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Abstract

The in vitro tissue cultures are, beyond all difficulties, an essential tool in basic research as well as in commercial applications. 

Numerous works devoted to plant tissue cultures proved how important this part of the plant science is. Despite half a century 

of research on the issue of obtaining plants in in vitro cultures, many aspects remain unknown. The path associated with the 

reprogramming of explants in the fully functioning regenerants includes a series of processes that may result in the appear-

ance of morphological, physiological, biochemical or, finally, genetic and epigenetic changes. All these changes occurring 

at the tissue culture stage and appearing in regenerants as tissue culture-induced variation and then inherited by generative 

progeny as somaclonal variation may be the result of oxidative stress, which works at the step of explant preparation, and in 

tissue culture as a result of nutrient components and environmental factors. In this review, we describe the current status of 

understanding the genetic and epigenetic changes that occur during tissue culture.

Key message 

Variation appeared in regenerated plants as well as variation inherited by generative progeny of regenerants can may many, 

positive or negative impact, of gained plant materials. This review focused on factors that triggered this phenomenon with 

underlying oxidative stress.
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Introduction

Plant tissue cultures (PTC) play a crucial role in modern 

biotechnology. They are extensively used in studies on plant 

developmental processes (Firn et al. 1994), gene function-

ing (Deng et  al. 2010), micropropagation (Kumar and 

Redd 2011) and generation of transgenic plants with spe-

cific industrial and agronomical traits (Loyola-Vargas and 

Ochoa-Alejo 2018). Therefore, PTC may impact in crop 

improvement and plant breeding by elimination of viruses 

for healthy plant material (Perotto et al. 2009; Taşkın et al. 

2013), by preservation of germplasm of vegetatively propa-

gated plant crops (Rajasekharan and Sahijram 2015) and 

by threatened or endangered plant species rescue (Sarasan 

et al. 2006). The plant in vitro cultures are of interest for the 

production of secondary metabolites of commercial inter-

est (Loyola-Vargas and Ochoa-Alejo 2018). Plants obtained 

via PTC were used in genetic studies to generate mapping 

population for dissection of QTLs linked to agronomic traits 

(Tyrka et al. 2018) and in studies of mobile elements (Shin-

gote et al. 2019). For a long time, in vitro culture meth-

ods were considered as the way of generating plants that 

are identical to the donor plants (Metakovsky et al. 1987). 

They were also used to obtain genetically uniform materials, 

e.g., for breeding purposes (Weyen 2009). However, even 

earlier studies (Heinz 1973; Larkin and Scowcroft 1981) 

demonstrated that in vitro tissue cultures are prone to muta-

tions (Kaeppler et al. 1998) and many phenotypic changes 

were described (Zhang et al. 2014). With the development 

of modern techniques, it became evident that PTC are also 

affected by epigenetic changes exhibited at, e.g. histone 

methylation/demethylation (Grafi et al. 2007), DNA meth-

ylation levels (Han et al. 2018), changes in gene expression 
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(Kabita et al. 2019) and involve a wide range of small RNAs 

(Li et al. 2012). Numerous such examples were published 

in the literature (Jiang et al. 2011; Miyao et al. 2011; Neela-

kandan and Wang 2012; Sabot et al. 2011). However, the 

mechanisms explaining the somaclonal variation phenom-

enon are still to be assessed. Nevertheless, some steps seem 

to be foreseen. Firstly, stressful environment (tissue cultures 

itself) is the inductor that affects the cell membrane and wall; 

then some signals are transmitted to organelles resulting in 

reactive oxygen species (ROS) (Wachsman 1997) possibly 

via changed balance in biochemical pathways (Kumaravel 

et al. 2017). The change is transmitted to the nucleus via 

signaling (retrograde) pathway (Apel and Hirt 2004; Chi 

et al. 2015) inducing (epi)genetic reaction that leads towards 

cell dedifferentiation and differentiation. The later processes 

involve histone modification (Grafi 2004), DNA methylation 

changes (Ikeuchi et al. 2015; Lee and Seo 2018), and altera-

tions in gene expression (Wibowo et al. 2018). As soon as 

the new balance is established, the signal is transmitted back 

to the chloroplasts and mitochondria (anterograde). In the 

given review, the state of knowledge concerning the induc-

tion of tissue culture induced variation will be discussed.

Tissue cultures as a stressful environment

Stressful environments (Benderradji et al. 2012; Grafi and 

Barak 2015; Leljak-Levanić et al. 2004) are known to play a 

pivotal role in plant regeneration via tissue cultures (Fortes 

and Gallusci 2017; Hirsch et al. 2012; Liu et al. 2015). Cold 

and osmotic stresses applied in darkness are the most com-

mon once used to regenerate plants (Sood and Dwivedi 

2015). Such conditions induce oxidative stress that leads 

towards the production of pro-oxidants or ROS (Wachsman 

1997).

Firstly, stress is sensed by the plasma membrane and cell 

wall (Das and Roychoudhury 2014). In the membrane, the 

NADPH-dependent-oxidases are the enzymes that respond 

to stress (Apel and Hirt 2004; Kwak et al. 2003) producing 

O2
·−, which may spontaneously convert to  H2O2. The cell 

wall, generates  OH·, O2
·−,  H2O2, and 1O2 with the help of 

diamine oxidases that utilize diamines or polyamines.

Stresses accompanying tissue culture plant regeneration 

(Nivas and de Souza 2014), affect the proper functioning 

of the chloroplast, mitochondria, peroxisomes, and apo-

plasts (Roychoudhury et al. 2008); however, endoplasmic 

reticulum, cell membrane, cell wall, and the apoplasts 

functions are also disturbed (Das and Roychoudhury 

2014) resulting in ROS. Under normal conditions, ROS 

are removed via antioxidants (Foyer and Noctor 2005), 

but under stresses, their production and elimination are 

not in balance (Karuppanapandian et al. 2011; Krishna 

et al. 2016; Wachsman 1997). Free radicals like O2
·−,  OH· 

and non-radicals like  H2O2 and 1O2 are the leading players 

controlling growth, development in plants, and response 

to environmental stimuli. Under stress like cold, heavy 

metals, used in tissue cultures cellular homeostasis is not 

preserved, and the excess of ROS may manifest in the deg-

radation of pigments, proteins, lipids and DNA affecting 

cellular functioning (Das and Roychoudhury 2014) than 

inducing tissue culture variation.

Chloroplasts and peroxisomes are the primary sources 

of ROS under light conditions, while in the dark the mito-

chondria is the source of ROS (Choudhury et al. 2013). In 

chloroplasts the photosystems, PSI and PSII are the key 

sources of ROS production. Abiotic conditions (e.g., water 

stress and limited  CO2 concentration), in the excess of 

light induces the formation of O2
·− at the PSII (the Mehler 

reaction). The PSI converts O2
·− into  H2O2 ending with  OH· 

radicals (Miller et al. 2010). PSII is also involved in the 

production of 1O2. This element can initiate growth inhibi-

tion in plants (EXECUTOR1 and EXECUTOR2 programs) 

(Lee et al. 2007).

The peroxisomes are also the source of  H2O2 due to their 

integral oxidative metabolism (Palma et al. 2009). They also 

produce O2
·−, during the various metabolic processes.

Mitochondria also generate  H2O2 and O2
·− (Navrot et al. 

2007), though on a smaller scale. Plant mitochondria pro-

duce  O2 and carbohydrate-rich environment (Rhoads et al. 

2006) and are involved in photorespiration. The mito-

chondrial electron transfer chain (mtETC) encompassing 

Complex I and III (Møller et al. 2007; Noctor et al. 2002) 

reduces  O2 to form the ROS. The NADH Dehydrogenase 

or Complex I reduces  O2 to O2
·− in its flavoprotein region. 

The reverse electron flow from Complex III to I is enhanced 

due to lack of  NAD+-linked substrates favoring leakage of 

electrons to  O2 generating O2
·− (Murphy Michael 2009). The 

O2
·− is converted to  H2O2 (Sharma et al. 2012). Mitochondria 

produces ROS during normal conditions, but is boosted at 

abiotic stress conditions (Pastore et al. 2007) affecting the 

tight coupling of ETC and ATP synthesis, resulting in over 

reduction of electron carriers pool, generating ROS (Blokh-

ina and Fagerstedt 2010; Rhoads et al. 2006) regulated by 

antioxidant machinery (Das and Roychoudhury 2014).

ROS can affect the exchange of signals between chloro-

plasts or mitochondria with the nucleus, namely retrograde 

or anterograde signaling (Suzuki et al. 2012). As the result 

of retro- and anterograde chromosome number changes 

(from polyploidy to aneuploidy), chromosome strand break-

age, rearrangements, and DNA base deletions and substitu-

tions (Czene and Harms-Ringdahl 1995) may appear. The 

changes are ruled by epigenetic mechanisms affecting the 

whole (epi)genetic network influencing the in vitro tissue 

culture induced variation (Kaeppler et al. 2000). Growing 

number of studies make a shift from genetic towards epi-

genetic mechanisms influencing tissue culture induced or 

somaclonal variation (Rodriguez-Enriquez et al. 2011).
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Epigenetic aspects of plant regeneration via in vitro 
tissue cultures

It is well recognized that differentiated plant cells do not lose 

their developmental potentialities but retain plasticity to ded-

ifferentiate and acquire new fates. To switch from differenti-

ated to toti- or pluripotentiality, plant cells need to undergo 

reprogramming (Cao and Jacobsen 2002b; Neelakandan and 

Wang 2012) the process that assumes the conversion of a dif-

ferentiated somatic cell to the dedifferentiated without pass-

ing through the cell cycle (Hirochika et al. 1996b) followed 

by redifferentiation (Grafi 2004). Thus, the dedifferentiation 

means the withdrawal from a given differentiated state into 

a state where cell’s developmental potency increases (Fehér 

2019) and may loss of epigenetic markers-specify (Tanurd-

zic et al. 2008). Epigenetic variation has been reported dur-

ing and after being exposed to in vitro culture conditions 

(De-la-Peña et al. 2012) during cell differentiation and dedif-

ferentiation in plant regeneration systems (Yang et al. 2013).

A change in chromatin organization accompanies the 

dedifferentiation stage. The portion of heterochromatin in 

somatic cells becomes euchromatin, and a new balance 

between the two is established altering gene expression. The 

process is conveyed by the reduction and/or lack of coor-

dination of DNA methyltransferases and 5-methylcytosine 

glycosylases expression. Under downregulation of the genes 

usually, genome-wide (epi)genetic instability was observed. 

However, when the genes are upregulated genetic stability 

is maintained (Zhang et al. 2009). Moreover, expression of 

genes for histones and histone variants, as well as genes 

involved in post-translational modifications and chromatin 

regulation (histone methyltransferases and histone deacety-

lases), increases in suspension cells (Chiu et al. 2010). These 

changes were linked to the expression patterns of genes for 

non-coding RNA epigenetic systems (heterochromatic RNA 

silencing and RNA-dependent DNA methylation). Addition-

ally, the decrease in the RNA endonuclease DCL1 (proces-

sor of microRNA precursors), ARGONAUTE family (e.g. 

AGO1 catalyzing microRNA target transcript cleavage and 

transcriptional repression) and AGO2 (binds to 21-nt small 

RNAs), is post-transcriptionally regulated by miR403 (Mal-

lory and Vaucheret 2010) that suppresses its level if AGO1 

is present (Harvey et al. 2011).

Firstly, it was thought that miRNAs contributed to cleav-

age of the homologous transcript (via ARGONAUTE 1 

activity). However, miRNAs also act as transcriptional 

repressors (mediated via AGO1 and AGO10) (Brodersen 

et al. 2008) and guide DNA methylation in plants (Chel-

lappan et al. 2010). It is evident that trans-acting siRNAs 

(tasiRNAs) and miRNAs are essential regulators of plant 

development (Poethig 2009). They participate in physiologi-

cal regulation and stress tolerance (Sunkar 2010). Moreover, 

microRNA genes, as well as their biogenesis, are susceptible 

to aberrant regulation in vitro (Rodriguez-Enriquez et al. 

2011). An example of such regulation was described for 

micropropagated strawberry, where during in vitro culture, 

the miR156 is upregulated whereas other miRNAs (miR164, 

miR172, and miR390) are down-regulated (Li et al. 2012). 

miR156 is one of the eminently conserved plant microR-

NAs (Axtell and Bowman 2008) and is involved in many 

fundamental biological processes that include for example 

plant phase changes (Massoumi et al. 2017; Wu et al. 2009), 

stress response (Matthews et al. 2019) or regulating somatic 

embryogenesis induction (Long et al. 2018; Szyrajew et al. 

2017). Thus, under in vitro conditions, various miRNAs 

even from the same family, may differ in their expression 

manner. Also, the regulation of miRNAs is controlled by dif-

ferent factors in the culture media, such as auxins, allowing 

differentiated tissue to reach the growth potential (Us-Camas 

et al. 2014). Epigenetic regulation may contribute to the tis-

sue culture-induced variation and may lead towards fixed 

changes at the DNA methylation level.

DNA methylation pattern alterations

Alterations of DNA methylation and/or the DNA meth-

ylation status maintenance is the balance between DNA 

demethylation and de novo methylation. Different sets of 

enzymes direct each of the processes. It was long thought 

that DNA demethylation in plants was not an active pro-

cess. It was assumed that disrupted maintenance of DNA 

methyltransferases might result in a decreased level of DNA 

methylation. However, there is evidence that DNA glycosy-

lase-lyases may participate in an active mechanism (Piccolo 

and Fisher 2014). In plants, such enzymes were first identi-

fied in Arabidopsis and are called HhD-GPD (helix–hair-

pin–helix—Gly/Pro/Asp) DNA glycosylases. The enzymes 

are responsible for the recognition and excision of bases 

modified or damaged by oxidation, alkylation, and deamina-

tion (Fromme and Verdine 2004). They seem to be involved 

in transcriptional silencing (Choi et al. 2002; Gong et al. 

2002).

In plants, there are separate sequence contexts subjected 

to demethylation (Gehring and Henikoff 2008) including 

the symmetric (CG, CHG), and asymmetric (CHH; where 

H is A, C, or T) ones (Gehring 2013). The demethylation 

controlled by the DNA glycosylase-lyases is performed via 

the excision of 5mC of fully or hemimethylated substrates 

with specificity towards CG, CHG or CHH sites. While 

HhH-GPD DNA glycosylases are the largest class of gly-

cosylases among all organisms, the DME family appears to 

be unique to plants. However, how 5-methylcytosine DNA 

glycosylases recognize their substrate is not apparent. One 

possibility is that they recognize the ends of genes (Gehring 

and Henikoff 2008).
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The process opposite to demethylation is called de novo 

methylation. It may take place after DNA replication using 

a maintenance class of DNA methyltransferases (DRM2, 

MET1, and CMT3) recognizing the methylation marks on 

the parental strand of DNA and transferring methylation to 

the daughters’ strands (Cao and Jacobsen 2002a). Alter-

natively, de novo methylation may involve RNA-directed 

DNA methylation (RdDM) accompanied by the action of the 

DRM2 de novo DNA methyltransferase (Miki and Shima-

moto 2008). The post-replication mechanism of DNA meth-

ylation is common for the symmetric CG, CHG sequences 

(by MET1, CMT3 methyltransferases, respectively (Gehring 

2013), whereas the DRM2 maintains asymmetric sites that 

require siRNA guide and reestablishment after each cycle 

of DNA replication or CMT2 (Du et al. 2012; Law and 

Jacobsen 2010; Matzke and Mosher 2014). The CMT3 and 

DRM2 are capable of methylating non-CG sites. The meth-

yltransferases (MET1, CMT3, and DRM2) maintain exist-

ing DNA methylation patterns. However, only the RdDM 

pathway, involving numerous RNAs (Wendte and Pikaard 

2017) establishes the mark in all sequence contexts (Green-

berg 2012).

At the DNA level, the DNA methylation altera-

tions are usually common in the case of the in vitro tis-

sue culture-induced variation (Machczyńska et al. 2015). 

In some species, they may reach up to several percent-

ages of detected changes (Bednarek et  al. 2007; Fiuk 

et al. 2010; Machczyńska et al. 2014a). The in vitro tis-

sue culture-induced DNA methylation pattern alterations 

were described, for example, in maize (Brown 1989) and 

rice (Müller et al. 1990; Zheng et al. 1987). They were also 

detected in the rye (Aydin et al. 2016), triticale (Bednarek 

et al. 2017; Brown 1989; Machczyńska et al. 2014a, b, 

2015) or barley (Bednarek et  al. 2007; Orłowska et  al. 

2016). Depending on the species the increase (Bednarek 

et al. 2007; Fiuk et al. 2010) or decrease (Bednarek et al. 

2017; Machczyńska et al. 2014a, b, 2015) in DNA methyla-

tion level was documented. It was also noted that, at least 

in garlic (Allium sativum), the genetic changes accumulated 

along the time of in vitro culture, whereas epigenetic (CG 

demethylation and methylation) once stabilized within ini-

tial 6 months of the in vitro tissue cultures (Gimenez et al. 

2016).

It is being assumed that in vitro propagation passing 

through callus phase (e.g., somatic or androgenesis) is prone 

to (epi)genetic changes among the regenerants (Miguel and 

Marum 2011; San et al. 2018; Vining et al. 2013) possibly 

due to the fact that the dedifferentiation process may not be 

complete (Rodriguez Lopez et al. 2010). It was demonstrated 

that regenerants derived via somatic embryogenesis from 

leaves of cacao (Theobraroma cacao) retained the C-meth-

ylation pattern of the explant tissue. Thus, the DNA meth-

ylation pattern was not entirely wiped during callus phase 

and was partially preserved in regenerants (Kitimu et al. 

2015) leading to somaclonal variants. Moreover, variation 

in DNA methylation between lines established from different 

nodes on the same parent plant was reported (Baranek et al. 

2010). Furthermore, DNA methylation changes were evalu-

ated under in vitro conditions in the early embryo stages 

leading to defects in gene expression and development 

(Deshmukh et al. 2011; Fernández-Gonzalez et al. 2007; 

Reis e Silva et al. 2012). Dedifferentiation of specialized 

mesophyll cells of Arabidopsis thaliana into protoplasts 

resulted in a dramatic reduction of heterochromatin decon-

densation of major repeats except for the 45s rDNA one 

(Tessadori et al. 2007). The process could be reversed upon 

prolonged culturing. The hypermethylation of euchromatic 

DNA was described in a long-term cell suspension of Arabi-

dopsis thaliana (Tanurdzic et al. 2008). Rapid and reversible 

changes in DNA methylation were also shown in potato cell 

suspension (Law and Suttle 2005). Lowered genomic DNA 

methylation of regenerants derived from shoots compared 

to young leaves or petals was described in case of bush lily 

(Clivia miniata), suggesting that the variation in methyla-

tion of regenerated plantlets was related to the nature of the 

explants (Wang et al. 2012).

While some (epi)mutations arise spontaneously (Rapp 

and Wendel 2005; Sano 2002) the others seem to be not 

random. The so-called hotspots of DNA methylation pattern 

shared among regenerants and arising during in vitro tis-

sue culture were described (Bednarek et al. 2007; Han et al. 

2018; San et al. 2018). The notion of the presence of pre-

ferred sites for epimutations is supported by Tanurdzic et al. 

(2008). Such sites could arise in response to environmental 

signaling under in vitro culture conditions at specific genic 

regions (Us-Camas et al. 2014). It could be speculated that 

such regions should not be covered with proteins, or they 

may reflect some genomic regions that surmount stresses. 

The data is consistent with the hypothesis of the presence 

of a particularly labile portion of the genome susceptible 

to the stress imposed during tissue culture (Oh et al. 2007).

Extensive and transgenerational epigenetic remodeling 

associated with plant tissue culture was described in the 

literature (Hirochika et al. 1996b; Liu et al. 2004; Stroud 

et al. 2013). In some cases, the DNA methylation changes 

were inherited by the regenerants’ progeny (Han et  al. 

2018; Koukalova et al. 2005; Zhang et al. 2014). Moreo-

ver, the inheritance of alterations among successive progeny 

depended on species. In triticale, the methylation pattern 

decreased during several generative cycles following its par-

tial reestablishment (Machczyńska et al. 2014a), in barley, 

the level of DNA methylation remained unchanged after 

initial increase among regenerants compared to the explant 

donors. Interestingly, no morphological variants both among 

regenerants and the progeny were observed (Bednarek et al. 

2007; Machczyńska et  al. 2015; Orłowska et  al. 2016). 



249Plant Cell, Tissue and Organ Culture (PCTOC) (2020) 140:245–257 

1 3

However, others showed that such variants linked to DNA 

methylation change could arise and were related to mor-

phological differences between oil-palm somatic embryos 

(Sianipar et al. 2008), physiological change in rice (Akimoto 

et al. 2007) and cell wall differentiation state in sugar beet 

cell lines (Causevic et al. 2005).

Transposons

It is becoming evident that expression and movement of 

transposable elements (TEs) are under epigenetic control 

necessary for proper genome functioning (Le et al. 2015). 

Multiple epigenetic pathways silence TEs in plants (Law 

and Jacobsen 2010) depending on the chromosome region 

(coding, non-coding) they occupy. Methylated and silenced 

TEs originate mostly from genic regions, possibly reflect-

ing a compromise between TE silencing and gene expres-

sion (Hollister and Gaut 2009). Active genes are mostly 

methylated at CG sites, whereas silenced TEs in all con-

texts, including non-CG methylation reflecting inactive 

heterochromatin (Cokus et al. 2008; Lister et al. 2008). 

Genes within the vicinity of silenced TEs usually have a 

low expression (Hollister and Gaut 2009). Still, there are 

considerable numbers of intragenic TEs in plants (West et al. 

2014).

Furthermore, numerous factors required for transcrip-

tion of genes containing heterochromatic domain have been 

identified in plants (Coustham et al. 2014; Lei et al. 2014). 

Moreover, the intragenic TEs are less methylated than inter-

genic TEs in CG and CHG contexts, while this difference 

between intronic and exonic TEs was not observed (Le et al. 

2015). Also, even longer TEs than those identified within 

intergenic and intragenic genome regions, were less methyl-

ated, in almost all sequence contexts. Possibly though there 

is selection against methylated TEs in intragenic and proxi-

mal regions, due to a downregulated expression of methyl-

ated genes (Le et al. 2015), alternatively, pseudogenization 

may explain the lower expression level of genes with TE 

insertions (Yang et al. 2010). However, the hypothesis was 

not confirmed in the case of intronic TEs (Le et al. 2015).

Moreover, some epigenetic mechanisms may neutralize 

such TEs. Thus, the RdDM pathway may selectively remove 

TEs from genic regions. Additionally, the intronic TEs are 

not strongly activated in epigenetic mutants, including met1 

and ddm1 (Le et al. 2015), suggesting that heterochromatic 

epigenetic marks carried by intronic TEs might be neces-

sary for correct transcription of associated genes as shown 

in the case of transcription of exons downstream of hetero-

chromatic domains (Lei et al. 2014). Likewise intergenic 

TEs, intragenic TEs are recognized by the epigenetic factors 

maintaining CG and non-CG methylation, even within the 

actively transcribed regions. Thus, both RdDM-depend-

ent and -independent pathways may participate in DNA 

methylation of intragenic TEs in case of small euchromatic 

and long heterochromatic elements (Zemach et al. 2013).

TEs mobility is under epigenetic control of the host 

genome. Nevertheless, some elements may escape epige-

netic silencing, if they are AT-rich and thus, target AT-rich 

genomic regions (Naito et al. 2009). Another option is tar-

geting to transcriptionally silent heterochromatic regions as 

described for Ty3-gypsy retrotransposons (Gao et al. 2008). 

Remarkably, some TEs may self-regulate their activity in 

response to stress by gaining stress-responsive motifs recog-

nized by host regulatory proteins. It was shown that TEs are 

activated due to, e.g., elevated temperatures (Cavrak et al. 

2014), cold, drought, salinity, wounding, UV light, pathogen 

attack (Grandbastien 2015), due to interspecific hybridiza-

tion and polyploidization (Vicient and Casacuberta 2017) 

and tissue cultures (Azman et al. 2014; Cheng et al. 2006). 

However, in the latter case, the contrasting data are available 

(Planckaert and Walbot 1989).

It has been evidenced that epigenetic changes that occur 

through the culture process are responsible for the activa-

tion of transposable elements (Azman et al. 2014; Grzebelus 

2018; Ishizaki and Kato 2005; Miyao et al. 2011; Neela-

kandan and Wang 2012; Sabot et al. 2011). However, this 

is not always the case (Ishizaki and Kato 2005; Orłowska 

et al. 2016). In studies on Arabidopsis, no transposition of 

TEs was detected (Jiang et al. 2011). The same was also 

demonstrated for some TEs in barley (Orłowska et al. 2016). 

However, in the regenerants of rice (Miyao et al. 2011; Sabot 

et al. 2011), and barley (Orłowska et al. 2016), several TE 

families were active. In other studies, also on rice, remod-

eling of cytosine methylation of Tos17 (5′LTR region), pos-

sibly due to the RNA-directed DNA methylation pathway 

responsible for repressive control of Tos17, was detected as 

the result of tissue culture (Zhang et al. 2014). Moreover, 

tissue culture-induced TE activity has been widely reported 

in various plant species (Hirochika et al. 1996a), rye (Alves 

et al. 2005), maize (Barret et al. 2006; Geiger 2009) and 

rice (Huang et al. 2009; Picault et al. 2009). Conceivably, 

specific stresses activate some transposons (Cavrak et al. 

2014), whereas others are activated in other different cases 

(Ikeda et al. 2001).

At least under some conditions, the host control over 

TEs is reduced and to some extent could be reestablished 

in the progeny as demonstrated for barley regenerants 

derived via anther cultures and their generative progeny 

(Orłowska et al. 2016). The burst of TEs activity is different 

from single nucleotide mutations as they are generated at a 

relatively constant rate per generation. In the case of active 

MITE family up to 40 new changes per plant per genera-

tion were observed (Naito et al. 2009) exceeding the rate of 

point mutations. Thus, although retrotransposon activity is 

considered to be one of the causes of variability induced in 

tissue cultures, it should be emphasized that they can also be 
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responsible for pre-existing variation (Peschke et al. 1987) 

and with higher rearrangement and mutation rates within 

specific genome regions (Oh et al. 2007).

Among TEs that can be studied in tissue cultures in cere-

als, the group of long terminal repeats (LTR) and the non-

LTR retrotransposons seems suitable (Flavell et al. 1992; 

Suoniemi et al. 1998). For example, BARE-1 has homologs 

in different species e.g., barley, oat, wheat, or rye (Grib-

bon et al. 1999; Pearce et al. 1997). Moreover, its activity, 

linked to the in vitro tissue cultures and DNA methylation 

(Chandler and Walbot 1986; Chomet et al. 1987) is also 

documented in barley (Orłowska et al. 2016). Moreover, TEs 

movement may be a source of mutations, duplication, and 

rearrangements transmitted to the progeny or their move-

ment may influence gene expression. They may also contrib-

ute to genome instability (Walbot and Cullis 1985) observed, 

e.g., among triticale regenerants derived via anther tissue 

cultures (Oleszczuk et al. 2011).

In vitro phenomena regulated by epigenetic 
processes

The habituation, rejuvenation, and morphological changes 

(Smulders and de Klerk 2011) are the in vitro phenomena 

regulated by epigenetic changes in plants. Subculturing and 

the habituation are among the negative factors that spur 

epigenetic and phenotype changes, which can be heritable 

(Meins 1989; Peredo et al. 2006) but reversible (Meins 

and Foster 1985; Smulders 2005; Smulders and de Klerk 

2011). Meins and Thomas (2003) demonstrated that cultured 

tobacco cells exhibited a constitutive cytokinin-habituated 

phenotype that was avoided in some regenerated plants. 

Thus, changes in DNA methylation during in vitro plant 

regeneration might be responsible for the phenomenon. The 

role of DNA methylation seems to be confirmed in studies 

on the transcriptome-based characterization of habituated 

and non-habituated cell culture of Arabidopsis thaliana 

(Pischke et al. 2006). The Authors analyzing differences in 

regulation of methyltransferase MET1, chromomethylases 

CMT1, and CMT3 suggested that there is a precise regula-

tion in methylation patterns between habituated and non-

habituated cultures.

In many cases, the method of regeneration in PTC leads 

to the formation of callus, a mass of proliferating cells, that 

may appear e.g. after injury, in de novo organogenesis and 

in somatic embryogenesis (Sugimoto et al. 2011). The tis-

sue culture environment rich in various plant hormones 

triggers the callus cells to produce organized structures like 

roots or shots that end up with regenerants. The formation 

of callus in PTC conditions undergoes epigenetic control 

involved changes in chromatin structure (DNA methylation, 

histone modification, and deposition) (Lee and Seo 2018). 

Firstly during callus formation is observed the burst of 

hypomethylation in symmetric (CG, CHG) and asymmetric 

(CHH) contexts (Zakrzewski et al. 2017). Such phenomena 

favored the movement of mobile elements while the callus 

is formed (Lanciano et al. 2017) what may lead to genomic 

instability as in case of rice plants regenerated from tissue 

culture (Stroud et al. 2013). The acquisition by callus of the 

pluripotent properties may proceed via histone modifica-

tion. In studies devoted to Arabidopsis shoot regeneration 

competency Authors described the mechanism how during 

callus formation LYSINE-SPECIFIC DEMETHYLASE 

1-LIKE 3 (LDL3) specifically demethylated dimethylated 

lysine 4 of histone H3 (H3K4me2) (Ishihara et al. 2019). 

That epigenetic mechanism let callus to acquire shoot regen-

erative competency. Also, global changes in the deposition 

of histone variants (H1A, H1B, H2A.Z, H3.3) are involved 

in cellular reprogramming (Jullien et al. 2012). The histone 

variant H2A.Z, which is conserved among eukaryotes, is 

also involved in callus formation in rice (Zhang et al. 2017). 

Zhang et al. (2017) underline that the occupancy of H2A.Z is 

associated with H3 lysine 4 trimethylation (H3K4me3) and 

H3 lysine 27 trimethylation (H3K27me3) histone marks in 

callus and seedling tissues. Also, the deposition of H2A.Z 

is negatively correlated with genes participates in rice tis-

sue development. Summing up the in vitro callogenesis is 

tightly associated with DNA methylation as well as with 

histone modification. The epigenetic marks are essential for 

cell fate reprograming from mature not differentiated tissue 

to pluripotent root stem cells that may have the ability to 

regeneration (Berger et al. 2018).

Genetic changes in tissue cultures

For many years, there was a belief that the genetic varia-

tion occurring in regenerants could be induced de novo as a 

result of tissue culture environment or its source may origi-

nate from explant as a “pre-existing” variation (Larkin and 

Scowcroft 1981). Studies conducted on Saintpaulia stressed 

that the variability observed in regenerants might both come 

from the explant as “pre-existing” variation as well as de 

novo, and moreover, it turns out that among the mentioned 

variation types, predominant changes occur during the tissue 

culture (Sato et al. 2011).

Obtaining plants through tissue cultures is burdened 

with the appearance of changes of various nature. One of 

many types of these changes is genetic variation, mani-

fested in the increased frequency of point mutations (Jiang 

et  al. 2011), in chromosomal breakages (Dogramaci-

Altuntepe et al. 2001), and in the activation of mobile 

elements (Ong-Abdullah et al. 2015). What’s more, the 

coexistence of genetic and epigenetic changes promoted 

by in vitro culture in regenerated crop plants (rye, bar-

ley, triticale, wheat, rice, corn) was documented (Baranek 

et al. 2016; Bednarek et al. 2007; Linacero et al. 2011; 
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Machczyńska et  al. 2015; Wang et  al. 2013; Yu et  al. 

2011). Through the use of methylation-sensitive restriction 

enzymes, it was determined that genetic changes occurred 

in 73% (Aile’s cultivar) and 30% (Merced cultivar) of 

the rye plants, while epigenetic changes happened in 50 

and 73% of the Aile’s and Merced cultivars, respectively 

(Linacero et al. 2011). It was also found that the genetic 

variation was related to the presence of the CCGG targets, 

suggesting that there is a common mechanism connecting 

genetic and epigenetic phenomena. Some authors postu-

late that discrimination between genetic and epigenetic 

changes that appeared in tissue cultures is tricky (Smulders 

and de Klerk 2011; Vázquez 2001). The example of such 

tangled mechanisms is the activation of mobile elements. 

DNA methylation is the most important epigenetic mark 

that preserves the genome against TE disruption (Zakrze-

wski et al. 2017).

Among genetic changes affecting the regenerants, the 

DNA sequence changes, as well as gene amplification, trans-

position, and chromosomal alterations, are the most com-

mon. Chromosomal changes include several different phe-

nomena such as disturbed ploidy and chromosome number 

as well as changes in chromosome architecture (duplications, 

translocation, deletion and inversions of chromosome seg-

ments). Moreover, Kaeppler and Phillips (1993) underlined 

that changes in chromosome architecture are more common 

than in chromosome number in plants derived via tissue cul-

ture. In studies devoted to potatoes (Solanum tuberosum) 

regenerated from either protoplasts or stem explants, all 

regenerants revealed aneuploidy or structural chromosomal 

changes. Between structural changes, there were segmental 

deletions and duplications (Fossi et al. 2019). In the case 

of potato, the tissue culture environment caused genomic 

instability that may end up with altered plant phenotype.

The genetic variation related to DNA sequence changes is 

frequent in plants obtained via tissue culture although it does 

not have to manifest in phenotypic level (Machczyńska et al. 

2014b; Orłowska et al. 2016). Single base pair changes may 

appear as a result of deamination of methylated cytosine to 

thiamine that leads to transition (Brettell et al. 1986). DNA 

point mutations may have many sources, among them, are 

polymerase errors during DNA replication, incorrect mis-

match repair mechanism, DNA damage made by ROS, light, 

UV or deamination of methylated cytosine (Maki 2002). 

Comparison of frequency between genetic changes and 

alteration at the chromosomal level showed that the first one 

is more ubiquitous in regenerants (Kaeppler et al. 1998). 

In many cases, the precise nature of the DNA point muta-

tion is unidentified as such kind of changes are frequently 

detected indirectly via PCR and electrophoresis mode (Jin 

et al. 2008).

Moreover, the frequency of tissue culture-induced base 

substitution is much higher than the expected spontaneous 

mutation rate (Rodríguez López et al. 2010). Otherwise, 

some bases are more mutable than others, and transitions 

are more frequent than transversions (Wang et al. 1998). 

Moreover, point mutations in plant tissue cultures are gener-

ally of the same kind as those occurring in vivo (Rodríguez 

López et al. 2010).

Conclusions

In the given review, we have focused on some aspects of cell 

functioning under stress conditions that may participate in 

the induction of the so-called TCIV or SV. We have tried to 

give a comprehensive overlook of how the stressing factors 

may influence the cell wall and membrane inducing signal 

that is transmitted to cellular organelles and then discussed 

(epi)genetic mechanisms working in the nucleus. Moreover, 

the current state of knowledge summarizing the role of a 

wide range of chromosomal changes was presented.
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