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ABSTRACT

Motivation: MicroRNAs (miRNAs) are a set of short (21–24 nt)
non-coding RNAs that play significant roles as post-transcriptional
regulators in animals and plants. While some existing methods
use comparative genomic approaches to identify plant precursor
miRNAs (pre-miRNAs), others are based on the complementarity
characteristics between miRNAs and their target mRNAs sequences.
However, they can only identify the homologous miRNAs or the
limited complementary miRNAs. Furthermore, since the plant pre-
miRNAs are quite different from the animal pre-miRNAs, all the
ab initio methods for animals cannot be applied to plants. Therefore,
it is essential to develop a method based on machine learning to
classify real plant pre-miRNAs and pseudo genome hairpins.
Results: A novel classification method based on support
vector machine (SVM) is proposed specifically for predicting
plant pre-miRNAs. To make efficient prediction, we extract the
pseudo hairpin sequences from the protein coding sequences of
Arabidopsis thaliana and Glycine max, respectively. These pseudo
pre-miRNAs are extracted in this study for the first time. A set
of informative features are selected to improve the classification
accuracy. The training samples are selected according to their
distributions in the high-dimensional sample space. Our classifier
PlantMiRNAPred achieves >90% accuracy on the plant datasets
from eight plant species, including A.thaliana, Oryza sativa, Populus
trichocarpa, Physcomitrella patens, Medicago truncatula, Sorghum
bicolor, Zea mays and G.max. The superior performance of the
proposed classifier can be attributed to the extracted plant pseudo
pre-miRNAs, the selected training dataset and the carefully selected
features. The ability of PlantMiRNAPred to discern real and pseudo
pre-miRNAs provides a viable method for discovering new non-
homologous plant pre-miRNAs.
Availability: The web service of PlantMiRNAPred, the training
datasets, the testing datasets and the selected features are freely
available at http://nclab.hit.edu.cn/PlantMiRNAPred/.
Contact: maozuguo@hit.edu.cn; yufei.huang@utsa.edu
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1 INTRODUCTION
Derived from hairpin precursors (pre-miRNAs), mature microRNAs
(miRNAs) are non-coding RNAs that play important roles in
gene regulation by targeting mRNAs for cleavage or translational
repression (Bartel, 2004; Chatterjee and Grobhans, 2009). MiRNAs
are involved in many important biological processes including plant
development, signal transduction and protein degradation (Zhang
et al., 2006b).

However, systematically detecting miRNAs from a genome
by experimental techniques is difficult (Bartel, 2004; Berezikov
et al., 2006). As an alternative, the computational prediction
methods are used to analyze the genomic DNA and to obtain
the putative candidates for experimental verification. Since many
miRNAs are evolutionarily conserved in multiple species, methods
that use comparative genomics to identify putative miRNAs have
been presented. MirFinder (Bonnet et al., 2004) predicted the
potential miRNA of in the Arabidopsis thaliana genome. It is
based on the conservation of short sequences between the genomes
of Arabidopsis and Oryza sativa. MicroHARVESTOR (Dezulian
et al., 2006) can identify candidate plant miRNA homologs for
a given query miRNA. The approach is based on a sequence
similarity search step followed by a set of structural filters. The
miRNAs of Vigna unguiculata are identified through homology
alignment of highly conserved miRNAs in multiple species (Lu and
Yang, 2010). Although these methods are effective in identifying
new conserved miRNAs, they cannot discover novel miRNAs
with less homology. On the other hand, since miRNAs in plants
often have near perfect matches to their target mRNAs, methods
that are based on the complementarity characteristics have also
been proposed. MIRcheck (Jones-Rhoades and Bartel, 2004)
searches for the new miRNAs whose target sites are conserved in
A.thaliana and O.sativa. FindMiRNA (Adai et al., 2005) predicts
potential Arabidopsis miRNAs from candidate pre-miRNAs that
have corresponding target sites within transcripts. In order to
decrease the number of miRNA candidates, the predicted candidates
are required to have orthologs in rice. MiMatcher (Lindow and
Krogh, 2005) also predicts the plant miRNAs through exploiting the
complementarity of plant miRNAs. However, since the candidates
that are complementary to target mRNAs are enormous within
intergenic regions and introns, rigorous criteria such as conservation
among multiple species are introduced to significantly reduce the
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number of candidates. This practice also considerable reduces the
chance of discovering new miRNAs.

As an alternative, the ab initio methods have been developed
to distinguish real pre-miRNAs from pseudo pre-miRNAs. The
real pre-miRNAs and pseudo pre-miRNAs are used to train
the classification models including support vector machines
(SVM) (Batuwita and Palade, 2009; Ng and Mishra, 2007;
Sewer et al., 2005; Xue et al., 2005), probabilistic co-learning
model (Nam et al., 2005), naïve Bayes (Yousef et al., 2006), random
forest (Jiang et al., 2007) and kernel density estimation (Chang
et al., 2008). These trained classification models can be then used to
classify real pre-miRNAs from pseudo pre-miRNAs. However, they
all are trained by the human pre-miRNAs and pseudo pre-miRNAs,
and mainly used to identify human pre-miRNAs. Triplet-SVM (Xue
et al., 2005) is the only one that has been tested on the pre-
miRNAs from A.thaliana and O.sativa. As the plant pre-miRNAs
differ greatly from the animal pre-miRNAs, triplet-SVM cannot
achieve high classification accuracy for the plant species including
A.thaliana and O.sativa.

Since nearly all the pre-miRNAs in plants and animals have the
stem–loop hairpin structures, this characteristic is widely used as an
important feature in the ab initio methods. However, the plant pre-
miRNAs usually have more complex secondary structures than the
animal pre-miRNAs and the structures have not been considered
in existing methods. We propose a computational classification
approach that considers the unique characteristics of plant pre-
miRNAs. To construct a comprehensive training dataset, the new
pseudo plant pre-miRNAs are extracted from the protein coding
regions of the A.thaliana and Glycine max genomes, based on which
an efficient SVM classifier is constructed to classify the real/pseudo
plant pre-miRNAs.

2 METHODS

2.1 Features of plant pre-miRNAs
Recent research indicates that pre-miRNAs in animals and plants have many
features in both primary sequence and secondary structure. These features
can be used to classify real plant pre-miRNAs and pseudo hairpins with an
ab initio method.

miPred (Ng and Mishra, 2007) extracted 29 global and intrinsic folding
features from human real and pseudo pre-miRNAs. These features include
(i) 17 base composition variables: 16 dinucleotide frequencies, that is %XY
where X,Y ∈{A,C,G,U} and %G+C content; (ii) six folding measures:
adjusted base pairing propensity dP (Schultes et al., 1999), adjusted
minimum free energy (MFE) of folding denoted as dG (Freyhult et al., 2005;
Seffens and Digby, 1999), adjusted base pair distance dD (Freyhult et al,
2005; Moulton et al., 2000), adjusted Shannon entropy dQ (Freyhult et al.,
2005), MFE Index 1 MFEI1 (Zhang et al., 2006a) and MFE Index 2 MFEI2;
(iii) one topological descriptor which is the degree of compactness dF (Gan
et al., 2004); (iv) five normalized variants of dP, dG, dQ, dD and dF: zP,
zG, zQ, zD and zF.

In addition to the 29 features listed above, microPred (Batuwita and
Palade, 2009) extracted 19 new features. These features are (i) two MFE-
related features: MFE Index 3 MFEI3 and MFE Index 4 MFEI4; (ii)
four RNAfold-related features: normalized ensemble free energy (NEFE),
frequency of the MFE structure Freq, structural diversity denoted as Diversity
and a combined feature Diff; (iii) six thermodynamical features: structure
entropy dS and dS/L, structure enthalpy dH and dH/L, melting energy of the
structure Tm and Tm/L, where L is the length of pre-miRNA sequence; (iv)
seven base pair-related features: |A−U|/L, |G−C|/L, |G−U|/L, average
base pairs per stem Avg_BP_Stem, %(A−U)/n_stems, %(G−C)/n_stems

Fig. 1. Arabidopsis pre-miRNA ath-miR166c and human pre-miRNA
hsa-mir-95. Their secondary structures are obtained from miRBase. The
nucleotides of the mature miRNA are displayed in bold.

and %(G−U)/n_stems, where n_stems is the number of stems in the
secondary structure.

The plant pre-miRNAs have more diversities than the animal pre-
miRNAs. First, the pre-miRNAs in animals are typically 60–80 nt (Ambros
et al., 2003), whereas the length of pre-miRNAs in plants ranges from
60 to >400 nt (Smalheiser and Torvik, 2005). Secondly, the molecular
characteristics of plant pre-miRNAs are also different from the animal
pre-miRNAs. The former have great varieties in secondary structures. For
instance, like Homo sapiens miR-95, the central loops of the pre-miRNAs
in animals are typically 3–20 nt in length (Nam et al., 2005). The loops
of plant pre-miRNAs have great varieties in length, such as the loop in
A.thaliana miR166c. This is shown in Figure 1. Further, some plant pre-
miRNAs contain the big bugles, e.g. G.max miR166b in Figure 2b. Moreover,
there are big unmatched parts in some plant pre-miRNAs, e.g. Physcomitrella
patens miR166i in Figure 2c.

Stems of plant pre-miRNAs are relatively stable and conserved. Central
loops, big bugles and big unmatched parts have great diversities and are not
conserved. Therefore, they are removed to obtain the stems. Two novel MFE-
related features are proposed and calculated for stems, since they are more
stable. (i) MFE Index 5: MFEI5 = MFE/%G+C_S, where %G+C_S is the GC
content in the stems. (ii) MFE Index 6: MFEI6 = MFE/stem_tot_bases, where
stem_tot_bases is the number of base pairs in the stems. (iii) Average number
of mismatches per 21-nt window: Avg_mis_num = tot_mismatches/n_21nts,
where tot_mismatches is the total number of mismatches in the 21-nt sliding
windows (which is roughly the length of a mature miRNA region and
naturally has fewer than four successive mismatches) and n_21nts is the
number of sliding windows in a stem.

For the 48 existing features and 3 new features, the 17 dinucleotide
frequencies features describe the sequential characteristic. The remaining
31 features are mainly related to the thermodynamics and stability of the
secondary structures of the hairpins. The current research indicates that the
structural characteristic is also significant for distinguishing the hairpins
of real/pseudo pre-miRNAs. Therefore, 32 structured triplet composition
features [frequencies of "U(((","A((.", etc., which were defined in triplet-
SVM (Xue et al., 2005)] are extracted from the pre-miRNAs. Since nearly
all mature miRNAs are located in stems, these 32 features are extracted again
from stems and denoted as "U(((_S", "A((._S", etc.

The transformation of secondary structure of a pre-miRNA is shown in
Figure 2. First, loops, big bugles and big unmatched parts of pre-miRNAs
are removed, in order to capture the features of stable stems. Then, the
5′-arm and 3′-arm are connected by a linker sequence, ‘LLLLLLLL’. It
is helpful to unify the length of loops in all the real/pseudo pre-miRNAs.
Since ‘L’ is not an RNA nucleotide, it does not match with any nucleotide
and prevents nucleotides in 5′-arm and 3′-arm from binding with sequence-
specific linker sequences. Finally, the three new features (MFEI5, MFEI6

and Avg_mis_num) and the 32 structure-related features are extracted from
the linked stems.
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Fig. 2. Transforming secondary structures of ath-miR166c, gma-miR166b
and ppt-miR166i. (a) The big loop of ath-miR166c is removed and replaced
with ‘LLLLLLLL’. (b) Some pre-miRNAs in plants, such as gma-miR166b,
have big bugles which are near the loops. The big bugles are removed and
the loop is replaced with ‘LLLLLLLL’. (c) The big unmatched part in the
left end of the stem is removed.

In total, 115 features are obtained from each real/pseudo plant pre-
miRNAs. They include redundant features that do not contribute to
classification. The algorithm based on graph is presented to eliminate the
redundant features. In the end, the discriminative feature subset is selected
to achieve the best classification accuracy.

2.2 SVM
Due to the excellent generalization ability of SVM, we use it to classify
real/pseudo plant pre-miRNAs with high-dimensional (115-dimensional)
feature vectors. Given a training dataset S, each xi ∈S (i=1, ...,N) is a feature
vector of real/pseudo pre-miRNA with corresponding labels zi (zi =+1 or
−1, real pre-miRNA or pseudo pre-miRNA, respectively). SVM constructs
a decision function (classification of unknown sequence x with stem–loop
structure),

g(x)=sgn

(
N∑

i=1

ziαik(x,xi)+w0

)
(1)

where αi is the coefficient to be learned (0≤αi ≤C) and k is a kernel function.
In our study, a radial basis function (RBF) kernel is used, where the parameter
γ determines the similarity level of the features so that the classifier becomes
optimal.

k(x,xi)=exp(−γ‖x−xi‖) (2)

The penalty parameter C and the RBF kernel parameter γ are tuned based on
the training dataset using the grid search strategy in libSVM (version 2.9).

Fig. 3. Construction of SVM classifier based on feature selection and sample
selection. Each circle/triangle represents a real/pseudo pre-miRNA.

2.3 Classification based on SVM
Both the features of real/pseudo pre-miRNAs and the training samples are
important for constructing an efficient SVM classifier. As shown in Figure 3,
we propose a classification method based on SVM. All the 2043 plant
pre-miRNAs from miRBase 14 (covers 29 plant species) are collected as
positive datasets. The homologous pre-miRNAs among different species are
gathered into the same miRNA gene family by RFam (Gardner et al., 2009).
Most of the pre-miRNAs in the same families are similar. Therefore, the
representative pre-miRNAs are selected from the 128 plant miRNA families
of miRBase 14 (including 1612 real pre-miRNAs), as the positive training
samples. Since the remaining 431 pre-miRNAs do not belong to any of
miRNA families, they are used as the positive training samples. The negative
dataset consists of the 17 groups. Each group is composed of pseudo pre-
miRNAs from the genome segments of A.thaliana and G.max (see Section
3 for details). (i) The 115 features are extracted from the primary sequence
and secondary structure of pre-miRNAs and their stems. (ii) The redundant
features are eliminated and the informative feature subset is selected through
calculating the information gain of features and the similarity between
any two features. (iii) The positive/negative training samples are selected
according to their distribution in the high-dimensional sample space, the size
of each family and the size of each negative sample group. (iv) An SVM-
based classifier named PlantMiRNAPred is trained by using these samples
to classify real pre-miRNAs and pseudo pre-miRNAs. The feature selection
and sample selection modules are implemented in Java. The web service of
classifying plant pre-miRNAs is developed in PHP on the Linux platform.

2.4 Feature subset selection
Feature selection aims to select a group of informative features which can
retain most information of original data and distinguish each sample in the
dataset. The feature selection method considers information gain and feature
redundancy.

Information gain: since all the features of pre-miRNAs are discrete, the
discrimination ability of a feature is measured by information gain based on
Shannon entropy. Suppose a feature of pre-miRNAs is x and the entropy of
x is denoted as H(x). When the value of feature y is given, the conditional
entropy is H(x|y). IG(c,x) is the information gain of feature x relative to the
class attribute c (Quinlan, 1993). Since classification of real or pseudo pre-
miRNAs is binary classification problem, c is assigned to 1 (real pre-miRNA)
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or −1 (pseudo pre-miRNA).

IG(c,x)=H(c)−H(c|x)
=∑

c,x
p(cx)log2

p(cx)
p(c)p(x)

(3)

Suppose that the complete feature set is X ={x1,x2, ... ,x115} and the class
attribute is c. The values of 115 features are obtained from each real pre-
miRNA (1906 real pre-miRNAs in total) and c is set to 1. Also, the values of
115 features are obtained from each pseudo hairpin (2122 pseudo hairpins
in total) and c is set to −1. The information gain of feature xi(1≤ i≤115)
is calculated and denoted as IG(c,xi). The features with greater information
gain are given higher preference.

However, the 115 features still include redundant features, inclusion of
which will not improve the classification accuracy. To identify the redundant
features, the feature similarity is used to measure the similarity between two
features.

Feature similarity: let Sim(x,y) represent the similarity between features
x and y and it is defined as,

Sim(x,y)=2

[
IG(x,y)

H(x)+H(y)

]
(4)

where IG(x,y) denote the information gain of y respect to x. Sim(x,y)
ranges from 0 to 1. Sim(x,y) equal to 0 means that x and y are completely
irrelevant. Sim(x,y) equal to 1 means that x and y are completely relevant.
When Sim(x,y) is greater than a threshold ε, x or y is a redundant feature.
Keeping both features does not improve the classification performance. In
such situation, the feature with greater information gain is kept and the other
one is dropped. In order to effectively eliminate the redundant features when
multiple features are correlated, a redundant feature graph G is constructed.
We propose an algorithm based on graph. Suppose that the redundant feature
graph is G= (V ,E). Each node vi (vi ∈V ) represents the feature xi. The weight
of node vi is the IG(c,xi). If the similarity between two nodes vi and vj is
more than the threshold ε(ε=0.49), xi or xj is redundant. Then a new edge
is added to connect the two nodes. The weight of the edge between vi and
vj is Sim(xi,xj). Here, ε is determined by the experiments and the prior
experience (Ng and Mishra, 2007).

The process of eliminating redundant features is illustrated by an example.
As shown in Figure 4, a redundant feature graph G consists of eight features,
including x1,x2, ... and x8. Suppose that groups of redundant features
exist, where features within a group are redundant to one another but are
independent to the remaining features. If we assume that there are three
groups, then the graph G is composed of three subgraphs: SG1, SG2 and
SG3. Feature selection weight (FSW) of each feature is first calculated.
Suppose that k edges are adjacent to vi. FSW of vi is defined as FSWvi = Sum
of weights of the k edges (that are connected with vi) + weight of vi. The
feature node vx with the most FSW is selected. The nodes adjacent to vx are
the redundant features and should be deleted. In the subgraph SG2, FSW
of x3 = (0.71+0.51)+0.42=1.64. FSWs of x4, x5, x7 and x8 are 1.48, 0.8,
1.52 and 1.15, respectively. Therefore, x3 is selected, and the adjacent x5 and
x7 are deleted. The bolded nodes in Figure 4 are the selected feature nodes.
Next, the FSWs of the remaining nodes x4 and x8 in the current SG2 are
calculated again. Since x8 has greater FSW, it is selected. In the same way,
in SG1, x1 is selected and x2 is deleted. In SG3, x6 is an independent node.
As no other node can represent the independent node, x6 is also selected. At
last, a feature subset {x1,x3,x6,x8} is obtained and the redundant features x2,
x4, x5 and x7 are eliminated. In addition, if two nodes (vy and vz) are with the
maximum FSW in a subgraph, the node weights of vy and vz are compared
and the node with greater weight is selected. The algorithm of eliminating
redundant features is described in Figure 5.

The proposed algorithm is applied to eliminating redundant features
among the 115 features. We found that two pairs of attributes are strongly
correlated: dQ versus dD, and dG versus NEFE. This observation is
consistent with the result in miPred, which indirectly confirms the result
of eliminating features. In addition, we found two new strongly correlated
pairs of attributes: dH versus dS, and dH/L versus dS/L, and dQ, dG, dH and
dH/L are selected due to their higher selection weights.

Fig. 4. Eliminating redundant features based on the graph G.

Fig. 5. Algorithm of eliminating redundant features.

Initially, the 115 features are categorized into three
feature subsets: (i) primary sequence-related feature subset
S1 = {%G+C,%XY |X ,Y ∈{A,C,G,U}} (17 features); (ii) secondary structure-
related feature subset S2 = {"A(((",…"U…","A(((_S",…,"U…_S"}
(64 features); (iii) energy- and thermodynamics-related feature subset
S3 = {dP, dG, … , zF, MFEI5, MFEI6, Avg_mis_num} (34 features).
Supplementary Table S1 illustrates the name and the classification of 115
features. After eliminating the redundant features, the three subsets are
denoted as S′

1, S′
2, and S′

3. For each subset, the remaining features are sorted
by information gain in descending order. The features with information
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gain greater than a threshold λ (λ1 =0.136, λ2 =0.083, λ3 =0.0159) are
selected for the classification. λ is determined by the experiments and the
prior experience (Ng and Mishra, 2007). In the end, a total of 68 features
are selected and listed in Section 3.

2.5 Training samples selection
The classification performance of SVM is highly dependent on the selection
of training dataset. First, we noted that the real pre-miRNAs from the same
species and the same miRNA families are highly similar to one another.
These redundant positive samples should be removed from training samples
to avoid over-fitting. Secondly, current research has shown that training an
SVM classifier with an imbalance positive and negative dataset would result
in poor classification performance with respect to the minority class (Weiss,
2004). So we select the appropriate proportion of representative real/pseudo
pre-miRNAs to construct positive/negative training dataset.

The sample selection method (miSampleSelection) selects the
positive/negative training samples according to the sample distribution
in the positive families/negative groups. As shown in Figure 3, the real
pre-miRNAs are selected based on the sample distribution in the 128
families. Since 68 informative features have been selected, each sample is
denoted as a 68-dimensional feature vector. Suppose the feature vector of
a sample is v and there are M (M =128) families. The vector set of central
points is C ={c1,c2,...,cM }, where ci represents the feature vector of the
central point in the i-th family. The sample selection process of the i-th
family is as follows.

(1) Assume that the number of samples in the i-th family is Ni. vk

is the feature vector corresponding to the k-th sample. ci is then
calculated as,

ci = 1

Ni

Ni∑
k=1

vk (5)

(2) The distance between the k-th sample (real pre-miRNA) vk and the
central point ci is denoted as dvk ci . vt

k means the transpose of vector
vk . Then, the radius of the i-th family is ri, where ri =max(dvk ci )(1≤
k ≤Ni).

dvk ci =1− vt
k ·ci

vt
k ·vk +ct

i ·ci −vt
k ·ci

(6)

(3) Suppose that the selection rate of sample space is 1/n. That is, Ni/n
samples in the i-th family are selected. The number of the selected
samples is denoted as Pi =Ni/n.

(4) Suppose that ci is the center of a circle, draw two circles with radius
0ri and (1/Pi)ri, respectively. The region between these two circles
is denoted as A0. The degree of coverage for each sample s in A0 is
calculated and denoted as C(s). C(s) represents the number of samples
in A0 whose nearest neighbor sample is s. The sample s with the
greatest C(s) value is selected as a training sample.

(5) We set (1/Pi)ri as the step length and compute the degree of sample
coverage in the region Ak between two circles with the radius (1/Pi)kri

and (1/Pi)(k+1)ri(1≤k ≤Pi −1), respectively. The sample in Ak

with the largest degree of coverage is selected.

The positive training dataset is composed of the samples selected from
the 128 families. For 431 pre-miRNAs that do not belong to any of miRNA
families, they are added into the positive training dataset. The process of
selecting negative training samples is similar. The negative samples are
composed of pseudo hairpins grouped by length. There are 17 groups in
total, where the 60nt_Group refers to pseudo hairpins of length from 60 to
69 nt, the 220nt_Group refers to pseudo hairpins of length from 220 to 229 nt,
etc. Seventeen groups of the negative dataset correspond to the families of
the positive dataset. The negative training samples are selected in the same
way as that of the positive samples.

3 RESULTS AND DISCUSSION

3.1 Data collection
A classifier of pre-miRNAs should distinguish real plant pre-
miRNAs from pseudo plant hairpins. The positive dataset is
composed of known plant pre-miRNAs, while the negative dataset
is composed of both pseudo A.thaliana hairpins and pseudo G.max
hairpins.

Positive dataset: there are 2043 known plant pre-miRNAs in
the miRNA database miRBase 14 (http://www.mirbase.org/). Rfam
(http://rfam.janelia.org/) grouped the available real pre-miRNAs
into a set of families by means of multiple sequence alignments. A
miRNA gene family is composed of the homologous pre-miRNAs
from different species. One thousand six hundred and twelve pre-
miRNAs belong to 128 miRNA families and 431 pre-miRNAs do
not belong to any of miRNA families. Two thousand forty-three real
pre-miRNAs are chosen as the positive sample dataset. They are
from A.thaliana, O.sativa, Populus trichocarpa, P.patens, Medicago
truncatula, Sorghum bicolor, Zea mays, G.max and other 21 plant
species. As shown in Figure 6, the top 22 families consist of 1066
plant pre-miRNAs. Supplementary Table S2 shows the pre-miRNAs
distribution and the species distribution in all the 128 plant families.
Each family contains at least two pre-miRNAs and covers at least
one plant species. After eliminating the special sequences with
complex secondary structures, 1906 real pre-miRNAs remain in the
positive dataset.

Negative dataset: the complete genome sequence of A.thaliana
was released in 2000 (AGI, 2000). The sequences of 20
chromosomes in G.max genome are released in 2010 (Schmutz
et al., 2010). Arabidopsis thaliana is a typically model plant and
G.max is one of the most important crop. The negative samples
are extracted from these two species. Since almost all reported
miRNAs are located in the untranslated regions or intergenic regions,
the pseudo hairpins are extracted from protein coding sequences
(CDSs) of A.thaliana and G.max. The CDSs of A.thaliana and
G.max are downloaded from the plant database Phytozome 6
(http://www.phytozome.net/).

The ratios of pre-miRNAs with different length in the 2043 real
pre-miRNAs are listed in Figure 7. It is found that most of known
plant pre-miRNAs in length ranges from 60 to 220 nt. Thus, a sliding
window of width ranging from 60 to 220 nt is used to scan the
CDSs to produce sequence segments. The secondary structures of
the sequence segments are predicted by RNAfold from the Vienna

Fig. 6. The 128 families are ranked by the size of species that a miRNA gene
family covers. The distribution of the top 22 miRNA families (containing
1066 pre-miRNAs) is shown. The names of miRNA familes are listed in the
x-axis. The y-axis represents the number of species/miRNAs.
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Fig. 7. Ratio of plant pre-miRNAs in different length. The x-axis represents the length of real pre-miRNAs. The y-axis represents the proportion of the
pre-miRNAs in length among 60–69 nt, 70–79 nt, …, 220–229 nt accounting for the sum of real pre-miRNAs.

package (Hofacker et al., 1994). The sequence segments should be
folded into stem–loop structures. Further, they should satisfy three
criteria on the number of base pairs in hairpins, %G+C and MFEI.
The criteria are determined by observing real plant pre-miRNAs in
length among 60–69 nt, 70–79 nt, etc., till 220–229 nt. For instance,
the criteria for selecting the pseudo miRNAs in length from 60 to
69 nt are: minimum of 19 base pairings in hairpin structure, %G+C
>0.242 and <0.825 and MFEI >0.522 and <1.39. The length of the
sliding windows changes from 60 to 69 randomly. Supplementary
Table S3 listed all the criteria for different lengths. Therefore, the
extracted pseudo pre-miRNAs are similar to the real pre-miRNAs.

The negative samples (pseudo pre-miRNAs) are collected
according to the proportion of the real pre-miRNAs of different
lengths. For example, suppose the ratio of real pre-miRNAs in
length 70–79, 80–89, 90–99 and 100–109 nt is 0.02:0.08:0.12:0.20.
Then the negative samples in different length are added into the
negative dataset in corresponding proportion. In total, 2122 pseudo
pre-miRNAs are collected as negative dataset.

Positive and negative training dataset: the 980 real pre-miRNAs
and 980 pseudo pre-miRNAs are selected by the sample selection
algorithm. The final training dataset includes a total of 1960 samples.
It is denoted as 1960 training dataset.

Positive and negative testing dataset: A.thaliana, O.sativa,
P.trichocarpa, P.patens and M.truncatula are typical model plants.
Sorghum bicolor, Z.mays and G.max are important crops. To date,
relatively more miRNAs are identified from the eight species
listed above. Thus eight groups of testing datasets are created
to evaluate our classifier. The first group is composed of all
the 180 A.thaliana (ath) pre-miRNAs, referred to as ath dataset.
The 397 O.sativa (osa) pre-miRNAs, 233 P.trichocarpa (ptc) pre-
miRNAs, 211 P.patens (ppt) pre-miRNAs, 106 M.truncatula (mtr)
pre-miRNAs, 131 S.bicolor (sbi) pre-miRNAs, 97 Z.mays (zma)

pre-miRNAs and 83 G.max (gma) pre-miRNAs are used to construct
the osa dataset, ptc dataset, ppt dataset, mtr dataset, sbi dataset, zma
dataset and gma dataset, respectively. The remaining 1142 pseudo
pre-miRNAs from 2122 pseudo pre-miRNAs (excluding the 980
pseudo pre-miRNAs) are used as 1142 negative testing dataset. The
191 A.lyrata (updated aly dataset) and 118 G.max pre-miRNAs
(updated gma dataset) were newly reported by miRBase 15–16
when this work was nearly completed.

3.2 Evaluation method
The informative feature subset and the training samples were used
to construct the classifier PlantMiRNAPred. The prediction result of
PlantMiRNAPred can be either one of the following four outcomes:
true positive (TP), false positive (FP), true negative (TN) and false
negative (FN). The sensitivity (SE), specificity (SP), geometric mean
(Gm) and total prediction accuracy (Acc) for assessment of the
prediction system are as follows,

SE= TP

TP+FN
, SP= TN

TN+FP
, Gm=√

SE×SP,

Acc= TP+TN

TP+FP+TN+FN

(7)

where SE is the proportion of the positive samples (real pre-
miRNAs) correctly classified, and SP is the proportion of the
negative samples (pseudo pre-miRNAs) correctly classified.

3.3 Feature subset selection result
The selected 68 informative features by feature selection process
and the corresponding information gain are listed in Table 1. They
are ranked by their normalized information gain.
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Table 1. Selected features ranked by their information gain

Rank AttrName IG(c, attr) Rank AttrName IG(c, attr)

1 Tm 1.0 35 G.((_S 0.1365
2 MFEI1 0.6362 36 %GG 0.1358
3 MFEI4 0.4837 37 zF 0.1325
4 MFEI6 0.3959 38 G(.( 0.1302
5 MFEI3 0.3759 39 %G+C 0.1223
6 dG 0.3598 40 G((. 0.1218
7 A((( 0.2964 41 G((._S 0.1148
8 A(((_S 0.2804 42 U... 0.1106
9 %(G-C)/stems 0.2653 43 G(.(_S 0.1061
10 C((( 0.2411 44 dP 0.1032
11 G((( 0.2274 45 A... 0.1014
12 U((( 0.2269 46 G(.. 0.1009
13 U(((_S 0.2187 47 G..( 0.0989
14 C(((_S 0.2154 48 C(.. 0.0982
15 G(((_S 0.2096 49 dH 0.0979
16 C((. 0.1979 50 zP 0.0971
17 MFEI5 0.1948 51 Avg_mis_num 0.0967
18 C.(( 0.1922 52 U..._S 0.0860
19 dH/L 0.1822 53 C..( 0.0855
20 C(.( 0.1822 54 G(.._S 0.0852
21 %GC 0.1769 55 U..( 0.0832
22 %UA 0.1767 56 MFEI2 0.0774
23 %AU 0.1742 57 dQ 0.0662
24 %AA 0.1727 58 Avg_Bp_Stem 0.0662
25 %CG 0.1678 59 Diff 0.0618
26 C(.(_S 0.1663 60 Freq 0.0607
27 Tm/L 0.1618 61 Diversity 0.0606
28 zG 0.1592 62 |G-C|/L 0.0597
29 G.(( 0.1558 63 zD 0.0498
30 C((._S 0.1556 64 dF 0.0376
31 %UU 0.1554 65 |G-U|/L 0.0374
32 %(A-U)/stems 0.1536 66 |A-U|/L 0.0305
33 %CC 0.1528 67 %(G-U)/stems 0.0171
34 C.((_S 0.1491 68 zQ 0.0159

It has been well studied that the stem–loop structures of plant
pre-miRNAs is thermodynamically stable. Most of the selected
features are related to the thermodynamic stability of the secondary
structures. It indirectly confirms the effectiveness of the selected
features. There are some features with suffix _S and three new
features (MFEI5, MFEI6, Avg_mis_num) in the selected feature
subset. It shows the significance of extracting the new features
for the stems. In addition, some features and the corresponding
features obtained from stems appear in pairs, such as A((( and
A(((_S, U((( and U(((_S, etc. It indicates that there is an obvious
difference between two features in any pair of the features listed
above. Also, both features are important for the classification of
real/pseudo pre-miRNAs.

In order to validate the efficiency of the feature selection method,
we tested the classification accuracies of 68 features, 80 features
(containing no features of stems), 51 features (containing no
structural features) and all 115 features, respectively. For each
feature subset, 980 real pre-miRNAs and 980 pseudo pre-miRNAs
were selected by the sample selection method to train an SVM
classifier. These four SVM classifiers were tested by performing
five-fold cross-validation. With five-fold cross-validation, all pre-
miRNAs in the training dataset were divided into five equal subsets,

Table 2. Classification results on different feature subsets

Feature subset Classification results (%)

SE SP Gm Acc

68 features 91.93 97.84 94.84 94.39
80 features 89.08 92.82 90.93 90.63
51 features 88.78 92.96 90.85 90.51
All 115 features 90.31 94.54 92.40 92.06

Table 3. Classification results with different sample selection methods

Sample Selection
methods

Dataset Classification results (%)

SE SP Gm Acc

miSampleSelection 1960 training dataset 91.93 97.84 94.84 94.39
Random Selection 1960 random dataset 89.69 93.25 91.45 91.17

four of which were used for training the classifier, while the left
out subset was used for validation. We performed 10 repeated
evaluations for each testing dataset and averaged the results.

The classification results are summarized in Table 2. The
classification performances of 80 features and 51 features are worse
than that of 115 features. It indicates that the stem-related features
and the structural features are absolutely necessary. Obviously,
the classifier trained by the selected 68 features achieves the
best classification performance. It shows the importance of feature
selection during construction of the efficient classifier.

3.4 Training sample selection result
The 980 positive samples and 980 negative samples with 68 features
were selected by our sample selection method miSampleSelection
to construct the classifier PlantMiRNAPred. Moreover, the equal
number of real/pseudo pre-miRNAs were randomly selected from
the positive/negative dataset, referred to as 1960 random dataset. The
performance of PlantMiRNAPred was compared with the classifier
trained with 1960 random dataset. As shown in Table 3, five-fold
cross-validation was performed on each training dataset.

The classifier trained by 1960 training dataset achieves
much higher sensitivity and specificity. It demonstrates that
miSampleSelection is effective for improving the classification
accuracy. In addition, the classifier which was trained by the 1960
random dataset achieves excellent classification accuracy. It further
confirms that the selected 68 features are sufficient to ensure the
classification performance.

3.5 Comparison with triplet-SVM and microPred
Triplet-SVM is the only ab initio method that has been
tested with the pre-miRNAs from A.thaliana and O.sativa.
Therefore, we compared PlantMiRNAPred with triplet-SVM.
The program of triplet-SVM was downloaded from Xue’s web
site (http://bioinfo.au.tsinghua.edu.cn/mirnasvm/). The eight testing
datasets composed of known pre-miRNAs from eight species were
tested to evaluate the ability of identifying the real pre-miRNAs.
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Table 4. Classification results on different testing datasets

Testing dataset Type Size Accuracy (%)

PlantMiRNA Triplet- micro
Pred SVM Pred

ath dataset Real 180 92.22 76.06 89.44
osa dataset Real 397 94.21 75.54 90.43
ptc dataset Real 233 91.85 75.21 84.98
ppt dataset Real 211 92.42 71.49 89.57
mtr dataset Real 106 100 80.18 95.28
sbi dataset Real 131 98.47 69.51 94.66
zma dataset Real 97 97.94 66.97 93.81
gma dataset Real 83 98.31 74.12 86.75
1,142 negative testing

dataset
Pseudo 1142 98.59 86.34 93.61

updated aly dataset Real 191 97.91 70.98 91.62
updated gma dataset Real 118 98.31 79.66 93.22

The 1142 negative testing dataset was tested to evaluate the ability
of identifying the pseudo hairpins. The Updated dataset was also
tested to observe the ability of discovering new plant pre-miRNAs.

We performed evaluations for all the testing datasets and
illustrated the results in the Table 4. PlantMiRNAPred is nearly 18%
better than triplet-SVM in overall accuracy. SE increased by 22.19%
and SP increased by 12.25% on average. As many plant pre-miRNAs
contain multiple loops, triplet-SVM cannot classify them correctly.
Almost all the plant pre-miRNAs with multiple loops in the testing
dataset are classified by PlantMiRNAPred correctly. This indicates
that our method is sensitive enough to identify pre-miRNAs with
multi-loops.

MicroPred is more similar to our approach as it uses the same
48 features to classify pre-miRNAs. However, it was originally
developed for human pre-miRNAs. The program of microPred
can be downloaded from the web site (http://web.comlab.ox.ac
.uk/people/manohara.rukshan.batuwita/microPred.htm). In order to
compare with microPred, the classification model of microPred
was changed according to the plant pre-miRNAs datasets. As
shown in Table 4, PlantMiRNAPred is nearly 5% better than
microPred in overall accuracy. SE increased by 5.19% on average
and SP increased by 4.98%. The improvement is mainly due
to the additional 32 structural features extracted from the plant
pre-miRNAs and the 35 features extracted from the stems.

Twenty-three of 397 O.sativa-positive samples, 19 of 233
P.patens-positive samples, two of 131 S.bicolor-positive samples
are classified as pseudo pre-miRNAs. However, in miRBase 16, 9
of 23 O.sativa-positive samples, 8 of 19 P.patens-positive samples,
2 of 2 S.bicolor-positive samples are obtained by computational
identification method. They are not verified by biology experiments.
Despite this, the accuracies of the three testing datasets are 96.39,
95.11 and 100%, respectively.

Most of the new reported pre-miRNAs in miRBase 15–16 was
correctly predicted by PlantMiRNAPred with an average accuracy
of 98.11%. This shows that PlantmiRNAPred is powerful in
discovering novel pre-miRNAs. In the two updated datasets, 109
of 118 G.max pre-miRNAs and 74 of 193 A.lyrata are lineage-
specific pre-miRNAs. Therefore, PlantMiRNAPred is also shown to

be able to achieve high performance in classifying lineage-specific
pre-miRNAs.

In addition, 11 918 inverted repeats were also extracted from the
Gm08 (the eighth chromosome of G.max genome) by EINVERTED
(Rice et al., 2000). One thousand inverted repeats (including eight
real pre-miRNAs) were selected according to the proportion of
the real pre-miRNAs of different lengths. Thirty-seven of 1000
are classified by PlantMiRNAPred as putative real pre-miRNAs,
covering eight real pre-miRNAs. The FP rate of PlantMiRNAPred is
2.9%. MicroPred classified 89 inverted repeats as real pre-miRNAs,
covering eight real pre-miRNAs. The FP rate of MicroPred is 8.1%.
Triplet-SVM classified 184 inverted repeats as real pre-miRNAs,
covering six real pre-miRNAs. The FP rate of triplet-SVM is 17.8%.
It indicates that PlantMiRNAPred is more sensitive to the inverted
repeats from the genome.

4 CONCLUSION
A new ab initio classifier (PlantMiRNAPred) was developed for
predicting plant pre-miRNAs. We demonstrated the importance of
careful feature extraction, feature selection and training sample
selection in achieving efficient and effective classification result.
Particularly, according to the characteristics of plant pre-miRNAs,
115 features were extracted to distinguish the hairpins of real pre-
miRNAs and pseudo pre-miRNAs. After eliminating redundant
features, 68 informative features were selected. Each real/pseudo
pre-miRNA was mapped into the 68-dimensional space. 1960
positive/negative representative samples were selected as the
training dataset.

PlantMiRNAPred has been compared with the existing pre-
miRNA classification methods, triplet-SVM and microPred. The
results demonstrated that PlantMiRNAPred has higher classification
performance. Further analysis indicated that the improvement of
classification accuracy was due to the informative features and the
representative training samples. PlantMiRNAPred will be useful in
generating effective hypothesis for subsequent biological testing.
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