
appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
3

6
7

--
F

R
+

E
N

G

Thème BIO

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

PlantGL: a Python-based geometric library for 3D

plant modelling at different scales

Christophe Pradal — Frederic Boudon — Christophe Nouguier — Jérôme Chopard —
Christophe Godin

N° 6367

Novembre 2007

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

PlantGL: a Python-based geometric library for

3D plant modelling at different scales

Christophe Pradal ∗ , Frederic Boudon ∗ , Christophe Nouguier ,

Jérôme Chopard , Christophe Godin

Thème BIO — Systèmes biologiques
Équipes-Projets VirtualPlants

Rapport de recherche n° 6367 — Novembre 2007 — 39 pages

Abstract: In this paper, we present PlantGL, an open-source graphic toolkit
for the creation, simulation and analysis of 3D virtual plants. This C++ geo-
metric library is embedded in the Python language which makes it a powerful
user-interactive platform for plant modelling in various biological application
domains.

PlantGL makes it possible to build and manipulate geometric models of
plants or plant parts, ranging from tissues and organs to plant populations.
Based on a scene graph augmented with primitives dedicated to plant represen-
tation, several methods are provided to create plant architectures from either
field measurements or procedural algorithms. Because they reveal particularly
useful in plant design and analysis, special attention has been paid to the defi-
nition and use of branching system envelopes. Several examples from different
modelling applications illustrate how PlantGL can be used to construct, analyse
or manipulate geometric models at different scales.

Key-words: software architecture, surfacic geometry, virtual plants, plant
architecture, crown envelops, canopy reconstruction, scene graph

∗ These two authors contributed equally to the paper

PlantGL : une bibliothèque géométrique en

Python pour la modélisation 3D des plantes à

différentes échelles

Résumé : Dans cet article, nous présentons PlantGL, une bibliothèque
graphique libre pour la création, la simulation et l’analyse de plantes virtuelles
3D. Cette bibliothèque géométrique écrite en C++ est accessible depuis le language
Python. Elle constitue la base d’une plateforme interactive pour la modélisation
des plantes dans plusieurs domaines applicatifs de la biologie.

PlantGL permet de construire et de manipuler des modèles géométriques de
plantes à differentes échelles, depuis les tissus cellulaires et les organes jusqu’aux
populations de plantes. Plusieurs méthodes sont proposées pour génerer des
architectures de plantes à partir de données mesurées sur le terrain ou de
méthodes procédurales. Ces méthodes s’appuient sur une structure de graphe
de scène augmentée de primitives géométriques adaptées à la representation de
plantes. Du fait de leur importance pour le design et l’analyse de plante, une
attention particulière a été apportée à la définition et à l’utilisation d’enveloppes
pour représenter des systèmes ramifiés . Plusieurs exemples applicatifs illustrent
comment PlantGL peut être utilisée pour construire, analyser et manipuler des
modèles géométrique de plantes à differentes échelles.

Mots-clés : architecture logicielle, géométrie surfacique, plantes virtuelles,
architecture des plantes, enveloppes de houppiers, reconstruction de canopées,
graphe de scène

The PlantGL library 3

1 Introduction

The representation of plant forms in computer scenes has for long been rec-
ognized as a difficult problem in computer graphics applications. In the last
two decades, several algorithms and software platforms have been proposed
to solve this problem with a continuously improving level of efficiency, e.g.
[1, 2, 3, 4, 5, 6, 7, 8]. Due to the increasing use of computer models in bi-
ological research, the design of 3D geometric models of plants has also be-
come an important aspect of various biological applications in plant science,
e.g. [9, 10, 11, 12, 13, 14, 15]. These applications raise specific problems that
derive from the need to represent plants with a botanical or geometric accuracy
at different scales, from tissues to plant communities. However, in comparison
with computer graphics applications, less effort has been devoted to the develop-
ment of geometric modelling systems adapted to the requirements of biological
applications.

In this context, the most successful and widespread plant modelling system
has been developed by P. Prusinkiewicz and his team since the late 80’s at the
interface between biology and computer graphics. They designed a computer
platform, known as L-Studio/VLab, for the simulation of plant growth based
on L-systems [16, 1]. This system makes it possible to model the development of
plants with efficiency and flexibility as a process of bracketed-string rewriting.
In a recent version of LStudio/VLab, Karwowski and Prusinkiewicz changed the
original cpfg language for a compiled language, L+C, built on the top of the
C++ programming language. The resulting gain of expressiveness facilitates
the specification of complex plant models in L+C [18]. An alternative imple-
mentation of a L-system-based software for plant modeling was designed by W.
Kurth [19] in the context of forestry applications. This simulation system, called
GroGra, was also recently re-engineered in order to model the development of
objects more complex than bracketed strings. The resulting simulation system,
GroIMP, is an open-source software that extends the chain rewriting principle
of L-Systems to general graph rewriting with relational graph growth (RGG),
[20, 21]. Similarly to L+C, this system has been defined on the top of a widely
used programming language (here Java). Non-language oriented platforms were
also developed. One of the first ones was designed by the AMAP group. The
AMAP software [2, 22] makes it possible to build plants by tuning the parame-
ters of a predefined, hard-coded, model. Geometric symbols for flowers, leaves,
fruits, etc., are defined in a symbol library and can be modified or created with
specific editors developed by AMAP. In this framework, a wide set of parameter-
files has been designed corresponding to various plant species. In the context of
applications more oriented toward computer graphics, the XFrog software [4, 23]
is a popular example of a plant simulation system dedicated to the intuitive de-
sign of plant geometric models. In XFrog, components representing basic plant
organs like leaves, spines, flowerlets or branches can be multiplied in space using
high-level multiplier components. Plants are thus defined as graphs representing
series of multiplication operations. The XFrog system provides an easy to use,
intuitive system to design plant models, with little biological expertise needed.

Therefore, if accuracy, conciseness and transparency of the modeling process
is required, object-oriented, rule-based platforms, such as L-studio/VLab or
GroIMP, are good candidates for modelers. If interactive and intuitive model
design is required, with little biological expertise, then component-based or

RR n° 6367

4 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

sketch-based systems like XFrog are the best candidates. However, if easiness
to explore and mathematically analyse plant scenes is required, none of the
above approaches is completely satisfactory. Such an operation requires high-
level user interaction with plant scenes and dedicated high-level mathematical
primitives. In this aim, our team developed several years ago the AMAPmod

software [24], and its most recent version, VPlants, which enables modelers to
create, explore and analyse plant architecture databases using a powerful script
language. In a way complementary to L-Studio/VLab, VPlants allows the
user to efficiently analyse plant architecture databases and scenes from many
exploratory perspectives in a language-based, interactive, manner [25, 26, 27,
28]. The PlantGL library was developed to support geometric processing on
plant scenes in VPlants, for applications ranging from computer graphics [29, 30]
to different areas of biological modeling [31, 32, 33, 14, 34, 35]. A number of high-
level requirements were imposed by this context. Similarly to AMAPmod/VPlants,
the library should be open-source, it should be fully compatible with the data
structure used in AMAPmod/VPlants to represent plants, i.e. multi-scale tree
graphs (MTGs), it should be accessible through an efficient script language to
favor interactive exploration of plant databases, it should be easy to use for
biologists or modellers and should not impose a particular modelling approach,
it should be easily extended by users to progressively adapt to the great variety
of plant modelling applications, and finally, it should be interoperable with other
main plant modelling platforms.

These main requirements lead us to integrate a number of new and original
features in PlantGL that makes it particularly adapted to plant modelling. It
is based on the script language Python, which enables the user to manipulate
geometric models interactively and incrementally, without compiling the scene
code or recomputing the entire scene after each scene modification. The embed-
ding in Python is critical for a number of additional reasons: i) the modeller has
access to a powerful object-oriented language for the design of geometric scenes,
ii) the language is independent of any underlying modelling paradigm and allows
the definition of new procedural models, iii) high-level manipulations of plant
scenes provide users the ease to concentrate on application issues rather than on
technical details, iv) the large set of available Python scientific packages can be
freely and easily accessed by modelers in their applications. From its contents
perspective, PlantGL provides a set of geometric primitives for plant modelling
that can be combined in scene-graphs dedicated to multiscale plant represen-
tation. New primitives were developed to address biological questions at either
macroscopic or microscopic scales. At plant scale, envelope-based primitives
have been designed to model plant crowns as volumetric objects. At cell scale,
tissue objects representing arrangements of plant cells enable users to model the
development of plant tissues such as meristems. Particular attention has been
paid to the design of the library to achieve a high-level of reuse and extensibility
(e.g. data structures, algorithms and GUIs are clearly separated). To favor the
exchange of models and databases between users, PlantGL can communicate
with other modelling platforms such as LStudio/VLab and is available under an
open-source license.

In this paper, we present the PlantGL geometric library and its application
to plant modelling. Section 2 describes the design principles and rationales that
underly the library architecture. It also briefly introduces the main scene graph
structure and the different library objects: geometric models, transformations,

INRIA

The PlantGL library 5

algorithms and visualization components. Then, a detailed description of the
geometric models and methods dedicated to the construction of plant scenes is
provided in section 3. This includes the modeling of organs, crowns, foliage,
branching systems and plant tissues. A final section illustrates how PlantGL

components can be used and assembled to answer particular questions from
computer graphics or biological applications at different levels of a modelling
approach: creating, analysing, simulating and assessing plant models.

2 PlantGL design and implementation

A number of high-level goals have guided the design and development of PlantGL
to optimize its reusability and diffusion:

• Usefulness : PlantGL is primarily dedicated to researchers in the plant
modelling community who do not necessarily have any a priori knowledge
in computer graphics. Its interface with modellers and end-users should
be intuitive with a short learning curve.

• Genericity : PlantGL should not impose a particular modelling paradigm
on users. Rather, it should allow them to design their own approach in a
powerful way.

• Quality : Quality is a major aspect of software diffusion and reusability.
PlantGL should therefore be developed with software quality guarantees.

• Interoperability : PlantGL should also be interoperable with various plant
modelling systems (e.g. L-studio/VLab, AMAP, etc.) and graphic toolkits
(e.g. Pov-Ray, Vrml, Blender, etc.).

• Portability : PlantGL should be available on major operating systems (e.g.
Linux, Microsoft Windows, MacOSX).

In this section we detail how these requirements have been translated into
choices at different levels of the system design.

2.1 Software architecture

The system architecture derives from a set of key design choices:

• Open-source : PlantGL is an open-source software that may be freely used
and extended.

• Script-language based system : PlantGL is built on the top of the powerful
script language, Python. The use of a script language allows users to have
a high level of computational interaction with their models.

• Software engineering : Object-oriented design is useful to organize large
computational projects and enhance code reuse. However, designing reusable
and flexible software remains a difficult task. We addressed this problem
by using advanced software engineering tools such as design patterns [36].

RR n° 6367

6 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

• Modularity : PlantGL is composed of several independent modules like a
geometric library, GUI components and Python wrappers. They can be
used alone or combined within a specific application.

• Hybrid System : Core computational components of PlantGL are imple-
mented in the C++ compiled language for performance. However, for flexi-
bility of use, these components are also exported in the Python language.

Among all the script available languages, Python was found to present a
unique compromise between the following features:

• Python is an open-source software;

• it is available on the main operating systems;

• it is a powerful object-oriented language;

• it is simple to use and its syntax is sufficiently intuitive for non-computer
scientists (e.g. for biologists);

• it is fully compatible with C++;

• the Python community is large and very active;

• a large number of other scientific libraries are available and can be im-
ported in the language at any time of a model development.

The overall architecture layout of PlantGL is shown in Figure 1, including
several layers of encapsulation and abstraction. The geometric library and the
GUI lie in the core of PlantGL. The geometric library encapsulates a scene-graph
data structure, a taxonomy of geometric objects and a set of algorithms (for
instance for OpenGL rendering). The GUI is developed as a set of Qt widgets and
can be combined with previous components to provides visualization facilities.
On top of this first layer, a set of wrappers create interfaces of the C++ classes into
the Python language. All these interfaces are gathered into a Python module
named PlantGL. This module is integrated seamlessly with standard Python

and thus enables further abstraction layers, written in Python. Extension of
the library can be done using either C++ or Python.

2.2 Basic components

The basic components of PlantGL are scene-graphs that contain scene objects
(geometry, appearance, transformation, etc.), actions that define algorithms
that can be applied to scene-graphs, and the visualization tools.

2.2.1 Scene-graphs

Scene-graphs are a common data structure used in computer graphics to model
scenes [37]. They provide both a high-level view of the application’s data as
well as a mechanism to perform the low-level computations necessary to drive
a rendering pipeline such as OpenGL. Basically, a scene-graph is a directed,
acyclic graph (DAG), whose nodes hold the information about the elements that
compose the scene. In a DAG, nodes may have more than one parent, which

INRIA

The PlantGL library 7

Figure 1: Layout of the PlantGL architecture. It contains three main compo-
nents: a geometric library, a GUI and Wrappers. The two first components are
written in C++ for efficiency. PlantGL primitives can be used by modellers to
develop scripts, procedures and applications in the embedding language Python.
Data structures can be imported from and exported to other plant modelling
softwares

enables parent nodes to share child nodes within the graph via the instantiation
mechanism.

In PlantGL, an object-oriented version of scene-graphs was implemented to
facilitate the customization of scene-graph node processing. Scene-graphs are
made of nodes of different types. Types may be one of geometry, appearance,
shape, transformation, and group. Scene-graph nodes are organized as a DAG
hierarchy. Terminal nodes contain shapes pointing to both a geometry node
(which contains a geometric model, see section 2.2.2) and an appearance node
(e.g. which defines a color, a material or a texture). Non terminal nodes cor-
respond to group or transformation nodes (see section 2.2.3). They are used to
build complex objects from simple geometric models.

2.2.2 Geometric models

Two families of geometric models are available in the library: Explicit and
Parametric models. Explicit models are defined as sets of discrete primitives
like points, lines or polygons that can be directly drawn by graphics cards. They
enable to express geometric models in a generic but low level way and are thus
complex to manipulate. On the opposite, parametric models are defined using
equations that involve one or several parameters. Parametric models offer a
higher level of abstraction and are thus simpler to manipulate. However, to
be displayed, parametric models have to be transformed into an explicit repre-
sentation. This is done by discretizing algorithms defined for each parametric
model. The discretization process is controlled by parameters indicating how
many primitives have to be created.

PlantGL contains a number of geometric models to represent 3D points,
curves, surfaces and volumes. Curves include Polyline, Bézier and NURBS .
They are used for instance to generate surfaces or to represent the medial axis of

RR n° 6367

8 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

an object. Surfaces and volumes may be represented by PolygonMesh, surfaces
of revolution (SOR), Patch, Extrusion and Hull . SOR include simple shapes
(sphere, cylinder, frustum, paraboloid) and more generic ones like Revolution
(revolution of a curve along an axis). Patch surfaces include Bézier , NURBS ,
and ElevationGrid surfaces used for terrain modelling. Extrusion (or generalized
cylinder) is a sweep surface useful for the modelling of branches. Hulls are 3D
envelopes that may be used to model tree crowns.

2.2.3 Transformations and compositions

Transformed nodes allow the user to define the position, orientation and size
of a geometric object. They contain classical translation, rotation and scaling
nodes. Rotations may be specified in various forms (via matrices, Euler an-
gles,...). A particular transformation named Taper proposes a gradual scaling
of subsequent perpendicular planes to a given direction. This non-affine trans-
formation enables the modeller to transform a cylinder into a truncated cone
and is generally used in the representation of branch segments. Transformed
nodes embed a shape on which the transformation is applied.

A Group node, or a composite node, defines a union of scene objects which
embeds a list of geometry nodes. Groups are mainly used to apply a given
transformation to a set of objects as a whole. A Group node may point to other
Group nodes and define a subgraph of nodes.

2.2.4 Algorithms

In PlantGL, algorithms are separated from data structures for flexibility and
maintenance purpose. To be applied on a scene, some algorithms need to
traverse the scene-graph structure. Scene-graph traversals are different from
standard graph traversal since nodes are heterogeneous and need to be treated
according to their type. To achieve this efficiently, traversal processes are based
on double dispatch technique via the visitor design pattern [36]. This design
pattern makes it possible to keep functions outside node objects by delegating
the mapping from node to function to a separate visitor object called an action.
The action holds all the algorithm functions for every types of nodes in the
system. It is thus possible to add new algorithms by implementing new actions
without modifying the node classes (see section 2.4). By splitting specification
and implementation, PlantGL scene-graph preserves flexibility without loosing
performances.

In the actual implementation, PlantGL supports approximatively 40 actions.
The main ones can be classified into the following categories :

• Converter : Algorithms that convert geometries into explicit representa-
tions (e.g. Discretizer or Tesselator actions), or into Bounding Boxes or
Wire.

• Renderer : OpenGL rendering for various modes: volumetric, skeleton,
bounding box, etc.

• Import / Export : parser and exporter of various classical formats namely
PovRay, Vrml, etc. or to plant dedicated systems like AMAPmod/VPlants,
LStudio/VLab, AMAPsim and VegeStar.

INRIA

The PlantGL library 9

• Fitting : Fitting algorithms have been integrated into the library. Facili-
ties to compute convex hull [38], bounding volumes (sphere [39], box) can
be used to compute a global representation from a set of detailed shapes.

• Projection : Algorithm based on OpenGL to project 3D scenes onto 2D
planes.

• Grids : Partitioning of the 3D space into multiscale grids such as Oc-
tree. Detection of intersection between voxels and triangles of the scene
is carried out using the algorithm described in [40].

• Ray casting : Two versions of the algorithms are implemented. The first
one is CPU-based, and is implemented as C++ routines with grids used
to determine which shape to test for ray intersection. The second one
is GPU-based, and uses OpenGL picking feature to compute the different
shape interceptions of a small orthographic viewport, featuring a beam.

• Analysis : Algorithms that compute particular properties of the scene,
like the total number of polygons, the surface or volume, the center or the
inertia axes of the scene.

The use of these algorithms is illustrated in section 4 in the context of dif-
ferent biological applications.

2.2.5 Visualization tools

The PlantGL Viewer (Figure 2) provides facilities to visualize scene-graphs. Dif-
ferent types of rendering modes are available including volumetric, wire, skele-
ton, and bounding box. Camera and lights positions and properties can be
interactively modified. Scene-graphs organization and node properties can be
explored with adapted widgets allowing to access to various pieces of informa-
tion about the scene, like the number, volume, surface or bounding box of the
scene elements. Simple edition features (such as a shape material editor) are
available. Screen-shots can be easily made and exported in documents or as-
sembled into movies. Most of the viewer features can be set using buttons or
context menus and are also available with procedure call.

The viewer and the scene access are multi-threaded so that a user can still
interact with the scene from a Python shell during visualization.

Several types of dialog boxes can also be interactively created in the Viewer
from the Python shell. Results of the dialog is returned to the Python process
using multi-threaded communications (see section 2.4). This enables graphical
control of a Python modelling process through the Viewer.

2.3 Creating scene-graphs

There are different ways for application developers to create and process a scene-
graph depending both on performance constraints and their familiarity with
computer graphics concepts.

• Declarative language. PlantGL provides a declarative language, GML, sim-
ilar to VRML [41] with extensions for plant geometric objects. GML adds

RR n° 6367

10 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

Figure 2: Visualization of the detailed representation of a 15 years walnut tree
[10] with the PlantGL viewer.

persistence capabilities to PlantGL in both ascii and binary versions. Ex-
ternal applications can use this file format to describe a static scene and
call PlantGL as an external module to render it. The GML language is
described in [42].

• Scene-graph programming API. For C++ applications, it is possible to link
directly with the PlantGL library. In this case, PlantGL features can be
extended by adding new objects and new actions.

• Interpreted language. The full PlantGL API is accessible from the Python

language. Combination of high level tools and language such as PlantGL
and Python allows rapid prototyping of new models and applications [43].
Moreover, numerous scientific modules for Python exist and can be reused
[44].

PlantGL provides different ways for users and applications to create scenes.
A scene can first be described in GML. The GML file can then be loaded and
the scene rendered. In such a case, the scene is static and the communication is
one way. For performance and fast communication, a second solution consists
of creating the scene in C++ and link the application with the C++ PlantGL

library. Finally, for rapid developments, prototyping, and tests, a scene can be
created procedurally in Python.

2.4 Implementation issues

Different issues have to be addressed in order to implement an efficient scene-
graph that preserves performances and flexibility. Literature on scene-graphs
[45] offers various interesting solutions that were formalized as design patterns
and which inspired our implementation.

Memory management - Scene-graphs have to deal with large number
of geometric elements. This is particularly true for natural scenes. Memory
consumption is thus an issue. Repetitive structures such as trees enable massive
use of instantiation. This technique, however, implies to reference several times
the same object. Allocation and deallocation of this object in memory can thus
be problematic. To address this issue, we use Reference counting pointers [46]

INRIA

The PlantGL library 11

which manages pointers to dynamically allocated objects. They are responsible
for automatic deletion of the objects when no longer needed.

Double dispatch - As stated in section 2.2.4, scene-graph traversal imple-
ments a double-dispatch technique via the visitor design pattern. With such an
approach, algorithms can be added without any modification of the hierarchy
of objects. However, at runtime, matching a particular data structure to its
appropriate algorithms is not a trivial task. Each node of the scene-graph has
an apply method that takes an action object as an argument. The node makes
a call to the action, passing itself as an argument, and the action executes its
algorithm depending on the actual node type. Thus, the visitor design pattern
simulates a double-dispatch in C++, which is a single-dispatch object oriented
language.

Wrappers - The seamless transition between C++ and Python is ensured
by the Boost.Python library [47]. In contrast with concurrent tools, the in-
teraction between C++ and Python is encoded explicitly in C++. This wrapping
code is then compiled into a dynamic library, usable as a Python module. On
one hand, Boost.Python maps C++ classes and their interfaces to corresponding
Python classes. On the other hand, it transparently converts Python objects
back to C++ pointers or references, thus providing dynamic, run-time depen-
dent interaction between C++ based objects. Since Boost.Python is based on
advanced meta-programming techniques, the code wrapping mainly consists of
simple declaration of entry points in the library and is automatically translated
into conversion functions.

Graphic performances -Plant geometry generally rely on important ver-
tex set. In order to minimize time cost for sending all the vertex to the GPU,
the vertex are packed into arrays that can be sent in one command to the card.
Moreover, OpenGL command for drawing shapes instantiated multiple times are
packed into display lists that can be reused efficiently when needed.

Multi-threading - Viewer and shell processing are done in separated threads.
For this, Qt threads implementation were used. Inter-threads communication is
made using Qt event dispatch mechanism which is extended with synchronized
dispatch using mutex.

3 Construction of Plant Models

3.1 Plant organs

As stated in section 2.2.2, a taxonomy of geometric models is implemented
in PlantGL. During implementation, we focused on models useful for natural
scene modelling and rendering. For instance, PlantGL contains thus cylinders
and frustums to represent inter-nodes, Bézier and NURBS patches to model
complex organs such as leaves or flowers and generalized cylinders for branches
and stems.

During the creation of a scene-graph, complex objects can be modeled using
composition and instantiation. Simple procedures can be written in Python that
position predefined symbols, for instance petals or leaves, using Transformation
and Group objects, to create more complex objects by composition (Figure 3).
Python, as a modelling language, allows the modeller to express a full range of
modelling techniques. For instance, the pine cone (Figure 3.c) is built by placing

RR n° 6367

12 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

its scale using the golden angle. The following code sketches the placement of
each scales. Size of successive scales in the spiral follows a logarithmic laws in
this case.

from PlantGL import ∗

sc = Scene ()

de l taAngle = pi /(1+ sq r t (5)) # the golden ang le
de f distToTrunk (u) : # with u in [0 , 2] , u < 1 f o r the bottom part

i f i < 1 : r e turn MaxDist∗u
e l s e : r e turn MaxDist∗((2−u)∗∗2)

de f s i z e S c a l e (u) :
i f i < 1 : r e turn MaxSize∗ l og (1+u , 2)
e l s e : r e turn MaxDist∗ l og (3−u , 2)

f o r i in range (nbScale) :
s += AxisRotated ((0 , 0 , 1) , i ∗deltaAngle ,

Trans lated ((distToTrunk (2∗ i / nbScale) , 0 , i) ,
Sca led (s i z e S c a l e (2∗ i / nbScale) , smb))

(a) (b) (c)

Figure 3: (a) a tulip, (b) a cactus and (c) a pine cone. Models were created
with simple Python procedure that create and position organs, like petal and
leaves.

3.2 Crown models

3.2.1 Envelopes

Tree crown envelopes are used in different contexts like studying plant interac-
tion with its environment (i.e. radiative transfers in canopies [9] or competition
for space [48]), 3D tree model reconstruction from photographs [6], and interac-
tive rendering [49]. They are one original key issue of PlantGL. In this section,
we describe in detail three specific envelope models that were specifically de-
signed to represent plant volumes: asymmetric, extruded and skinned hulls.

Asymmetric Hull - This envelope model, originally proposed by Horn
[50] and Koop [51], then extended by Cescatti [9], makes it possible to define
asymmetric crown shapes based on ellipsoidal shapes.

The envelope is defined by six control points and two shape factors CT and
CB (see Figure 4). The two first control point, PT and PB , respectively represent
top and base points of the crown. The four other points P1 to P4 represent
the different radius of the crown in four orthogonal directions. P1 and P3 are
constrained to lie in the xz plane and P2 and P4 in yz plane. These points define

INRIA

The PlantGL library 13

Figure 4: Asymmetric hull parameters.

a peripheral line L at biggest width of the crown when projecting it into the
horizontal plane. The projection of L in the horizontal plane is composed of four
ellipse quarters centered on (0, 0). The height of the points of L is defined as an
interpolation of the heights of the control points. To be continuous at the control
points, we used factors cos2 θ and sin2 θ. Thus, a point Pθ,i,j of a quarter of L
between control points Pi and Pj with i, j ∈ [(1, 2), (2, 3), (3, 4), (4, 1)], located
at an angle θ ∈

[

0, π
2

)

, is defined as

Pθ,i,j =
[

rPi
cos θ, rPj

sinθ, zPi
cos2 θ + zPj

sin2 θ
]

. (1)

The two shape factors CT and CB describe the curvature of the crown above
and below the peripheral line. Points of L are connected to the top and base
points with quarters of super-ellipse respectively of degrees CT and CB . Let
Pl ∈ L and PT be the top point of the envelope, the above super-ellipse quarter
connecting Pl and PT is defined as

{

P = (θ, r, z)|
(r − rpT

)CT

(rPl
− rpT

)CT
+

(z − zpT
)CT

(zPl
− zpT

)CT
= 1

}

. (2)

Equivalent equation is obtained for below super-ellipse quarter using PB and
CB instead of PT and CT .

Figure 5: Example of asymmetric hulls showing plasticity of this model to
represent tree crowns (inspired from Cescatti [9]).

Different shape factor values generate conical (Ci = 1), ellipsoidal (Ci = 2),
concave (Ci ∈]0, 1[), or convex (Ci ∈]1,∞[)shapes. A great variety of shapes can
be achieved by modifying shape factor values (see Figure 5). Cescatti proposes

RR n° 6367

14 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

a simple methodology to measure the six control points and estimate the shape
factors directly in the field. In PlantGL, a graphic editor has been implemented
which makes it possible to build envelopes from photographs or drawings. For
this, reference images can be displayed in the background of the different edition
views. An illustration of this shape usage can be found for the interactive design
of bonsai tree [29].

Extruded Hull - This model of extruded envelope was originally proposed
by Birnbaum [52]. Such an envelope is built from a vertical and an horizontal
profile, respectively in the xz plane and in the xy plane. To build the envelope,
the horizontal profile is swept inside the vertical profile.

For this, the vertical profile V is virtually split into slices by planes passing
through equidistant points from the top (or by horizontal planes). These slices
are used to map H inside V . To simplify this procedure, two fixed points, B
and T , respectively at the top and bottom of the vertical profile, are defined
and V is split into two open profile curves Vl and Vr, respectively the left and
the right part of V , with their first and last points equals to B and T . A slice is
thus defined using two mapping points Vl(u) and Vr(u), with u ∈ [umin, umax].

On the horizontal profile H, two anchor points, Hl and Hr, are defined. We

consider, without any loss of generality, that
−−−→
HlHr is collinear to the −→x axis

and Hl and Hr corresponds respectively to the min and max x values of H. A

reference frame R0 associated with H can thus be defined using
−−−→
HlHr and the

−→y axis.

For each slice, a second reference frame R can be defined with
−−−−−−−→
Vl(u)Vr(r)

and −→y . An horizontal section of the extruded hull is computed at R so that the
resulting curve fits inside V (see Figure 6.b). The transformation thus consists
of mapping R into R0. It is made of a translation of H from Hl to Vl(u), a
rotation around the −→y axis of an angle α(u) equal to the angle between the −→x

axis and
−−−−−−−→
Vl(u)Vr(u), and finally, a scaling factor

∥

∥

∥

−−−−−−−→
Vl(u)Vr(u)

∥

∥

∥
/

∥

∥

∥

−−−→
HlHr

∥

∥

∥
.

The equation of the Extruded Hull surface is thus:

S(u, v) = Vl(u) +
‖
−−−−−−−→
Vl(u)Vr(u)‖

‖
−−−→
HlHr‖

∗ Ry(α(u))(H(v) − Hl) (3)

(a) (b) (c) (d)

Figure 6: Extruded Hull construction. (a) Acquisition of a vertical and an
horizontal profile. (b) Transformation of the horizontal profile into a section of
the hull. (c) Computation of all sections (d) Mesh reconstruction.

INRIA

The PlantGL library 15

Skinned Hull - Surface skinning, also known as lofting [53, 54, 55], is a
process of passing a surface through a set of profile curves.

A skinned hull is built from a set of planar profiles, {Pk(u), k = 0, . . . ,K}
and a set of associated angles {αk, k = 0, . . . ,K}. The envelope of a skinned
hull is a closed skinned surface which interpolate all the profiles. Profiles are
thus iso-parametric curves of the surface (see Figure 7.a). The plane of each
profile results from a rotation of the vertical xz plane of an angle αk around the
z axis.

The skinned hull is a generalization of a surface of revolution with a varia-
tional section being an interpolation of the various profiles. For the particular
case of a unique profile, the surface is a surface of revolution. Similarly to the
vertical profile of the extruded hull, two fixed points B and T are defined and

all profiles are split into two open profile curves. In this case,
−→
BT defines the

rotation axis of the shape.
We assume that all the profiles Pk(u) are non-rational B-spline curves. First,

profiles are homogenized to have the same parametrization and the same number
of control points. A first homogenization algorithm [54] consists of computing
a common knot vector U for all curves by adding all the different knots of
each curve knot vector. Although this method is efficient, this result in a large
number of knots and thus a large number of control points. In general, if the
average number of knots is m and the number of profiles is k, the total number
of knots for each profile can be in O(km), instead of O(m). To reduce the
number of knots, the algorithm is modified as follows: a knot is added only if
the distance to the already added closest knot is superior to a given tolerance.
However, the homogenized profiles are an approximation of the original profiles.
The resulting profiles are

Pk(u) =
n

∑

i=0

Ni,p(u)Pi,k (4)

where p is the common degree of the profiles, n is the common number of control
points, the {Ni,p(u)} are the pth-degree B-spline basis function defined on the
common knot vector U , and Pi,k is the ith control point of the kth profile Pk.

Using the homogenized profiles, a variational section Q can be defined. For
each angle α around the rotation axis, Q defines a planar section of the skin
surface (see Figure 7.b). Q is computed by interpolating all the profiles Pk at
the given parameters αk. It is defined as

Q(u, α) =
n

∑

i=0

Ni,p(u)Qi(α) (5)

where the Qi(α) are a variational form of control points.
Qi are computed by an interpolation through the Pi,0, . . . , Pi,K points at

the parameters α0, . . . , αK using a global interpolation method described in
[54]. Let q be the chosen degree of the interpolation such as q < K. Qi(α) are
defined as

Qi(α) =
K

∑

j=0

Nj,q(α)Ri,j (6)

RR n° 6367

16 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

(a) (b) (c)

Figure 7: Skinned Hull algorithm. (a) User define a set of planar profiles
in different planes around the z axis (in black). (b) Profiles are interpolated to
compute different sections (in grey). (c) The surface is computed. Input profiles
are iso-parametric curves of the resulting surface.

where the control points Ri,j are computed by solving interpolation constraints
that results in a system of linear equations:

∀i ∈ [0, n],∀k ∈ [0,K], Pi,k = Qi(αk) =
K

∑

j=0

Nj,q(αk)Ri,j (7)

The knot vector V of the Qi is defined directly from the {αk}.
Geometrically, the surface is obtained by rotating Q(u, α) about the z axis,

α being the rotation angle. It is defined as

S(u, α) = (cos αQx(u, α), sin αQx(u, α), Qz(u, α)). (8)

3.2.2 Foliage distributions

In particular studies such as light interception in eco-physiology or pest propa-
gation in epidemiology, only the arrangement of leaves in space is relevant. This
lead us to define adequate means to specify leaf distributions independently of
branching systems.

A first simple strategy consists of creating random foliage according to dif-
ferent statistical distributions. This can be easily expressed in PlantGL as il-
lustrated by the following example. Let us consider a random canopy foliage
whose leaf distribution varies according to the height in the canopy. The fol-
lowing code sketches the creation of three horizontal layers of vegetation with
different statistical properties.

from PlantGL import ∗

from random import uniform
sc = Scene ()
f o r i in range (nb leaves) :

p = uniform (0 , 1)
i f p <= p1 :

he ight = uniform (bottom layer1 , t op l ay e r 1)

INRIA

The PlantGL library 17

e l i f p1 < p <= p2 :
he ight = uniform (bottom layer2 , t op l ay e r 2)

e l s e :
he ight = uniform (bottom layer3 , t op l ay e r 3)

random po s i t i o n and o r i e n t a t i o n o f l e av e s at the chosen a l t i t u d e
pos = (uniform (xmin , xmax) , uniform (ymin , ymax) , he ight)
az , e l , r o l l = uniform(−pi , p i) , uniform (0 , p i) , uniform(−pi , p i)
sc += Trans lated (pos , EulerRotated (az , e l , r o l l , l e a f symbo l)))

Figure 8 shows the resulting random foliage (trunk generation is not de-
scribed in the code).

Figure 8: A layered canopy foliage. The probabilities for a leaf to be in the
first, second or third layer are respectively 0.1, 0.7 and 0.2.

Plant foliage may also exhibit specific leaf arrangement with regular and
deterministic properties. If the regularity corresponds to a form of spatial pe-
riodicity at a given scale, a procedural method similar to the previous one for
random foliage can be easily used. However, some plants like ferns or pines show
remarkable spatial organization of their foliage with several levels of aggregation
and similar structures repeated at the different scales [14]. Such fractal spatial
organizations can be captured by 3D Iterated Function Systems (IFS) [56].

An IFS is a set of contracting affine transformations {Ti}i∈[1,M]}. The union
of these transformations define a contracting operator F such that:

F = T1 ∪ T2 ∪ . . . ∪ TM . (9)

The F operator may be applied iteratively to an arbitrary initial 3D geo-
metric model, I, called the initiator . At the nth iteration the obtained object
Ln has a pre-fractal structure composed of a number of elements increasing
exponentially with n (while the size of each element decreases at an equivalent
rate).

Ln = Fn(I) (10)

When n tends to infinity, the iteration process tends to a fractal object L∞,
called the attractor. The attractor only depends on F (and not on the initiator)
and has a known fractal dimension that depends on the contraction factors and
number of F transformations, e.g. [57].

IFSs have been implemented in PlantGL as a transformation primitive. They
may be used to construct reference virtual plant foliages with a priori deter-
mined self-similar structures and dimensions, Figure 9, e.g. [14, 33].

RR n° 6367

18 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

(a) (b) (c)

Figure 9: Construction of a fractal foliage using an IFS. (a) The initiator is
a disc (representing a leaf shape). In the first iteration, the initiator is dupli-
cated, translated, rotated and resized according to the affine transformations
that compose F , leading to L1. (b-c) IFS foliages L3 and L5 at iteration depths
3 and 5. The theoretical dimension of this foliage is 2.0

3.3 Branching system modelling

3.3.1 Scene-graphs for plants

In PlantGL, the construction of a branching systems comes down to instantiate
a p-scene-graph. A p-scene-graph corresponds to an adaptation of the PlantGL
scene-graph to the representation of plant branching structures. For this, a par-
ticular set of nodes in the p-scene-graph, named structural nodes, are introduced
and represent the different components of the plant. These nodes are organized
as a tree graph (as described in [58]) in which two types of edges can be specified
to distinguish branching (+) and succession (<) relationships between parent and
child nodes, Figure 10.a. In addition, each structural node is connected with
transformation, geometry and appearance nodes that define the representation
of each component. In p-scene-graphs, transformations can either be specified
in an absolute or relative mode. In the absolute mode, transformations are
expressed with respect to a common global reference frame whereas, in the rel-
ative mode, transformations are expressed in the reference frame of the parent
component in the tree graph.

The topological relationships specified in the p-scene-graph express physical
connections between plant components. To give a valid representation, such
relationships can be translated as geometrical connections of the components
representations. For this, a set of constraints, namely within-scale constraints,
can formalize these geometric connections [60]. These constraints may specify
for instance continuity relationship between the geometric parameters of con-
nected components (end points, diameters, etc.). These constraints are used to
ensure the consistency of the overall representation.

P-scene-graphs are further extended by introducing a multiscale organization
in the structural nodes, which makes it possible to augment the multiscale tree
graphs (MTG) used in plant modelling [58] with graphical informations [61].
Such multiscale graphs correspond to recursively quotiented tree graphs. It
is possible to define multiscale organization from a simple detailed tree graph

INRIA

The PlantGL library 19

Figure 10: A p-scene-graph. (a) The scene-graph with structural nodes in or-
ange, transformation in blue, shape in green, appearance in red and geometry in
grey. (b) The corresponding L-systems bracketed string from which it has been
constructed. The ’F’ symbols are geometrically interpreted as cylinders, ’∼l’ as
leaf symbols, ’&’ and ’^’ as orientation operations and ’;’ as color specifications,
[59]. (c) The corresponding geometric model.

(namely the support graph) by specifying quotient functions that will partition
the nodes into groups corresponding to macroscopic components in the MTG.

The different scales included in the multiscale p-scene-graph give different
views with different resolutions of the same plant object. Since they corre-
spond to different views of the same reality, the associated geometric models
must respect particular coherence constraints. For this, a set of between-scale
constraints is defined that relate the model parameters at one scale with the
model parameters at other scales. Between-scale constraints may specify for
instance that all the components of a branching system must be included in
some macroscopic envelope. These constraints may be either used in a bottom-
up or top-down fashion. In top-down approaches, macroscopic representations
may be used to bound the development of a plant at a more microscopic level.
Such a strategy was used for instance in [29] for the design of bonsai tree using
L-systems. In bottom-up approaches, a detailed representations of a plant is
used to compute a more macroscopic representation. For this, a set of fitting
algorithms has been implemented in PlantGL that makes it possible to compute
the bounding envelope of a set of geometric primitives using for instance convex
hulls [38] or minimal bounding sphere [39], etc. These envelope representations
can thus be used to characterized globally the geometry of a branching system
at different scales, for instance for computing the fractal dimension of a plant
[14].

3.3.2 Construction of branching structure models

P-scene-graphs can be created either by generative procedures written in Python
or by importing plant structures from other plant modeling softwares.

From a generative perspective, we particularly emphasized in the current
version of PlantGL the connection with L-studio/VLab [5], a widely used L-
system based modelling framework for plant growth modelling. A L-system [1] is
a particular type of rewritting system that may be used to simulate the develop-

RR n° 6367

20 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

ment of a tree like structure. In this framework, the tree structure is encoded as
a bracketed string of symbols called modules that represent components of the
structure. To represent attributes, these modules may bear parameters. Partic-
ular bracket symbols mark the beginning and the end of branches. The plant
growth is formalized by a set of production rules that describes the change over
time of the string modules. Starting from an initial string, namely the axiom,
modules of the string are replaced according to appropriate rules. A deriva-
tion step corresponds to the rewriting in parallel of every modules of the string.
Therefore, the development of a tree structure throughout time is modelled by
a series of derivation steps. To associate a geometric interpretation with the
L-system’s output string, some modules are given a graphical meaning and a
LOGO-style turtle is used to interpret them, [62]. For this, the string is scanned
sequentially from left to right and particular modules are interpreted as actions
for the turtle. The turtle state is characterized by a position, a reference frame
and additional graphical attributes. Some modules make the turtle move for-
ward and draw graphical elements (cylinders, etc.) or change its orientation
in space. A stack mechanism makes it possible to store the turtle state at the
beginning of a branch and to restore it at the end.

In order to interface L-studio/VLab with PlantGL, import procedures have
been implemented in PlantGL. The strings representing the branching systems
generated with cpfg are stored in text files. These strings are then imported
into PlantGL with the dedicated primitive Lstring. To interpret the L-system
modules as commands for the creation of a p-scene-graph, a particular turtle has
been implemented in PlantGL that follows the Lstudio/VLab specification [1]
(Figure 10). Since the p-scene-graph is accessible in Python, it is then possible
to interactively explore and analyse the resulting geometric structure with the
set of algorithms available in PlantGL for the manipulation of a scene-graph
or for the analysis of a plant topological structure using other toolkits such as
AMAPmod/VPlants [63]. The following code sketches the import of a L-system
string in PlantGL, its conversion into a scene-graph and some basic manipulation
of the result such as display and wood volume computation.

from PlantGL import ∗

l s t r i n g = Lst r ing (’ p lant . s t r ’)
t u r t l e = PglTurt le ()
l s t r i n g . apply (t u r t l e)
sg = t u r t l e . getSceneGraph ()
Viewer . d i sp l ay (sg)
vo l = volume (sg)

A more complex example of such a coupling between Lstudio/cpfg and
PlantGL is illustrated in section 4.3.3. It uses PlantGL’s hulls defined in section
3.2.1 to constrain L-systems generation of branching structure. Other connec-
tions with modelling platforms such as AMAPmod/VPlants [60], VegeSTAR [64]
are also available and make it possible to create 3D plant models from measured
data (see Figure 11).

3.4 Tissue models

In PlantGL, a plant tissue is considered as a collection of connected regions.
A region may represent either a single cell or a set of cells. Unlike branch-
ing systems, the neighborhood relationship between regions cannot be simply

INRIA

The PlantGL library 21

(a) (b) (c)

Figure 11: Example of branching systems in PlantGL. (a) A beech tree sim-
ulated with an L-system using Lstudio/VLab and imported in PlantGL. This
model is used in the application presented in section 4.3.3. (b) Black tupelo
tree generated procedurally in Python using PlantGL according to the genera-
tive procedure proposed by Weber and Penn in [3]. and (c) the root system of
an oak tree [12].

represented by tree graphs since the connection networks between regions usu-
ally contain cycles. To model correctly the neighborhood relationship between
regions, we need to take into account the hierarchical organization of region
connections: for example, in 3 dimensions, two 3-D cells are connected through
a 2-D wall, two walls are connected through a 1-D edge and two edges are con-
nected through a 0-D vertex. More generally, the connection between two or
more elements of dimension n + 1 is an element of dimension n. Such a hier-
archical organization defines an abstract simplicial complex [65]. Similarly to
p-scene-graphs for branching systems, scene-graphs representing tissues, called
t-scene-graphs, are defined by augmenting simplicial complexes representing cell
networks with geometrical properties. Each structural node of the simplicial
complex is associated with transformation, geometry and appearance nodes.

a b c d

Figure 12: Tissue models.
(a) 2D tissue, (b) 2D transversal cut, (c) 3D surface tissue from [32], (d) 3D

tissue

A set of geometric algorithms have been designed to simplify the manipula-
tion of the t-scene-graphs during simulations.

RR n° 6367

22 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

• A first algorithm makes it possible to define the geometry of an element
of dimension n + 1 from the geometric information of its components of
dimension n. For example, the polyhedral geometry of a cell is derived
from the polygonal geometry of its walls. The overall consistency of the
geometry of all elements in the tissue is thus ensured by specifying only
the geometry of its simplicial (smallest) elements.

• A second algorithm implements cell division. A cell (or more generally
a region) is divided in two daughter cells. The geometry of these daugh-
ter cells may be specified by the user using standard PlantGL algorithms
(that compute main axis, shape volume or surface, shape orientation, ...)
to reflect the biological characteristics of cell division geometry (main ori-
entation of the cell, smallest separation wall, orthogonality between walls,
...).

• A third algorithm has been designed in order to mesh tissue models. Such
meshing operation discretizes t-scene-graphs into triangles elements. Re-
sulting meshes can be used either to visually display the tissue or in
conjunction with finite elements methods to solve differential equations
representing physiological processes (diffusion, reaction, transport,...) or
mechanical stresses for example.

T-scene-graphs can be obtained either from a file, from images of biological
tissues [32], or using procedural algorithms. PlantGL provides a set of procedu-
ral algorithms that generate regular, grid-based tissues (based on rectangular
or hexagonal grids) and non-regular tissues containing cells with random sizes.
Random tissues are generated using a randomly placed set of points represent-
ing cell centers. The Delaunay triangulation (2D or 3D) of this set of points
is then computed. This is done by using an external computational geometry
library, CGAL [66], available in Python. Cell neighborhood is defined by this
triangulation and walls correspond to its dual representation (Voronöı diagram).
These procedural algorithms result in relatively simple tissue structures. More
complex t-scene-graphs can be obtained by simulation of tissue development.
Starting from an initial simple tissue, a growth algorithm modifies the shape
of the tissue. A cell is divided each time its volume reaches a given threshold.
This combination of growth and division is maintained up to the desired final
shape (see 4.3.1 for example).

4 Applications and Illustrations

The PlantGL library has already been used in a number of modeling applications
by our group (e.g. [32, 33, 14, 30, 35]) and other plant research groups (e.g.
[31, 34]). The library allows modellers to address graphic and geometric issues
in the different phases of a modeling approach, i.e. observation, analysis, simu-
lation and model evaluation. In this section, we aim to illustrate how PlantGL

provides a set of useful transversal tools to address various questions in these
different phases. In particular, we stress the use of envelope- or grid-based ap-
proaches which is original in PlantGL and opens new application areas. In these
applications, we illustrate how PlantGL can be assembled with other Python li-
braries to achieve high-level operations on plant structures, thus opening the
way to the definition of a powerful plant modeling platform.

INRIA

The PlantGL library 23

4.1 Plant Canopy Reconstruction

In plant modeling, 3D digitizing of plant structure has become a topic of in-
creasing importance in the last decade. Various methodologies have been used
to digitize plants at different levels of detail [67] for leaves, [68, 60] for branch-
ing systems, and also [52, 6, 48] for tree crowns. Among these approaches, the
reconstruction of 3D models of large/tall trees (like trees of tropical forest for
example) remains a challenging problem. This is mainly due to the difficulty of
acquiring information in the field, and to capture the intricate structure of such
plants. In this section, we show how the new envelope-based tools provided in
PlantGL can be used in this aim.

4.1.1 Using PlantGL to build-up large crowns

First approaches attempted to use parametric models to estimate the geometry
of tree crows in the context of light modeling in plant stands [9]. More recently,
non-parametric visual hulls have been used in different application contexts to
characterize the plant volume based on photographs [6, 49, 48].

(a) (b) (c)

Figure 13: Reconstruction of the crown envelope of a Schefflera Decandra tree
with an extruded hull build from two photographs. Sketches are done with an
internal curve editor. Photo courtesy of Y. Caraglio.

PlantGL makes it possible to easily combine these approaches by using for
example photographs and parametric envelope models to estimate plant canopy
volumes.

Based on a set of images of a tree (being either photographs or botanical
drawings) with known camera positions and orientations, the modeler must first
choose a parametric envelope models. Then, (s)he defines a number of crown
profiles. For the extruded hull for instance, two closed curves that encompass
the entire crown in vertical and horizontal planes are required. This step is

RR n° 6367

24 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

usually made by manually outlining the foliaged tree region using an internal
curve editor. Profiles are then used to build the tree silhouette hull.

From this estimated crown envelope, the modeler can then infer a detailed
crown model by making new assumptions about the leaf distribution inside the
crown. Figure 13 illustrates the use of a simple uniform random distribution of
leaf positions and orientations. The following code shows how the example for
random foliage generation of section 3.2.2 can be adapted to take into account
complex crown shapes.

sc = Scene ()
f o r i in range (nb leaves) :

pos = (uniform (xmin , xmax) , uniform (ymin , ymax) ,
uniform (zmin , zmax))

i f i n s i d e (hu l l , pos) :
sc += Trans lated (pos , l e a f symbo l))

Using Python, it is possible to define foliage distribution using more complex
algorithms, such as those described in [5, 6, 29].

4.1.2 Using PlantGL to assess plant mock-up accuracy

Another important problem in canopy reconstruction is to assess the accuracy of
3D plant mockups obtained from measurements. A family of solutions consists
of comparing equivalent synthesized descriptions of both the real and the virtual
plants. In this family, hemispherical views are particularly interesting since they
directly measure a physical characteristic of the plant, namely the amount of
intercepted light.

Figure 14 illustrates this approach [69]. An hemispheric picture is taken
from the real plant, while an equivalent virtual picture is computed with the
same camera position on the reconstructed plant. White areas in both pictures
directly reflect the amount of light that reach different positions under or inside
the crown [70]. The amount of intercepted light is summarized with the canopy
openness index defined as the ratio between non intercepted pixels and total
number of pixels on the picture.

4.2 Analysis of Plant Geometry

Plant geometry is a parameter of paramount importance in the modeling of
plant-environment interaction. However, plants usually show complex geometric
shapes with numerous components, highly organized but with non-deterministic
structure. Characterizing this “irregularity” of plant shapes with few high level
parameters is thus a determinant issue of modeling approaches. In many ap-
plications in forestry, horticulture, botany or eco-physiology, analysis of plant
structures are carried out to find out adequate ways of capturing their intricate
geometry in simple models. In this section, we illustrate the use of grids and
envelopes defined in PlantGL in order to achieve such analysis.

4.2.1 Grid-Based Analysis

Fractal geometry was introduced to analyse the geometry of markedly irregular
structures that can be either mathematically constructed or found in nature
[72]. Several parameters have been introduced for this purpose, such as fractal
dimension and lacunarity. These parameters are intended to capture the essence

INRIA

The PlantGL library 25

Figure 14: Assessment of plant model reconstruction using hemispheric view
[69]. The Juglans nigra x Juglans regia hybrid walnut plant model is recon-
structed from partial measurements: wood structure is manually digitized while
leaves are generated from distribution functions. On the left, an hemispheric
photograph of a real walnut from the ground. On the right, reconstructed
mockup using AMAPmod/VPlants exported in the Pov-Ray [71] to compute an
hemispheric picture at the same position. Here, the evaluated canopy openness
from real photograph is of 40 % and 49 % for the virtual tree.

of irregularity, i.e. the way these structures physically occupy space as resolution
decreases. Several estimators of these parameters exist. They consist of paving
the original object in different manners with tiles of different sizes and study
the variation of the number of tiles with tile size.

Figure 15: The box counting method applied to the foliage of a digitized apple
tree [73]. The tree is 2m height with around 2500 leaves. Global bounding
box has a volume of 10 m3 and serve as initial voxel. A grid sequence is then
created by subdividing uniformly this bounding box into sub-voxels. At each
scale, intercepted voxels are counted to determine fractal dimension (here of the
order of 2.1).

For plant structures, fractal properties, such as fractal dimension, have been
computed in different contexts, e.g. [74]. They frequently rely on the fractal
analysis of 2D photographs. However, more recently, several works showed the
possibility to compute more accurate 3D-estimators using detailed 3D-digitized
plant mock-ups of real plants [75, 14, 33].

PlantGL makes it possible to carry out such computation in a flexible way.
For example, to implement the box-counting estimator of the fractal dimension
[72], the PlantGL “grid” object can be used to count the number of 3D cells

RR n° 6367

26 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

of a given size containing vegetation. If N(δ) denotes the number of occupied
3D cells of size δ, the box-counting estimator of the fractal dimension Dδ of the
object is defined as:

Dδ = lim
δ→0

lnN(δ)

ln 1
δ

. (11)

Dδ is estimated from the slope of the regression between ln N(δ) and ln 1
δ

values. The following code sketches the implementation of such an estimator
using Python and PlantGL.

from sc ipy import s t a t s
de f boxcounting (scene , maxdiv is ion) :

g r i d = Grid (scene , maxdiv is ion)
voxe l s = [l og (g r id . i n t e r c e p t e d vox e l s (div))

f o r div in range (maxdiv is ion)]
d e l t a =[l og (1 . / i) f o r i in range (maxdiv is ion)]
s lope , i t c ep t , r , ttp , s t d e r r=s t a t s . l i n r e g r e s s (voxe l s , d e l t a)
re turn s l ope # s l ope o f the r e g r e s s i o n

Figure 15 illustrates the application of the box counting method on the
foliage of a 3D-digitized apple tree [73]. PlantGL can be used in a similar way
to compute various other fractal properties of plants [14, 33]

4.2.2 Envelope-Based Analysis

Parametric envelopes provided in PlantGL can also be used to analyse volumet-
ric properties of plant crowns. For example, in order to quantify the develop-
ment of a plant crown over time, envelopes can be adjusted to the crown of
the developing tree at different ages and their surface or volume can then be
estimated.

Figure 16 illustrates this approach together with the possibility to import
plant data from other softwares. The growth of an eucalyptus was simulated at
various ages using the AMAPsim software [22], Figure 16.a. Results were imported
in PlantGL as MTGs. The convex hull of the plant crown was then computed
at each age using the fitting algorithms provided by PlantGL for envelopes as
described in [14]. Here is how this series of steps can be carried out in PlantGL:

import pylab
de f h u l l a n a l y s i s (ages , t r e e s) :

h u l l s =[f i t (’ convexhul l ’ , i) f o r i in t r e e s]
wood sf=[s u r f a c e (i) f o r i in t r e e s]
h u l l s f =[s u r f a c e (i) f o r i in hu l l s]
d e l t a wood s f =[wood sf [i +1]−wood sf [i] f o r i in range (l en (wood sf)−1)]
d e l t a h u l l s f =[h u l l s f [i +1]− h u l l s f [i] f o r i in range (l en (h u l l s f)−1)]
pylab . p l o t (ages [1 :] , d e l t a wood s f)
pylab . p l o t (ages [1 :] , d e l t a h u l l s f)

Based on such data, various investigations about the crown development can
be made. Curves showing the variation of crown surface/volume throughout
time can be analysed, comparison at a more microscopic scale with the leaf area
variation can be made 16.c, etc.

4.3 Simulations based on plant geometric models

Using flexible geometric models of plant is not restricted to the analysis of plant
structure. They can be used as well for the simulation of various physical or

INRIA

The PlantGL library 27

(a) (b)

(c)

Figure 16: (a) An eucalyptus trees simulated at various age (from 1 to 8 months
on a scale from 10 to 250) with the AMAPsim software, exported in PlantGL and
rendered with the Pov-Ray software [71] (b) Global representations of eucalyptus
crown at the various ages (c) Increments of wood and hull surfaces in time. The
different degrees of correlation and their associated time period enable us to
identify the various phase of the crown development.

physiological processes that take place within or in interaction with the plant
structure. Here, we present three applications that demonstrate the use of
PlantGL at different scales, ranging from organ to communities.

4.3.1 Simulation at organ scale

Due to the recent advances in plant cellular and developmental biology, the
modeling of plant organ development is considered with a growing interest by
the plant research community: leaf [76, 77, 78], shoot apical meristem [79, 80,
81, 82, 83], flower [84]. PlantGL provides flexible data structures and algorithms
that make it possible to develop 2D or 3D simulations of tissue development.

As a matter of illustration, let us consider for instance a tissue whose vertices
are submitted to a known velocity field (coming from kinetic observations for
example). Due to the velocity field and to boundary conditions, the speed of
the external vertices of the tissue is known. The speed vector of the internal
vertices is then interpolated from these known values. At each time t of the
simulation, each vertex is then moved according to this speed vector. This
process progressively modifies the cell size, and consequently the overall tissue
shape. During the growth, if a cell has a surface (or volume in 3D) that reaches
a predefined threshold, it divides in two children cells. Different algorithms
implementing cell division are available on a tissue object, e.g. [85]. Here
follows the code of such a tissue growth in PlantGL for a particular choice of
the cell division algorithm (results are presented on figure 17):

t i s s u e = createGr idTi s sue ((20 ,5))
de f s p e e d f i e l d (pos , t) :

RR n° 6367

28 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

yspeed=a∗[1+b∗ t ∗pos . xˆ2/(h+b∗ t) ˆ2]∗ exp(−pos . xˆ2/(h+b∗ t))
r e turn Vector (0 , yspeed)

f o r t in range (t ime begin , time end , d e l t a t ime) :
f o r pos in t i s s u e . p o s i t i o n s () :

pos+=s p e e d f i e l d (pos , t)∗ de l t a t ime
f o r c e l l in t i s s u e :

i f c e l l . s i z e () > max c e l l s i z e :
c e l lD i v i d e (c e l l , a lgo=MAIN AXIS)

(a) (b) (c)

(d)

Figure 17: (a,b,c) 2D geometrical representation of a growing tissue at three
different times. (d) 3D simulation of bump formation on a tissue

4.3.2 Simulation at plant scale

In biological applications, virtual plants are frequently used to carry out virtual
experiments where data is difficult to measure or when the interaction between
the studied processes is too complex. This is particularly true for the study of
light interception by plants: light cannot be measured in a real canopy with
high accuracy and the amount of light rays that can go through a canopy is a
complex function of the tree architecture. The following example illustrates the
use of PlantGL in the context of model assessment and how high-level geomet-
ric operations used in light interception models can be simply performed with
PlantGL.

The STAR (Surface to Total Area Ratio) is a key eco-physiological parameter
used in light interception models [86]. It is a directional quantity defined by
ratioing the surface of the projection of a tree foliage SΩ in a particular direction
Ω to its total leaf surface S.

STARΩ =
SΩ

S
(12)

This directional index can be integrated over all the sky vault to characterize
the overall light interception of a tree.

INRIA

The PlantGL library 29

However, since the total leaf area of a real plant is often expensive to measure,
approximate values of the STAR are often used in place of the exact one in
eco-physiological applications. For this, the directional STAR is estimated from
simple measures of the plant volume and leaf density and by making simplifying
assumptions on the actual spatial distribution of leaves in the canopy [87]. In
this case, the plant is supposed to be an homogeneous volume with small leaves
uniformly distributed within the crown looking like a “turbid medium”. In this
context, a light beam b of direction Ωb has a probability p0(b) to be intercepted
:

p0(b) = exp (−GΩb
.LAD.lb) (13)

where GΩb
is a coefficient characterizing the spatial distribution of leaf ori-

entations in the crown volume, LAD is the Leaf Area Density in the volume and
lb the length of the beam path in the crown volume. Assuming the B beams
constitute a regular and dense sampling of the whole volume, the approximated

directional STAR of the turbid volume, ̂STARΩ, can then be computed as [88]:

̂STARΩ =
B

∑

b=1

Sb(1 − p0(b))/S (14)

where Sb is the cross section area of a beam. This model-based definition
of the STAR can be compared to the above real STAR to evaluate the quality
of light model assumptions. The resulting difference characterizes the error due
to the model underlying hypotheses (homogeneity/randomness of the foliage
distribution, negligibility of leaf size, ...) with respect to the actual canopies
[87].

In PlantGL, both STAR quantities, i.e. the real and approximated STARs,
can be computed from a plant mockup using the library high-level functions.
The real STAR of a given virtual canopy can be computed by counting the
number of vegetation pixels in a virtual picture obtained by projecting virtual
plant canopies using an orthographic camera [87] and multiplying by the size of
a pixel. This would be expressed as follows in PlantGL:

de f s t a r (l eaves , d i r) :
Viewer . d i sp l ay (l e av e s)
Viewer . camera . se tOrthographic ()
Viewer . camera . s e tD i r e c t i o n (d i r)
proj , nbpixe l , p i x e l s i z e = Viewer . frameGL . g e tP r o j e c t i o nS i z e ()
re turn pro j / su r f a c e (l e av e s)

For the approximated STAR, the envelope of the tree crown must first be
computed. Then, a set of beams of direction Ω are cast and their interceptions
and resulting length in the crown volume are computed. A sketch of such a code
would be as follows:

de f s t a r (l eaves , g , d i r , up , r i ght , beam radius) :
hu l l= f i t (’ convexhul l ’ , l e a v e s)
lad = su r f a c e (l e av e s) / volume (hu l l)
bbx = BoundingBox (hu l l , d i r , up , r i g h t)
Viewer . d i sp l ay (hu l l)
pos = bbx . upperRightCorner ()
i n t e r c e p t i o n = 0
f o r r s h i f t in range (bbx . s i z e () . y/beam radius) :

f o r up sh i f t in range (bbx . s i z e () . z/ beam radius) :

RR n° 6367

30 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

ray = Viewer . castRay (pos−r s h i f t ∗ r i ght−up sh i f t ∗up , d i r)
p0 = 1
f o r i n t e r s e c t i o n in ray :

l ength = norm(i n t e r s e c t i o n [1]− i n t e r s e c t i o n [0])
p0 ∗= exp(−g∗ lad ∗ l ength)

i n t e r c e p t i o n += (1−p0)∗ (beam radius ∗∗2)
re turn i n t e r c e p t i o n / su r f a c e (l e av e s)

(a) (b) (c)

Figure 18: Light intercepted by an apple tree represented as shadow on the
ground. Intensity of the colors represent intensity of interception. STAR can
be computed as a ratio between the surface of the shadow and the plant leaf
surface (a) Light intercepted from top direction using ray casting (b) Light
intercepted from same direction using Beer-Lambert hypothesis. (c) Light in-
terception sampled from different directions. The different colors are used to
mark the difference between various elevations of ray direction.

4.3.3 Simulation at community scale

Detailed plant models, at the level of branches and leaves, do not always cor-
respond to the most adequate level for expressing knowledge in plant models.
PlantGL provides a number of means to deal with abstract representation of
plants at different scales. In particular, the various envelope models defined in
section 3.2.1 can be used as abstract means to model plant crown bulk. Such
models are useful for instance in the modeling of plant communities, where
competition for space has been shown to be a key structuring factor [89].

In the following example, we illustrate how natural scenes containing thou-
sands of plants distributed in a realistic manner can be built with PlantGL,
taking into account competition for space. It is inspired by [30] which is an
extension of [90, 91] to the use of more complex crown shapes.

The ecosystem synthesis starts with the generation of a set of coarse individ-
uals with height, crown radius and crown base height determined from density
and allometric functions.

Individuals are fagus beech trees with different classes of ages. Allometric
functions of the Fagacées model [92] are used to determine the heights and
radius values as a function of tree age. The spatial distribution of these plants
is generated using a stochastic point process. For this, we use a Gibbs process

INRIA

The PlantGL library 31

[93, 94] defined as a pairwise interaction function f(pi, pj), that represents the
cost associated with the presence of two given plants at positions pi and pj

respectively. Positive cost values will lead to repulsion between trees while
negative ones lead to attraction. A realization of this process is intended to
minimize of the global cost F =

∑

i 6=j f(pi, pj), defined as the sum of the costs
associated with each pair of points. The Gibbs process is simulated with a
classical depletion-replacement iterative algorithm [95].

Classically, the cost function is used to model neighbor competition and is
defined as a function of the crown radii and positions of the trees. The cost
function of two trees i and j, characterized by shapes with constant radius, may
be chosen for instance proportional to the difference between the sum of the
crown radii and the distance between pi and pj . For asymmetric shapes, the
same function can be used where radii of trees now correspond to the radius of
each envelope in the direction defined by the tree positions pi and pj . In addi-
tion, both the position and the different parameters of the crown envelope can
now be changed in the depletion-replacement algorithm. Figure 19 illustrates
the 3D output of such a process.

Figure 19: A front and top view of a generated stand at the crown scale.
Different colors are used to differentiate various layers of vegetation.

From this set of coarse individuals, detailed plant representations can be
inferred and assembled into a complete scene. For this, different generation
methods either available in PlantGL or outside of the software can be used. In
our example, we generated the beech trees using the L-systems models using
generative procedure described in [29].

Bushes and flowers were generated using PlantGL and Python as presented
in section 3.3 and added to the scene. Finally, a digitized walnut tree [68] was
also added to illustrate how scenes may be created in PlantGL using a range of
classical date sources.

The final rendering was made with Povray [71]. Each plant geometric models
were thus converted and assembled in this format. Figure 20 illustrates the
resulting scene.

5 Conclusion

In this paper, we presented a new open-software library for the geometric mod-
eling of plants built on the top of the Python programming language. The

RR n° 6367

32 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

Figure 20: A community of plants generated from a Gibbs process [30]. The
scene is made of trees coming from different sources: beech trees of different sizes
and ages where generated using the ecosystem model presented in section 4.3.3
which were built using the interaction between PlantGL and LStudio/Vlab, A
walnut tree corresponding to a 3D digitizing of a real plant built using AMAP-
mod/VPlants, virtual bushes flowers and grass created procedurally in Python

with PlantGL

library provides a set of geometric models that are useful to represent vari-
ous types of plant structures at different scales, ranging from tissues to plant
communities. In particular, it contains original geometric components such as
dedicated parametric envelopes for crown shape representation and tissues for
representing plants at cell scale in 2D or 3D. Branching systems can be cre-
ated either procedurally or by importing them from plant growth simulation
platforms, such as LStudio/VLab. The resulting plant geometric models can be
easily analysed using Python and PlantGL high level algorithms. The different
features of the PlantGL library have been illustrated on applications involving
plants at different scales and showing its use at various stages of a modeling
process.

Acknowledgments.

The authors thank P. Prusinkiewicz for making the LStudio/VLab software
kindly available to them, D. Da Silva, P. Barbier de Reuille and Y. Caraglio
for their contribution to some images, and H. Sinoquet, E. Costes, F. Danjon,
C.-E. Parveau and J. Traas for making 3D digitized plants or tissues available
to them. This work has been partially supported by ANR projects NatSim and
Virtual Carpel.

INRIA

The PlantGL library 33

References

[1] P. Prusinkiewicz, A. Lindenmayer, The algorithmic beauty of plants,
Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[2] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, C. Puech, Plant mod-
els faithful to botanical structure and developmentr, in: SIGGRAPH ’88:
Proceedings of the 15th annual conference on Computer graphics and in-
teractive techniques, New York, NY, USA, 1988, pp. 151–158.

[3] J. Weber, J. Penn, Creation and rendering of realistic trees, in: SIGGRAPH
’95: Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, ACM Press, New York, NY, USA, 1995, pp. 119–
128.

[4] B. Lintermann, O. Deussen, Interactive modeling of plants, Computer
Graphics and Applications, IEEE 19 (1) (1999) 56–65.

[5] P. Prusinkiewicz, L. Mündermann, R. Karwowski, B. Lane, The use of posi-
tional information in the modeling of plants, in: SIGGRAPH’01, Computer
Graphics, ACM, Los Angeles, California, 2001, pp. 36–47.

[6] I. Shlyakhter, M. Rozenoer, J. Dorsey, S. Teller, Reconstructing 3d tree
models from instrumented photographs, IEEE Comput. Graph. Appl.
21 (3) (2001) 53–61.

[7] N. B., T. Franken, O. Deussen, Approximate image-based tree-modeling
using particle flows, ACM Transactions on Graphics (Proc. of SIGGRAPH
2007) 26 (3).

[8] P. Tan, G. Zeng, J. Wang, S.-B. Kang, L. Quan, Image-based tree modeling,
ACM Transactions on Graphics (Proc. of SIGGRAPH 2007) 26 (3).

[9] A. Cescatti, Modelling the radiative transfer in discontinuous canopies of
asymmetric crown. I. model structure and algorithms, Ecological Modelling
101 (1997) 263–274.

[10] H. Sinoquet, P. Rivet, C. Godin, Assessment of the three-dimensional archi-
tecture of walnut trees using digitising, Silva Fennica 31 (3) (1997) 265–273.

[11] C. Godin, Representing and encoding plant architecture: a review, Annals
of Forest Science 57 (05-juin) (2000) 413–438.

[12] F. Danjon, H. Sinoquet, C. Godin, F. Colin, M. Drexhage, Characterisa-
tion of structural tree root architecture using 3d digitising and amapmod
software, Plant and Soil 211 (2) (1999) 241–258.

[13] J. B. Evers, J. Vos, C. Fournier, B. Andrieu, M. Chelle, P. C. Struik, To-
wards a generic architectural model of tillering in gramineae, as exemplified
by spring wheat (triticum aestivum)., New Phytol 166 (3) (2005) 801–812.

[14] F. Boudon, C. Godin, C. Pradal, O. Puech, H. Sinoquet, Estimating the
fractal dimension of plants using the two-surface method. an analysis based
on 3d-digitized tree foliage, Fractals 14 (3) (2006) 149–163.

RR n° 6367

34 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

[15] R.-S. Smith, C. Kuhlemeier, P. Prusinkiewicz, Inhibition fields for phyl-
lotactic pattern formation: a simulation study, Canadian Journal of Botany
84 (2006) 1635–1649.

[16] A. Lindenmayer, Mathematical models for cellular interactions in develop-
ment, I & II, Journal of Theoretical Biology (1968) 280–315.

[17] R. Karwowski, P. Prusinkiewicz, Design and implementation of the l+c
modeling language, Electronic Notes in Theoretical Computer Science 86.

[18] P. Prusinkiewicz, R. Karwowski, B. Lane, The l+c plant modeling lan-
guage, in: J. V. et al. (Ed.), Functional-Structural Plant Modelling in Crop
Production, Springer, 2007, p. in press.

[19] W. Kurth, Growth grammar interpreter grogra 2.4: A software for
the 3-dimentional interpretation of stochastic, sensitive growth grammar
in the context of plant modelling, Introduction and reference manual,
Forschungszentrum Waldokosysteme der Universitat Gottingen (1994).

[20] O. Kniemeyer, G.-H. Buck-Sorlin, K. W., A graph grammar approach to
artificial life, Artificial Life 10 (4) (2004) 413–431.

[21] G.-H. Buck-Sorlin, O. Kniemeyer, W. Kurth, Barley morphology, genetics
and hormonal regulation of internode elongation modelled by a relational
growth grammar, New Phytologist 10 (4) (2005) 413–431.

[22] J.-F. Barczi, P. de Reffye, Y. Caraglio, Essai sur l’identifcation et la mise
en oeuvre des paramétres nécessaires à la simulation d’une architecture
végétale : le logiciel amapsim., in: J. Bouchon, P. de Reffye, D. Barthélémy
(Eds.), Modélisation et Simulation de l’Architecture des Végétaux, INRA
Editions, 1997, pp. 205 – 254.

[23] O. Deussen, B. Lintermann, Digital Design of Nature. Computer Generated
Plants and Organics., Springer-Verlag, 2005.

[24] C. Godin, E. Costes, Y. Caraglio, Exploring plant topological structure
with the amapmod software: an outline, Silva Fennica 31 (1997) 355–366.

[25] C. Godin, E. Costes, H. Sinoquet, A method for describing plant architec-
ture which integrates topology and geometry, Annals of Botany 84 (1999)
343–357.

[26] E. Costes, H. Sinoquet, J.-J. Kelner, C. Godin, Exploring within-tree ar-
chitectural development of two apple tree cultivars over 6 years, Annals of
Botany 91 (2003) 91–104.

[27] P. Ferraro, C. Godin, P. Prusinkiewicz, Toward a quantification of self-
similarity in plants, Fractals 13 (2) (2005) 91–109.

[28] Y. Guédon, Y. Caraglio, P. Heuret, E. Lebarbier, C. Meredieu, Analyzing
growth components in trees, Journal of Theoretical Biology.

[29] F. Boudon, P. Prusinkiewicz, C. Federl, P.and Godin, R. Karwowski, In-
teractive design of bonsai tree models, Computer Graphics Forum (Proc.
of Eurographics ’03) 22 (3) (2003) 591–591.

INRIA

The PlantGL library 35

[30] F. Boudon, G. Le Moguedec, Déformation asymétrique de houppiers pour
la génération de représentations paysagères réalistes, Revue Electronique
Francophone d’Informatique Graphique (REFIG) 1 (1).

[31] F. Danjon, T. Fourcaud, D. Bert, Root architecture and wind-firmness of
mature pinus pinaster., New Phytol 168 (2) (2005) 387–400.

[32] P. Barbier de Reuille, I. Bohn-Courseau, C. Godin, J. Traas, A protocol to
analyse cellular dynamics during plant development, The Plant Journal 44
(2005) 1045–1053.

[33] D. Da Silva, F. Boudon, C. Godin, O. Puech, C. Smith, H. Sinoquet, A
critical appraisal of the box counting method to assess the fractal dimension
of tree crowns., Lecture Notes in Computer Sciences (Proceedings of the
2nd International Symposium on Visual Computing).

[34] G. Louarn, Y. Guédon, J. Lecoeur, E. Lebon, Quantitative analysis of the
phenotypic variability of shoot architecture in two grapevine cultivars (vitis
vinifera l.)., Annals of Botany 99 (3) (2007) 425–437.

[35] J. Chopard, C. Godin, J. Traas, Toward a formal expression of morpho-
genesis: a mechanics based integration of cell growth at tissue scale, in:
Proceedings of the 7th International Workshop on Information Processing
in Cell And Tissues, Oxford, UK, 2007, p. in press.

[36] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[37] P. S. Strauss, R. Carey, An object-oriented 3d graphics toolkit, in: SIG-
GRAPH ’92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY, USA,
1992, pp. 341–349.

[38] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for
convex hulls, ACM Trans. Math. Softw. 22 (4) (1996) 469–483.

[39] E. Welzl, Smallest enclosing disks (balls and ellipses), New Results and
New Trends in Computer Science 555 (1991) 359–370.

[40] E. Andres, P. Nehlig, J. Françon, Supercover of straight lines, planes and
triangles, in: DGCI ’97: Proceedings of the 7th International Workshop on
Discrete Geometry for Computer Imagery, Springer-Verlag, London, UK,
1997, pp. 243–254.

[41] R. Carey, G. Bell, The Annotated VRML 2.0 Reference Manual, Addison-
Wesley, 2002.

[42] F. Boudon, C. Nouguier, C. Godin, Geom module manual. I. user’s guide,
Document de travail du Programme Modélisation des plantes 3-2001,
CIRAD (12/2001 2001).

[43] J.-G. Schneider, O. Nierstrasz, Components, scripts and glue., in: L. Bar-
roca, J. Hall, P. Hall (Eds.), Software Architectures - Advances and Appli-
cations, Springer, 1999, Ch. 2, pp. 13–25.

RR n° 6367

36 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

[44] T. E. Oliphant, Python for scientific computing, Computing in Science and
Engineering 9 (3) (2007) 10–20.

[45] H. Sowizral, Scene graphs in the new millennium, IEEE Comput. Graph.
Appl. 20 (1) (2000) 56–57.

[46] S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs
and Designs, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[47] Boost c++ librairies (1998–2006).
URL http://www.boost.org/

[48] J. Phattaralerphong, H. Sinoquet, A method for 3d reconstruction of tree
crown volume from photographs: assessment with 3d-digitized plants, Tree
Physiology 25.

[49] A. Reche-Martinez, I. Martin, G. Drettakis, Volumetric reconstruction and
interactive rendering of trees from photographs, ACM Trans. Graph. 23 (3)
(2004) 720–727.

[50] H. Horn, The adaptive geometry of trees, Princeton University Press,
Princeton, N.J., 1971.

[51] H. Koop, Silvi-star: A comprehensive monitoring system, Forest Dynamics
(1989) 229.

[52] P. Birnbaum, Modalités d’occupation de l’espace par les arbres en forêts
guyanaise, Master’s thesis, Université Paris VI (1997).

[53] C. D. Woodward, Skinning techniques for interactive b-spline surface in-
terpolation, Comput. Aided Des. 20 (10) (1988) 441–451.

[54] L. A. Piegl, W. Tiller, The Nurbs Book, 2nd Edition, Springer, 1997.

[55] L. A. Piegl, W. Tiller, Surface skinning revisited, The Visual Computer
18 (4) (2002) 273–283.

[56] M. Barnsley, Fractals Everywhere, Academic Press, Boston, 1988.

[57] K. Falconer, Techniques in fractal geometry, John Wiley and Sons, 1997.

[58] C. Godin, Y. Caraglio, A multiscale model of plant topological structures,
Journal of theoretical biology 191 (1998) 1–46.

[59] R. Mech, M. James, M. Hammel, J. Hanan, P. Prusinkiewicz, CPFG v4.0
user manual, The University of Calgary (2005).

[60] C. Godin, E. Costes, H. Sinoquet, A method for describing plant architec-
ture which integrates topology and geometry, Annals of Botany 84 (1999)
343–357.

[61] F. Boudon, Représentation géométrique multi-échelles de l’architecture des
plantes, Ph.D. thesis, Université de Montpellier II (2004).

INRIA

http://www.boost.org/

The PlantGL library 37

[62] P. Prusinkiewicz, Graphical applications of l-systems, in: Proceedings on
Graphics Interface ’86/Vision Interface ’86, Canadian Information Process-
ing Society, Toronto, Ont., Canada, Canada, 1986, pp. 247–253.

[63] C. Godin, Y. Guédon, E. Costes, Exploration of a plant architecture
database with the amamod software illustrated on an apple tree hybrid
family, Agronomie 19 (3-4).

[64] B. Adam, N. Dones, H. Sinoquet, Vegestar v.3.1. a software to compute
light interception and photosynthesis by 3d plant mock-ups, in: C. Godin
(Ed.), Fourth International Workshop on Functional-Structural Plant Mod-
els, Montpellier, France, 2004, p. 414.

[65] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

[66] Cgal, Computational Geometry Algorithms Library.
URL http://www.cgal.org

[67] H. Sinoquet, B. Andrieu, The geometrical structure of plant canopies: char-
acterization and direct measurements methods, in: C. Varlet-Grancher,
R. Bonhomme, H. Sinoquet (Eds.), Crop structure and light microclimate,
Vol. 0, INRA Editions, Paris, 1993, pp. 131–158.

[68] H. Sinoquet, P. Rivet, C. Godin, Assessment of the three-dimensional ar-
chitecture of walnut trees using digitizing, Silva Fennica 3 (1997) 265–273.

[69] C.-E. Parveaud, Propriétés radiatives des couronnes de noyers (Juglans ni-
gra x J. regia) et croissance des pousses annuelles - influence de la géométrie
du feuillage, de la position des pousses et de leur climat radiatif, Ph.D. the-
sis, Université de Montpellier II, France (2006).

[70] E. Casella, H. Sinoquet, A method for describing the canopy architecture
of coppice poplarwith allometric relationships., Tree Physiology 23 (2003)
1153–1170.

[71] T. P.-R. Team, Persistence of vision raytracer (1991–2006).
URL http://www.povray.org/

[72] B. B. Mandelbrot, The fractal geometry of nature, W.N. Freeman, New
York, USA, 1983.

[73] E. Costes, H. Sinoquet, C. Godin, J. J. Kelner, 3d digitizing based on tree
topology : application to study the variability of apple quality within the
canopy, Acta Horticulturae 499 (1999) 271–280.

[74] M. Barnsley, S. Demko, Iterated Function Systems and the Global Con-
struction of Fractals, Royal Society of London Proceedings Series A 399
(1985) 243–275.

[75] A. L. Oppelt, W. Kurth, H. Dzierzon, G. Jentschke, D. L. Godbold, Struc-
ture and fractal dimensions of root systems of four co-occurring fruit tree
species from Botswana, Annals of Forest Science 57 (2000) 463–475.

RR n° 6367

http://www.cgal.org
http://www.povray.org/

38 C. Pradal, F. Boudon, C. Nouguier, J. Chopard & C. Godin

[76] J. Runions, T. Brach, S. Kuhner, Photoactivation of gfp reveals protein
dynamics within the endoplasmic reticulum membrane, Journal of Experi-
mental Botany 57 (1) (2006) 43–50.

[77] F. G. Feugier, Models of vascular pattern formation in leaves, Ph.D. thesis,
Pierre et Marie Curie (2005).

[78] A.-G. Rolland-Lagan, E. Coen, S. J. Impey, J. A. Bangham, A computa-
tional method for inferring growth parameters and shape changes during
development base clonal analysis, Journal of Theoretical Biology 232 (2005)
157–177.

[79] H. Jönsson, M. Heisler, G. V. Reddy, V. Agrawal, V. Gor, B. E. Shapiro,
E. Mjolsness, E. M. Meyerowitz, Modeling the organization of the wuschel
expression domain in the shoot apical meristem., Bioinformatics 21 Suppl
1.

[80] H. Jönsson, M. G. Hesler, B. E. Shapiro, E. M. Meyerowitz, E. Mjolsness,
An auxin-driven polarized transport model for phyllotaxis, PNAS 103 (5)
(2006) 1633–1638.

[81] P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro,
C. Godin, J. Traas, Computer simulations reveal properties of the cell-cell
signaling network at the shoot apex in arabidopsis, PNAS 103 (5) (2006)
1627–1632.

[82] C. Smith, On vertex-vertex systems and their use in geometric and biolog-
ical modelling, Ph.D. thesis, University of Calgary (2006).

[83] M. Heisler, H. Jönsson, Modelling meristem development in plants, Current
Opinion in Plant Biology 10 (2007) 92–97.

[84] A.-G. Rolland-Lagan, J. A. Bangham, E. Coen, Growth dynamics under-
lying petal shape and asymmetry, Nature 422 (13) (2003) 161–163.

[85] J. Nakielski, Tensorial model for growth and cell division in the shoot apex,
in: A. Carbone, M. Gromov, P. Prusinkiewicz (Eds.), Pattern formation in
biology, vision and dynamics, World Scientific, Singapore, 2000, pp. 252–
267.

[86] P. Oker-Blom, H. Smolander, The ratio of shoot silhouette area to total
needle area in scots pine, Forest Science 34 (1988) 894–906.

[87] H. Sinoquet, G. Sonohat, J. Phattaralerphong, C. Godin, Foliage random-
ness and light interception in 3-d digitized trees: an analysis from mul-
tiscale discretization of the canopy, Plant, Cell and Environment 28 (9)
(2005) 1158–1170.

[88] H. Sinoquet, C. Varlet-Granchet, R. Bonhomme, Modelling radiative trans-
fer within homogeneous canopies: basic concepts, in: C. Varlet-Grancher,
R. Bonhomme, H. Sinoquet (Eds.), Crop structure and light microclimate,
Vol. 0, INRA Editions, Paris, 1993, pp. 131–158.

[89] A. Franc, S. Gourlet-Fleury, N. Picard, Une introduction à la modélisation
des forêts hétérogènes, ENGREF, Nancy, 2000.

INRIA

The PlantGL library 39

[90] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr,
P. Prusinkiewicz, Realistic modeling and rendering of plant ecosystems,
Computer Graphics 32 (Annual Conference Series) (1998) 275–286.

[91] B. Lane, P. Prusinkiewicz, Generating spatial distributions for multilevel
models of plant communities, in: Proceedings of Graphics Interface 2002,
Calgary, Alberta, 2002, pp. 69–80.

[92] G. Le Moguédec, J. Dhôte, Présentation du modèle Fagacées, Tech. rep.,
LERFOB, INRA, Nancy, France (2002).

[93] P. Diggle, Statistical analysis of spatial point patterns, Academic Press,
London, UK, 1983.

[94] F. Goreaud, Apport de l’analyse de la structure spatiale en forêt tempérée
à l’étude de la modélisation des peuplements complexes, Ph.D. thesis, EN-
GREF (2004).

[95] B. Rippley, Simulating spatial patterns: dependent samples from a multi-
variate density, Applied Statistic 28 (1979) 109–112.

RR n° 6367

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	PlantGL design and implementation
	Software architecture
	Basic components
	Scene-graphs
	Geometric models
	Transformations and compositions
	Algorithms
	Visualization tools

	Creating scene-graphs
	Implementation issues

	Construction of Plant Models
	Plant organs
	Crown models
	Envelopes
	Foliage distributions

	Branching system modelling
	Scene-graphs for plants
	Construction of branching structure models

	Tissue models

	Applications and Illustrations
	Plant Canopy Reconstruction
	Using PlantGL to build-up large crowns
	Using PlantGL to assess plant mock-up accuracy

	Analysis of Plant Geometry
	Grid-Based Analysis
	Envelope-Based Analysis

	Simulations based on plant geometric models
	Simulation at organ scale
	Simulation at plant scale
	Simulation at community scale

	Conclusion

