
Plant species effects on nutrient
cycling: revisiting litter feedbacks
Sarah E. Hobbie

Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA

Review
In a review published over two decades ago I asserted
that, along soil fertility gradients, plant traits change in
ways that reinforce patterns of soil fertility and net
primary productivity (NPP). I reevaluate this assertion
in light of recent research, focusing on feedbacks to NPP
operating through litter decomposition. I conclude that
mechanisms emerging since my previous review might
weaken these positive feedbacks, such as negative
effects of nitrogen on decomposition, while others
might strengthen them, such as slower decomposition
of roots compared to leaf litter. I further conclude that
predictive understanding of plant species effects on
nutrient cycling will require developing new frameworks
that are broadened beyond litter decomposition to con-
sider the full litter–soil organic matter (SOM) continuum.

Plant litter feedback paradigm
Understanding how plant species influence nutrient cy-
cling is important in a variety of contexts, from elucidating
the effects of invasive species on soil fertility, to informing
land managers about the potential ecosystem conse-
quences of species selection, to understanding the conse-
quences of species range shifts in response to
environmental change. In a review published in Trends
in Ecology and Evolution over two decades ago [1] I
asserted that, along soil fertility gradients, plant traits
change in predictable ways that reinforce patterns of fer-
tility by creating positive feedbacks to rates of ecosystem
nutrient cycling, and potentially to NPP (Figure 1: Original
feedback hypothesis). This assertion has a rich history in
the literature, both preceding (e.g., [2,3]) and following
(e.g., [4,5]) that publication. Nevertheless, since my origi-
nal review research in this area has grown considerably,
with some studies calling into question my original asser-
tions. For example, while some common garden studies
demonstrate that plant traits are correlated with N min-
eralization from surface soils [6–9], in others soil nutrient-
cycling rates are not readily explained by plant traits
[10,11]. Such mixed results suggest that the relationship
between species traits and soil nutrient cycling deserves
further attention.

I review here the evidence that suites of plant traits are
arrayed predictably along fertility gradients and act to
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reinforce those gradients and patterns of NPP, focusing
on feedbacks operating through plant litter decomposition.
Specifically, I evaluate two key assumptions underlying
the plant litter feedback idea: (i) plant litter traits vary
predictably along fertility gradients, and (ii) such variation
reinforces soil fertility gradients through effects on decom-
position and litter N release. Given the number of synthetic
cross-site analyses of plant traits and their consequences
for nutrient cycling over the past two decades, the time is
ripe for revisiting my original assertions. Indeed, I show
that my original assertion is more nuanced and complex
than originally claimed. In particular, I discuss the need to
consider leaf litter decomposition more carefully and move
beyond consideration of leaf litter feedbacks to a more
comprehensive understanding of whole-plant litter and
how species affect nutrient cycling through effects on
SOM dynamics.

Community-scale patterns in traits: soil fertility
gradients and fertilization studies
Plant species that use limiting nutrients more efficiently
should have a competitive advantage [2,12,13]. Thus, as soil
fertility increases, tissue nutrient concentrations should
increase because species use nutrients less efficiently and
other resources become limiting. Nevertheless, several
mechanisms might weaken soil fertility–trait relationships.
For example, cluster roots in low-phosphorus (P) environ-
ments, arbuscular mycorrhizae in environments with low
inorganic nutrient availability, ericoid mycorrhizae and
ectomycorrhizae where nutrients are bound up in insoluble
organic forms, and N-fixing symbioses in low-N environ-
ments all increase plant access to nutrients in low supply
[14–16]. Further, increases in foliar nutrients that some-
times occur with increasing elevation [17] and latitude [18]
might weaken relationships between soil nutrient availabil-
ity and foliar nutrients at larger spatial scales because of
negative relationships between mean annual temperature
and foliar N [19] that counter the positive relationship
between mean annual temperature and soil N supply [20].

Strong patterns across fertility gradients

Nevertheless, a number of studies, many published since
Hobbie [1], reveal positive associations between foliar and/
or litter nutrients and soil nutrients across soil fertility
gradients at regional to global scales, providing evidence in
support of my first assumption. For example, within
regions ranging from lowland and montane tropical forests
[5,21,22] to temperate forests [23–32] and grasslands [33],
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Figure 1. Mechanisms of species effects on nutrient cycling that have emerged since Hobbie [1] that might strengthen or weaken potential positive feedbacks to rates of

nutrient cycling and net primary productivity (NPP). In these examples, N limits NPP. Original feedback hypothesis: The original positive feedback idea [1] posited that

higher soil N availability increases NPP and the concentration of N in litter which increases decomposition rates and litter N release, creating a positive feedback loop to NPP

and litter N. Mechanism 1: Negative effects of litter N on the later stages of litter decomposition could weaken the positive feedback loop. By how much is unknown because

the effects of changes in decomposition and litter N release on soil N availability are uncertain and potentially offsetting. The rate of N release from litter depends on both

how much N is released as litter decomposes (which should be higher for more N-rich litter) and on the decomposition rate (which in this case would be lower for more N-

rich litter). Mechanism 2: If decomposition is limited by the availability of a nutrient that does not limit NPP, such as Ca, whose concentration in litter is not correlated with

that of litter N, the consequences for soil N availability are uncertain. Higher litter Ca will increase decomposition rate, while higher litter N might increase how much N is

released as litter decomposes, and the rate of litter N release rate will depend on both litter N and Ca, which are independent. Mechanism 3: If decomposition and litter N

release are limited by the availability of a nutrient that does not limit NPP, such as P, whose concentration in litter is correlated with that of litter N (the nutrient that limits

NPP in this example), then the feedback loop will operate because N and P are coupled in litter – higher litter N will lead to greater litter N release, and higher litter P will

accelerate decomposition rates, increasing soil N availability. Mechanism 4: If higher soil N availability increases aboveground NPP (ANPP) relative to belowground NPP

(BNPP), decomposition rates will increase because of the relatively faster decomposition of leaf litter relative to roots. Uncertainties arise because the cause of more rapid

decomposition of leaf litter relative to roots is unclear, and not always predictable from N concentration. Further uncertainties arise because roots sometimes release N

more rapidly despite decomposing more slowly than leaf litter, and N release is not always predictable from root N concentration.
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the concentrations of leaf and/or litter nutrients, including
N, P, and calcium (Ca), relate positively to various mea-
sures of soil nutrient availability both because of sorting of
species along fertility gradients and because of plasticity
within widespread species [31]. Positive associations be-
tween green leaf and soil nutrients (e.g., [22]) should
translate into steeper positive associations between leaf
litter and soil nutrients because leaves with higher nutri-
ent concentrations resorb less nutrients than do those with
lower nutrient concentrations [34,35], although most stud-
ies of retranslocation efficiency have found little variation
across soil fertility gradients (e.g., [32]). The few studies
that have examined tissue carbon chemistry across soil
fertility gradients suggest that plants have higher concen-
trations of carbon-based structural and defense compounds
in infertile sites [22,27,36,37].

Weaker patterns in fertilization studies

Such correlations cannot distinguish the influence of soil
fertility on plant traits (via sorting in response to variation
in nutrient supply) from that of plant traits on soil fertility
358
(e.g., via effects of plant species on soil biotic processes).
Demonstrating the former requires fertilization studies at
spatial and temporal scales appropriate to examining
community responses and associated trait changes. Gra-
dients in atmospheric deposition arising from human ac-
tivities provide unintended ‘experiments’ in which to
examine soil fertility–trait relationships. Multi-decadal
changes in herbaceous vegetation in regions with chronic
N deposition show increased abundance of species with
higher foliar N concentrations [38]. Deliberate fertilization
studies reveal that, in forests, added nutrients increase
litterfall and its nutrient concentration [39–41], although
forest experiments generally are too short to examine how
species turnover might influence ecosystem response to
nutrient addition. In short-statured ecosystems, added N
and/or P increased plant nutrient concentrations in alpine
[42] and arctic [43] tundra, as well as in temperate grass-
lands [44]. A meta-analysis of fertilization studies showed
higher root N concentrations with N addition [45]. While
these examples are compelling, most studies of plant re-
sponse to nutrient enrichment have focused on individual
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species; a better understanding of soil fertility-trait rela-
tionships requires long-term studies of the relative impor-
tance of intra-specific phenotypic plasticity, genotypic
sorting, and shifts in species composition in mediating
community-level trait responses to long-term nutrient ad-
dition (e.g., [46]), including traits other than foliar nutrient
concentrations, such as foliar carbon chemistry and traits
of other plant organs.

In summary, evidence to support my first assertion, that
plant traits relevant to litter-mediated nutrient-cycling
feedbacks vary predictably across soil fertility gradients,
has become stronger since Hobbie [1], particularly for leaf
N and P across soil N and P gradients, although under-
standing could be enhanced by more long-term fertilization
studies. In the following I revisit my second assumption,
that such patterns in plant litter traits reinforce soil
fertility gradients through effects on decomposition and
litter N release.

Leaf litter N effects on decomposition
Contrasting N effects on different litter fractions

Many studies have demonstrated that higher leaf litter N
concentrations are associated with faster litter decomposi-
tion rates, although most of these studies lasted 1 year or
less ([47] and many others). A growing number of longer
studies have found evidence that litter with higher initial N
concentrations ends up with a larger fraction decomposing
at near-zero rates, such that overall decomposition rates can
be slowed by higher N concentrations [48,49]. This phenom-
enon should weaken positive feedbacks between litter N and
rates of soil N cycling and NPP (Figure 1: Mechanism 1).
However, litter with higher initial N concentrations immo-
bilizes less N and releases N earlier in the decomposition
process [50], such that net effects on the rate of litter N
release and litter-driven feedbacks to soil N availability are
uncertain.

Various mechanisms have been proposed to explain why
and where N might slow the rate of decomposition in its
later stages [48]. Nitrogen might induce abiotic formation
of compounds that resist microbial attack [51–54], inhibit
oxidative enzymes involved in lignin degradation [55,56],
stimulate microbial biomass production early in decompo-
sition, leading to the accumulation of microbial residues
that are resistant to decay [57], or increase microbial
carbon-use efficiency [58,59]. Empirical evaluations of
these various mechanisms are sparse.

Complicating matters is that higher litter N increases
the fraction of slowly-cycling litter in some instances but
not others, for reasons that are unclear but that could be
elucidated by cross-site studies in ecosystems with con-
trasting decomposer and plant communities. For example,
inhibition of oxidative enzyme activity might not cause
negative effects of litter N on decomposition in ecosystems
where oxidative enzyme activity is not a bottleneck to
decomposition, such as in grasslands with low plant lignin
concentrations [60]. Future studies need to be coupled
with measurements that allow investigators to identify
and distinguish among possible mechanisms giving rise to
negative effects of N on decomposition. For example,
measures of enzyme activity [55,56,61], characterization
of abiotic chemical incorporation of N into potentially
recalcitrant organic matter [53], and measurements of
microbial biomass and necromass [62] as well as car-
bon-use efficiency might elucidate the underlying mecha-
nisms.

Incomplete representation in ecosystem models

The treatment of interactions between N and decomposi-
tion in ecosystem models requires revisiting. Some models
partition litter into fast- and slow-cycling pools according
to the litter N concentration in a manner opposite to what
empirical studies show [48]. For example, in the Century
model, less litter is partitioned into the slow-cycling pool as
litter N increases [63]. Other models include inhibitory
effects of increases in external supply of N on decomposi-
tion, by increasing the amount of detritus that enters more
stable organic matter pools with added N [64,65], but do
not include effects of changes in litter N concentrations on
decomposition. Because the mechanisms underlying these
effects of N and how they vary among ecosystems are
poorly understood, and thus not explicit, the models are
limited in their predictive capacity.

Moving beyond leaf litter N and lignin
Other traits are important

Studies of plant species effects on nutrient cycling have
logically focused on plant traits known to affect decompo-
sition of leaf litter, notably foliar and litter nutrient (espe-
cially N) and lignin concentrations [66]. However, leaf
litter N and lignin might not cause expected variation in
nutrient cycling if other litter characteristics are more
important drivers of decomposition and litter nutrient
release, in other words because the dominant or keystone
decomposers in a system have unique nutritional require-
ments [67] (Figure 1: Mechanism 2). For example, the high
Ca requirement of lumbricid earthworms leads to positive
relationships between litter Ca and decomposition rates
[8,68]. A similar relationship could arise for sodium (Na)
because of the Na requirement of some detritus consumers
[69]. Yet, these kinds of relationships are unlikely to
emerge from regional and synthetic studies of litter de-
composition using litter bags, which largely exclude macro-
invertebrates [8]. On the microbial side of things, the
requirement for manganese (Mn) by fungi that use Mn
peroxidase to break down lignin presumably underlies the
positive relationship between litter Mn and decomposition
rates [48,70]. Notably, Na and Mn, and to lesser degree Ca,
are not commonly measured in litter decomposition
studies.

In these examples, the nutrients that limit NPP differ
from those that influence decomposition and nutrient re-
lease from litter (Figure 1: Mechanism 2). Thus, any sort-
ing of plant species on the landscape in response to
underlying nutrient availability gradients will create pos-
itive nutrient-driven feedbacks to NPP only insofar as
concentrations of the nutrient that limits NPP and those
of nutrients or carbon fractions that influence decomposi-
tion covary in litter (Figure 1: Mechanism 3). While litter N
and P often exhibit such correlations, litter concentrations
of other elements, such as Ca or Mn, are inconsistently
related to those of N and P, the elements that most
commonly limit NPP ([71], but see [70]).
359
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Other organs contribute significantly to ecosystem

detritus production

Although leaf traits influence leaf litter decomposition and
nutrient release, whether they influence ecosystem-scale
nutrient cycling beyond the process of leaf litter decompo-
sition is less clear, particularly because nutrients released
during leaf litter decomposition might not directly support
substantial plant nutrient uptake [72]. Variation in leaf
litter traits will only predict ecosystem-scale variation in
carbon and nutrient dynamics of detritus insofar as (i) leaf
litter dominates detrital inputs to soils, or (ii) the char-
acteristics of leaf litter are correlated with decomposition
and nutrient release from other, dominant components of
detritus. The former is unlikely in most ecosystems be-
cause other components of plant production besides leaves
(root biomass, stem biomass, root exudates, mycorrhizae)
are often significant fractions of total detritus production.
For example, in non-agricultural ecosystems, belowground
NPP (BNPP) is at least 40% of aboveground NPP (ANPP),
and exceeds ANPP in many ecosystems [73]. In some
ecosystems, substantial ANPP is removed via burning,
mowing, or herbivory, further increasing the relative im-
portance of belowground inputs to soils.

That other components of production in addition to
leaves, in other words roots and stems, can be as or more
important to detrital carbon and nutrient cycling raises
questions about the predictability of litter feedbacks to
fertility and NPP based on knowledge of leaf litter traits
alone. Are rates of leaf litter decomposition and nutrient
release related to those of roots and stems across species?
Do root and stem traits vary predictably across fertility
gradients in ways that affect decomposition? On a global
scale, root, stem, and leaf N and P concentrations are
correlated across species [74], but these relationships are
not always apparent within sites [75]. Nevertheless,
there is evidence that root and leaf N can change in
concert across gradients in soil resources: across an arid-
ity gradient [76], a temperate fire frequency gradient [77],
and a temperate rain forest soil chronosequence [30] leaf
and root N and/or P were positively related. Although
stem and leaf N are related among species [74], I was
unable to find studies that characterized stem traits
across fertility gradients. Further, although traits of leaf,
stem, and root may be correlated across fertility gradi-
ents, whether those traits similarly affect decomposition
rates across such gradients has rarely been evaluated
(but see [78]).

In a meta-analysis of decomposition studies of root,
stem, and leaf litter of multiple species, decomposition
rates of roots and leaf litter were strongly positively related
[79], as were those of leaf litter and fine stems. These
relationships were less consistent within sites, where some
sites showed weak or no relationships between decompo-
sition rates of different plant organs (e.g., [75]). Roots and
stems decomposed on average 1.5- and 2.8-fold more slow-
ly, respectively, than did leaf litter. Furthermore, root
traits associated with slower decomposition could promote
fungal over bacterial biomass, further slowing decomposi-
tion via production of fungal necromass with relatively
poor carbon quality [80]. Thus, patterns of allocation
among plant organs across fertility gradients might be
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as or more important in driving feedbacks to nutrient
cycling than the patterns of traits within any single plant
organ [79]. For example, higher BNPP:ANPP in infertile
sites [81] combined with slow decomposition of roots rela-
tive to leaf litter should reinforce low soil fertility (Figure 1:
Mechanism 4).

N dynamics of decomposing roots

Complicating this prediction is the need to understand not
only the decomposition rates of root and stem detritus but
also their nutrient dynamics during decomposition. In
studies comparing nutrient dynamics of decomposing roots
and leaf litter within species, some showed that decom-
posing roots immobilized nutrients at lower or similar
rates compared with leaf litter of the same species [82–
86]. By contrast, other studies found that roots immobi-
lized more nutrients than did leaf litter of the same species
[8,75,78,87]. More N-rich roots sometimes immobilized less
N than roots with lower initial N concentrations
[75,84]. However, roots sometimes immobilized less [84]
or more [87] N than leaf litter with similar initial N
concentrations. More comprehensive analyses of nutrient
dynamics during root decomposition are necessary to elu-
cidate general patterns – a higher root fraction of NPP in
low-fertility systems combined with their relatively slow
decomposition rate [79] would reinforce low fertility only if
slower decomposition is not accompanied by more rapid
nutrient release from decomposing roots (Figure 1: Mech-
anism 4).

Moving beyond litter altogether: species effects on
SOM nutrient dynamics
Both litter and SOM contribute to nutrient supply

Given that SOM in mineral soil horizons can contribute as
much to ecosystem-scale nutrient supply as litter-dominat-
ed horizons, the emphasis on litter decomposition should
be broadened to consider the litter–SOM continuum [88];
even in organic horizons, fresh litter can be but a small
fraction of the organic matter. For example, on an area
basis, gross rates of N mineralization in the mineral soil
can exceed those in the O horizon [89]. Averaged across
monocultures of 14 tree species, potential rates of net N
mineralization were fourfold higher in the uppermost A
horizon compared to the O horizon, and, on an area basis,
ranged from less than 5% of O horizon rates for species
with substantial O horizon accumulation to �400% for
species with rapidly decomposing litter, high earthworm
activity, and sparse O horizons (unpublished data).

Plant litter traits might not predict SOM feedbacks

Therefore, understanding how plant species influence
SOM dynamics might be as important to understanding
ecosystem fertility as understanding species effects on
litter dynamics [90]. Nevertheless, paradigms regarding
species effects developed for litter might not predict how
plant species affect SOM dynamics because plant traits
that contribute biochemical recalcitrance to fresh litter
might not confer long-term (>decadal scale) stability to
SOM [88,91,92]. For example, plant species with relatively
rapid litter decomposition do not always cause rapid de-
composition of SOM [93], and in fact can be associated with
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relatively greater accumulation of SOM in mineral hori-
zons [6,57]. This can occur because more efficient microbial
degradation of high-quality litter in the O horizon leads to
accumulation of microbial necromass that promotes the
aggregation and chemical stabilization of SOM in associa-
tion with clay minerals in deeper horizons [57]; or because
of processes (leaching, earthworm activity) that transport
organic matter into deeper horizons where it can be stabi-
lized onto mineral surfaces [94].

The importance of SOM in influencing nutrient avail-
ability, together with the evolving view of the factors that
influence SOM dynamics [95], suggest the need for inte-
grated thinking about how plant species influence decom-
position and nutrient dynamics of both SOM and litter, and
whether such combined influences will reinforce versus
weaken gradients of soil fertility. Although developing
such a framework is beyond the scope of this review, I
provide some examples of how plant traits might be
expected to influence SOM decomposition and nutrient
dynamics in ways that could feed back either positively
or negatively to NPP and plant traits.

As one example, plant allocation to roots and mycorrhi-
zae, likely higher in infertile systems [81], will have myriad
effects on SOM decomposition and soil nutrient dynamics
[80]. Roots, mycorrhizae, and associated exudates promote
soil aggregation and can increase the mean residence time
(MRT) of SOM [80,96]. Stabilization of SOM into large
macroaggregates (MRT <5 years [97]) could promote soil
fertility by reducing nutrient losses and supplying nutri-
ents to plants as aggregates destabilize (negative feed-
back). By contrast, stabilization of SOM and associated
nutrients into smaller macroaggregates and microaggre-
gates, with longer MRT, could depress soil fertility (posi-
tive feedback). Root exudates could either accelerate or
decelerate SOM decomposition and nutrient mineraliza-
tion via priming or promotion of aggregate formation,
respectively (positive or negative feedback [80,98]).

As a second example, concentrations of nutrients in
plant tissues, that track soil nutrient supply as outlined
above, influence SOM decomposition and nutrient dynam-
ics in ways that could feed back either positively or nega-
tively to NPP and plant traits. By promoting nitrification,
high tissue N can increase soil acidity and solubilize alu-
minum (Al) and iron (Fe) [99]. High concentrations of plant
tissue Ca generally promote Ca-rich soils [100]. High con-
centrations of polyvalent cations in soil (Al, Fe, Ca) facili-
tate the stabilization of SOM onto mineral surfaces [99],
likely reducing its turnover and release of nutrients on a
per unit soil mass basis (negative feedback), although a
larger SOM pool might release more N on a per unit ground
area basis (positive feedback).

Predicting the effects of plant species on soil nutrient
dynamics is further complicated because different plant
traits likely influence the simultaneous mineralization
versus immobilization of nutrients by different SOM and/
or litter pools. For example, even in soils where the
majority of gross nutrient mineralization is derived from
turnover of SOM, and potentially is not directly influ-
enced by plant litter traits, leaf litter and root traits of
fresh detritus might influence net nutrient mineraliza-
tion via their effects on nutrient immobilization, perhaps
explaining the correlations between litter or root traits
and N mineralization in surface soils [6–9].

Conclusions and recommendations for future research
Does my original assertion that plant species reinforce
patterns of soil fertility through litter feedbacks hold
up? In reviewing the evidence I conclude that plant species
can indeed create positive feedbacks to rates of nutrient
cycling because of predictable variation in plant traits
across soil fertility gradients. However, these feedbacks
are likely to be strongest when plant traits are tightly
related to underlying gradients in soil nutrient supply, the
same nutrients limit NPP and decomposition, low soil
fertility leads to relatively greater allocation to roots that
decompose and release nutrients relatively slowly, and
gross mineralization and/or immobilization occurs pre-
dominantly from detritus rather than from SOM. By
contrast, several conditions might weaken such potential
feedbacks (Figure 1), including negative effects of N on
decomposition, limitation of NPP and decomposition by
different nutrients, and rapid nutrient release from decom-
posing roots.

Through evaluating the evidence amassed since Hobbie
[1], several research needs have emerged. A more compre-
hensive understanding of the patterns and mechanisms of
litter nutrient effects on decomposition and nutrient re-
lease is needed, including of the mechanisms and general-
ity of negative effects of N on decomposition, and of where
different nutrients limit decomposition and litter nutrient
release versus NPP. Such understanding will require de-
composition studies that last long enough to elucidate the
dynamics of the later stages of decomposition, assessment
of a full suite of plant traits and organs that potentially
influence those dynamics at the ecosystem scale, and
approaches to measuring decomposition that allow access
to a broader suite of decomposing organisms than soil
microbes. Finally, frameworks are needed for predicting
plant species effects on nutrient cycling that are broadened
beyond litter decomposition to consider the full litter–SOM
continuum.
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