osmotic stress and ion toxicity, can be  obtained by comparing 
plants exposed to salt and those treated with equiosmolar 
quantities of an inert osmoticum such as polyethylene glycol 
(PEG). Many of such studies are available, and the majority 
shows overwhelmingly that the osmotic stress component makes 
up a much larger fraction than the ion toxicity component 
(Castillo et  al., 2007; Zhao et  al., 2010).

Salt toxicity directly relates to ion concentrations and can 
manifest itself in all cell compartments though is usually 
assumed to be  associated with the cytoplast. �us, reliable 
measurements of cellular Na+ and Cl− concentrations are crucial 
for proper evaluation of toxicity but such measurements have 
only been conducted for relatively few plants. Values for [Na+]vac 
[Cl−]vac and [K+]vac using X-ray analyses (Chen et  al., 2014), 

FIGURE 2 | Schematic overview of early components involved in salt sensing. High external Na+ concentration leads to elevation of intracellular Ca2+, phosphatidic 

acid (PA), and cGMP. Cld PA can activate NHA (SOS1) in an independent manner. The main target of Ca2+ is CIBL4 (SOS3). The CIBL4 is capable to form the 

complex with CBL-interacting serine/threonine-protein kinase 24 (CIPK24, SOS2). The CIBL4-CIPK24 complex activates NHA (SOS1) and inhibits Na+ uptake by 

HKT2. CIPK24 together with SCaBP (SOS3 like protein) is involved in activation of the V-ATPase. CIPK24 participates in the activation of vacuolar transporters such 

as CAX and NHX. The rise in cytosolic Ca2+ concentration could trigger interaction of RSA1-RITF1. RSA1-RITF1 complex activates promoter of SOS1 gene. PA is 

involved in activation of mitogen-activated protein kinase 6 (MPK6). MPK6 can directly phosphorylate SOS1. The Ca2+-dependent kinase (CDPK3) and cytosolic 

Ca2+ lead to activation of vacuolar two-pore K+ channels (TPKs) and subsequent K+ release from vacuole. Due to the plasma membrane localization, SOS5 protein is 

considered to be potential candidate for extracellular Na+ sensing and helps maintain of cell wall integrity and architecture. Annexin1 (ANN1) is capable to sense the 

high concentrations of extracellular Na+ by mediating ROS-activated Ca2+ in�ux through the plasma membrane of plant cells. The rise of cGMP leads to inhibition of 

Na+ uptake, possibly via cyclic nucleotide–gated ion channels (CNGSs) and glutamate receptor (GLRs). PIP2;1, CNGCs, and GLRs could be blocked by exogenous 

Ca2+. The ROS production leads to K+ leak via activation of outward K+ channels – KOR (guard cells outward K+ channel, GORK) and NSCC. The intracellular 

accumulation of ROS at high levels can trigger programmed cell death (PCD).
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microelectrodes (Carden et al., 2003), dyes (Wissing and Smith, 
2000; Wu et  al., 2015a), and whole tissue extraction (Patishtan 
et  al., 2018) show that both [Na+]vac and [Cl−]vac vary widely 
from tens of mM to 1  M in many halophytes (Zhao et  al., 
2005; Flowers and Colmer, 2008).

Obtaining truthful values of cytoplasmic ion concentrations 
is fraught with di�culty because of the small size of this 
compartment (see Kronzucker and Britto, 2011; Flowers et  al., 
2014) for a discussion of methodological aspects). �ough all 
approaches generate some artifacts, techniques based on the 
use of ratiometric �uorescent dyes such as SBFI and ion selective 
electrodes (Carden et al., 2003) are preferable, since they record 
in real time and do not require any tissue preparation. Data 
for [Na+]cyt determined with SBFI (Halperin and Lynch, 2003; 
Kader and Lindbergh, 2005) vary between ~5 and 70  mM 
with external NaCl concentrations between 5 and 100  mM. 
Data obtained with electrodes (Carden et  al., 2003) fall in the 
range 5–25  mM when barley was exposed to 200  mM NaCl. 
Data for cytoplasmic [K+] are less variable and approximately 
between 70 and 90  mM (Walker et  al., 1996; Carden et  al., 
2003). To measure cytoplasmic Cl−, genetic GFP-based reporters 
such as Clomeleon (Markova et  al., 2008) and �uorescent dyes 
have been exploited in animal cells showing values typically 
between 50 and 80 mM (Salomonsson et al., 1993). Unfortunately, 
these techniques have not (yet) been used to determine [Cl−]cyt 
in plant cells. Gerson and Poole (1972) used microelectrodes 
to measure [Cl−]cyt in nonvacuolate root tip cells and found 
~30 mM in the presence of 60 mM KCl (comparable to 60 mM 
NaCl). Multiple studies from compartmental analysis and X-ray 
studies (White and Broadley, 2001; Flowers et  al., 2014) show 
values ranging from ~45 to 140  mM in the presence of 
50–100  mM NaCl. In all, these numbers suggest that during 
moderate salinity (~5–10 dS m−1), the maximum [Na+]cyt 
(60–70 mM) is similar to [K+]cyt (~70–90 mM) and cytoplasmic 
K:Na ratios are unlikely to drop far below unity. Data for 
[Cl−]cyt are more scarce but suggest a comparable or slightly 
higher range to that of Na+ and K+.

Data for the apoplast compartment vary greatly. Work with 
pea and spinach showed a substantial di�erence between these 
species (Speer and Kaiser, 1991). Pea apoplasts reached 
concentrations of around 90 and 200  mM for Na+ and Cl−, 
respectively, while corresponding levels in spinach did not 
exceed 10 and 15  mM. Comparative studies with canola and 
rice (Gao et  al., 2016) determined apoplastic Na+ levels of 
~130 (canola) and ~100 (rice) mM a�er 20  day treatment 
with 150 (canola) and 100 (rice) mM NaCl. Salinization of 
Vicia faba beans with 50, 75, or 100 mM NaCl caused apoplastic 
Na+ to rise to ~5, 30, and 100  mM (Shahzad et  al., 2013).

�e presence of high concentrations of Na+ and Cl− can 
disturb water structure via kosmo- and chaotropic e�ects, 
inhibit enzymes, and create nutritional imbalance. �e higher 
charge density of Na+ compared to K+ means it behaves as a 
weak “kosmotrope” that organizes and immobilizes water 
structure around itself. Kosmotropy a�ects hydrogen bonding 
between water molecules and polar groups of proteins and 
nucleic acids, potentially interfering with their biochemical 
activity. K+ has a less tight hydration shell thus behaving as 

a weak “chaotrope.” A discernible kosmotropic e�ect of Na+ 
typically requires concentrations of >200  mM. Furthermore, 
molecular dynamic simulation shows that Na+ and K+ in�uence 
protein or DNA in a similar manner (Cheng et  al., 2006). In 
fact, the tropic e�ects of anions are typically greater than those 
of cations but Cl− (like K+) is a very weak kosmotrope. �us, 
in the presence of moderate salinity and the prevailing 
cytoplasmic concentrations, the potential impact of K+, Na+, 
and Cl− on solvent properties would be  negligible.

Another potential ion toxicity mechanism that is o�en 
referred to in the context of salinity stress is the requirement 
of many enzymes to bind K+ which can be  disrupted by Na+ 
displacing K+. What is striking is that in many cases the older 
literature reports almost identical e�ects of K+ and Na+ on 
enzyme and polysome activity (Johnson et  al., 1968; Greenway 
and Osmond, 1972; Osmond and Greenway, 1972; Brady et al., 
1984). Enzymes, such as starch synthase and glucose-6-phosphate 
dehydrogenase (Johnson et  al., 1968), show maximum activity 
in the presence of 50–100 mM monovalents but do so irrespective 
of it being K+ or Na+. A recent report on the kinetic properties 
of rice pyrroline-5-carboxylate reductase agrees with this notion 
(Forlani et  al., 2015). �ese �ndings indicate that Na+ can 
substitute K+ without signi�cant problems for many biochemical 
activities. However, in other cases, the requirement for K+ is 
more speci�c; for example, the Kcat for Na+ activation of 
pyruvate kinase, a classical example of a K+ stimulated enzyme 
(Kachmar and Boyer, 1953), is only about 8% compared to 
that for K+. Nevertheless, the approximately 10-fold higher 
a�nity of this enzyme for K+ (Kachmar and Boyer, 1953) 
compared to Na+ ensures that a Na:K ratio of more than 3 
would be needed to signi�cantly reduce enzyme activity. Similarly, 
studies on other enzymes (Shelp and Atkins, 1983; Gibrat et al., 
1990) show Km values for K+ that are o�en very low (10–15 mM) 
while those for Na+ are much higher (>100  mM). In a few 
studies, the e�ect of anions was scrutinized and, as far as is 
known, in general Cl− has no detrimental e�ect on enzyme 
activity at [Cl−]cyt below ~80–100 mM (Greenway and Osmond, 
1972; Brady et  al., 1984), which is also implied by routine 
measurement of 60–90  mM [Cl−]cyt in animal cells.

In contrast to cytoplasmic concentrations, vacuolar levels of 
Na+ and Cl− readily reach several hundred mM. For example, 
a recent study on rice cultivars exposed to 50 mM NaCl showed 
tissue [Na+] of up to 600 mM (Patishtan et al., 2018). Consequently, 
vacuolar Na/K ratios can easily exceed values of 3 or 4. �e 
central vacuole plays a role in ionic homeostasis, pH regulation, 
and osmotic adjustment. As lytic compartment, the vacuole 
contains hydrolases, phosphatases, and phosphoesterases (Boller 
and Kende, 1979) and thus is linked to protein turnover processes 
like ubiquitination. In spite of extensive information regarding 
the vacuolar proteome, to our knowledge no vacuole-speci�c 
enzymes have been tested for the functional implications of high 
Na+ and Cl− concentrations. �e above data suggest that when 
glycophytes are exposed to moderate salinity stress (~50–150 mM) 
ion toxicity in the cytosol is unlikely to be  problematic but, in 
contrast, whether vacuolar enzymes can maintain functionality 
when typically surrounded by much higher salt concentrations 
is a question that needs to be  answered urgently.
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In summary, in spite of considerable inward gradients for 
Na+, most data suggest that plants adequately prevent accumulation 
of Na+ and Cl− in the cytosol beyond 50–80  mM, even in the 
presence of 100–150  mM external Na+. Apoplastic levels are 
in the same order of magnitude. Consequently, if ion toxicity 
occurs in these compartments, it is probably of limited magnitude. 
�e situation in the vacuole where ion concentrations can easily 
exceed 500  mM may be  quite di�erent. Alternatively, the ionic 
component of salinity stress could manifest itself via generic 
parameters such as the membrane potential (e.g. Gill et  al., 
2017) rather than speci�c ionic interactions. Since many transport 
processes are voltage dependent, depolarization could in�uence 
a plethora of processes including the uptake of essential nutrients.

WHAT IS THE ROLE OF POTASSIUM IN 
SALINITY STRESS?

K+ is the most abundant cation in plant cells and an essential 
nutrient that is important for many enzymatic reactions, ionic 
and pH homeostasis and maintaining adequate membrane potential 
(Maathuis 2009; Ahmad and Maathuis, 2014). Cytosolic K+ is 
also an important determinant of plant adaptive responses to 
a broad range of environmental stresses (e.g. Shabala and Pottosin, 
2014). In hydrated form, Na+ and K+ are chemically and structurally 
very similar and some biophysical roles of K+, particularly 
generating turgor, can be  ful�lled by Na+. Nevertheless, K+ is 
uniquely required for many physiological and biochemical 
processes, whereas Na+ is not. �e transport systems involved 
in the uptake and distribution of K+ and Na+ in combination 
are key determinants of plant salinity tolerance due to their 
ability to determine tissue and cytosolic K+/Na+ ratios, parameters 
that are generally believed to impact greatly on salt tolerance 
(Maathuis and Amtmann, 1999; Shabala and Cuin, 2008). In�ux 
of Na+ worsens the K/Na ratio, and this is further exacerbated 
by salt stress-induced K+ loss, a phenomenon that is o�en more 
pronounced in salt-sensitive species (Chen et al., 2007; Wu et al., 
2018). GORK (guard cell outward rectifying K+ channel) type 
and ROS-activated NSCC-type channels are likely to mediate 
the main fraction of K+ e�ux (Jayakannan et  al., 2013; Wu 
et  al., 2015b). In addition, salt stress-induced K+ leakage can 
cause PCD (Figure 2; Demidchik et  al., 2014).

Interaction between K+ and Na+ transport has been described 
in many studies and many forms. For example, salinity a�ects 
K+ transporter transcription as exempli�ed by work on OsAKT1 
(an inward rectifying K+ channel) where in situ hybridization 
showed that OsAKT1 transcription is downregulated a�er exposure 
to salinity in a cell type and cultivar-speci�c manner (Golldack 
et al., 2003). Other studies have shown upregulation of the phloem 
localized AKT2/3 and stelar root tissue located SKOR (an outward 
rectifying K+ channel) by salinity (Marten et  al., 1999; Maathuis, 
2006). �ese data in combination suggest that salinity may increase 
K+ circulation via the vascular bundles (Maathuis, 2006; Shabala 
and Cuin, 2008). Endomembrane channels such as the vacuolar 
TPKs (two pore K+ channels) are also likely to play an important 
role. �e expression of tobacco TPK1a was increased around 
twofold by salt stress or osmotic shock (Hamamoto et  al., 2008), 

whereas TPK overexpression in tobacco cells increased their 
resistance to salt stress (Wang et  al., 2013). Post-translational 
modulation of TPK1 also impacts on salt tolerance as was shown 
for AtTPK1, which becomes phosphorylated by a Ca2+-dependent 
kinase (CDPK3; Latz et  al., 2013) (Figure 2).

It is generally assumed that increased levels of K+ mitigate 
against salt stress, but this may be an oversimpli�cation. Indeed, 
recent experimental data suggest that Na+ toxicity and water 
de�cit are o�en not the key causes of plant growth inhibition 
by NaCl in Arabidopsis (Álvarez-Aragón et  al., 2016). Rather, 
the overaccumulation of Na+ plus K+ might trigger growth 
reduction in NaCl-treated Arabidopsis plants, for example, via 
e�ects on stomatal regulation or systemic stress responses that 
lower growth (Álvarez-Aragón et  al., 2016).

�ese salinity-induced e�ects on K+ transport are o�en variety, 
tissue and cell speci�c. For example, salt-tolerant barley varieties 
are capable to better retain K+ in the roots in comparison with 
sensitive genotypes (Chen et  al., 2007), whereas di�erent 
Arabidopsis ecotypes show widely varying K+/Na+ ratios (Álvarez-
Aragón et  al., 2016). Salt-induced K+ e�ux in wheat and barley 
mesophyll cells of salt-sensitive varieties is signi�cantly higher 
than that in salt-tolerant varieties (Wu et  al., 2013, 2015c), and 
in contrast to cultivated barley, halophytic wild barley relatives 
exhibited much better tissue K+ retention (Garthwaite et  al., 
2005). At the tissue level, the higher salt sensitivity of barley 
root apex in comparison with the mature root zone was explained 
by a much greater NaCl-induced K+ e�ux in root apex (Shabala 
et  al., 2006). In turn such observations may be  caused by the 
cell and tissue speci�city of K+ transporters. In the root, mature 
zone e�ux is mediated primarily by GORK-type channels (Chen 
et  al., 2007; Shabala et  al., 2007a; Wu et  al., 2013; Chakraborty 
et  al., 2016), whereas in the elongation zone NSCC channels 
ful�ll this function (Bose et  al., 2014). �ese �ndings suggest 
that the ability of plants to retain K+ in various tissues is an 
important feature of plant salt tolerance (Wu et  al., 2018).

Multiple reports suggest that K+ could play important role 
in cell signaling during salinity (Shabala 2009, 2017; Anschütz 
et  al., 2014; Shabala and Pottosin, 2014; Wu et  al., 2018). In 
this context, K+ can cause cell- and tissue-speci�c metabolic 
changes and drive a “metabolic switch” to inhibit energy-dependent 
biosynthetic processes. �e ensuing reduction or arrest of plant 
growth saves energy, which in turn augments the capacity for 
the synthesis of compounds that help in defence and repair of 
cellular systems (Demidchik et al., 2014). A K+-signaling function 
can also be  envisaged in its capacity to generate PCD (Huh 
et al., 2002; Shabala, 2009). �e physiological role of PCD during 
salinity is still discussed, but many experimental data directly 
link salinity stress, K+ leak, and PCD. For example, Arabidopsis 
mutants with loss of function in GORK channels exhibit slower 
development of salinity-related PCD (Demidchik et  al., 2010), 
an observation that can be  mimicked with channel blockers 
such as TEA (Osakabe et al., 2013). Interestingly, overexpression 
of the animal antiapoptotic CED-9 gene in tobacco mesophyll 
cells led to a reduction of stress-induced K+ e�ux and improved 
plant salt tolerance (Shabala et  al., 2007b). �us, stress-induced 
K+ leakage, ROS, and PCD are likely to be  tightly connected 
(Demidchik et  al., 2010).
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In all, K+ homeostasis is intricately linked to salt tolerance. 
At its most basic level, this involves substitution of K+ in its 
biochemical roles, but more complex relationships may exist 
such as K+-related PCD and the role of K+ as a signaling 
moiety that modulates metabolic pathways. Where the latter 
processes are concerned, more detailed studies at the molecular 
level are needed for example on the exact mechanism and 
cytosolic K+ concentrations that cause PCD.

CONCLUSIONS

�e ever-increasing salinization of arable land will require 
multipronged solutions of which crops with increased tolerance 
is one. Exploiting genetic diversity will help achieving this 
objective but would be  far more e�ective when combined with 
a comprehensive understanding of the molecular tolerance 

mechanisms. Great progress has been made in the last decades 
but yet many of the basic processes that contribute to tolerance 
are only partially understood. Further studies are urgently 
needed to unravel the details of Na+, and especially Cl−, uptake 
mechanisms. Mapping of toxicity at the cell and tissue level 
will aid in setting targets for tolerance improvement. Perception, 
sensing, and signaling chains lack important components in 
particular those at the beginning of pathways, whereas greater 
understanding of the role of other minerals such as K+ should 
enable us to mitigate salt stress by manipulating uptake and 
distribution of these nutrients.
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