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Abstract: Plants confront an extent of abiotic stresses due to environmental hardship, among 
which salinity is one of the major abiotic stresses that seizes plant growth and development 
resulting in a massive yield loss worldwide. Plants respond to salinity in two distinct phases: a 
quick osmotic phase and a sluggish ionic phase also known as hyper osmotic phase. Plants 
adjustment and/or tolerance to salinity stress comprise several complex physiological, biochemical 
and molecular networks. A widespread understanding of how plants response to salinity stress at 
different phases, and a cohesive physiological and biochemical approaches are crucial for the 
development of salt adapted and/or tolerant varieties for salt-affected areas. Researchers have 
identified several adaptive responses to salinity stress at cellular, biochemical and physiological 
levels, even though mechanisms triggering salt stress adaptation and/or tolerance are far from 
being entirely understood. This article bestows a spacious review of foremost research advances 
on physiological and biochemical mechanisms governing plant adaptation and/or tolerance to 
salinity stress relevant to environmental sustainability and as well as food production. 
Keywords: Salinity - Osmotic stress - Ionic stress - Photosynthesis - Reactive oxygen species - 
Ion homeostasis. 
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INTRODUCTION 

Salinity has gained a global concern due to its fierce environmental stresses that inversely influence the 
growth and development of plants with regulation of metabolic changes (Munns 2002a, Vaidyanathan et al. 
2003, Munns & Tester 2008). It is categorized by an excessive concentration of soluble salts in growing media, 
causes significant crop damage globally (Munns & Tester 2008). Today, it is an ascending challenge towards 
global agriculture to produce 70% more food crop for feeding an addition 2.3 billion souls by 2050 throughout 
the world (FAO 2009) but this formidable abiotic stress inhibits the agricultural productivity worldwide (Munns 
& Tester 2008). The problem is constantly rising because of accretion of salt-affected soil day by day which is 
triggered by various environmental and anthropogenic influences (Boesch et al. 1994, Rogers & McCarty 2000). 
Accumulation of salts over prolonged periods (Rengasamy 2002) due to weathering of parental rocks (Szabolcs 
1998) has arisen the maximum salt-affected land naturally. Another reason is the deposition of marine salts 
transported in wind and rain. Munns & Tester (2008) demonstrated that rain with 10 mg kg-1 of NaCl would 
deposit 10 kg ha-1 of salt for every 100 mm of precipitation for each year. Aloof from natural causes, 
anthropogenic influences are similarly accountable for soil salinization. Poor quality water in irrigation and 
global warming with subsequent elevation in sea level and tidal surges, especially in coastal areas are one of the 
key factors for soil salinization. 

Salinity comprises changes in several metabolic and physiological routes, depending on sternness and extent 
of the stress (Munns 2005). It exerts a devastating effect on plants into two phases. One is the rapid osmotic 
phase and another is a slower ion toxicity phase. Osmotic phase suppresses the plant/young leaves growth and 
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development which is then followed by ionic toxicity due to high accumulation of salt in leaves that speeds 
senescence of mature leaves (Munns 2005, Rahnama et al. 2010). 

Munns & Tester (2008) suggested plants quench the salt stress challenge via. three tolerance mechanisms i.e. 
tolerance to osmotic stress, Na+ exclusion from blades and tissue tolerance whereas McCue & Hanson (1990) 
suggested four tolerance mechanisms. First is developmental traits, second is structural traits, third is the 
physiological mechanism and the forth is metabolic responses, such as modification in photosynthetic 
metabolism (Cushman et al. 1990, Cushman 1992) coupled with biosynthesis of compatible osmolytes and 
antioxidant enzymes. 

An affluent amount of research has been done in demand to understand the mechanism of salinity tolerance 
in plants (Zhang & Shi 2013) in the previous eras. This current flurry of action may also mirrored that the 
existing enthusiasms in plant science for building practical support to food production, research progresses on 
the complex physiological and biochemical mechanisms against salt stress. 

MAGNITUDE OF SALT TOLERANCE IN DIFFERENT CROPS 

Salt tolerance ability of every crop is not uniform and differs greatly from crop to crops. The magnitude of 
salinity tolerance is grater in dicotyledonous species than in monocotyledonous.  In cereals, barley is the most 
tolerant while rice is the most sensitive to salinity (Colmer et al. 2006). Moderate tolerance was shown by 
wheat, bread wheat while durum wheat exhibits less tolerance (Colmer et al. 2006). Some legumes are showed 
moderate tolerance whilst some are very sensitive to salinity. Tall wheatgrass, known as halophytic relative of 
wheat is one of the most tolerant of the monocotyledonous species (Colmer et al. 2006). Halophytes remain to 
grow well under a quite high concentration of salinity (100–200 mM) (Flowers et al. 1977, Bartels 2005). 

PLANTS RESPONSES TO SALT STRESS 

Germination 

Plant establishment and the yield of the crops depend on seed germination which is a fundamental and 
crucial phase in the growth cycle of plants. Though seed germination is regulated by a numerous external 
(environmental) and internal (plant) factors (Wahid et al. 2011), a higher level of salt stress adversely affects the 
seed germination while the lower level of salinity reasons a state of dormancy (Khan & Weber 2008). Seed 
germination at 80 mM NaCl needs 50% more days whereas it requires almost 100% more days at 190 mM NaCl 
than control (Cuartero & Fernandez-Munoz 1999). Salinity confines the seed germination and vigor of a several 
crops species like rice (Xu et al. 2011), wheat (Akbarimoghaddam et al. 2011), Maize (Carpıcı et al. 2009, 
Khodarahmpour et al. 2012), Muatard (Ibrar et al. 2003, Ulfat et al. 2007), Soybean (Essa 2002), Pulses (Jabeen 
et al. 2003) and Sunflower (Mutlu & Buzcuk 2007). 

Salinity impairs the imbibition of seeds due to lower osmotic potential (Khan & Weber 2008) which alters 
the activity of enzymes associated with nucleic acid metabolism (Gomes-Filho et al. 2008) and protein 
metabolism (Yupsanis et al. 1994, Dantas et al. 2007) leading hormonal imbalance (Khan & Rizvi 1994) and 
lessens the utilization of seed reserves (Promila & Kumar 2000, Othman et al. 2006) thus reduces seed 
germination. Salt stress is also believed to damage the ultrastructure of cell, tissue and organs (Koyro 2002, 
Rasheed 2009) that hinder the germination processes. 

Inhibition of growth parameters  

Cell division and expansion which is mandatory for growth and development is severely affected by salinity 
(Burssens et al. 2000). Munns (2002b) encapsulated the chronological consequences in a plant grown under 
salinity. He affirmed that the onset of salinity cells is shrinked within first few seconds or minutes, due to loss of 
water by osmotic stress. Over hours, cells regain their original size but the expansion rates remain low, leading 
lower growth rates of leaf, shoot and root. Across days, it affects cell division rate and responsible for lower 
leaf, shoot and root growth rates. After several weeks, it alters the vegetative development and fluctuations in 
reproductive development can be seen over months. Later on, Munns and Tester (2008) established the two-
phase growth response model for well understanding the responses of plants to salinity (Fig. 1).  

The first phase is a rapid process which is due to osmotic effect begins instantly after an increase of salt 
concentration around the roots to a threshold level (approximately 4 dsm-1 NaCl or less for sensitive plants like 
rice and Arabidopsis) (Munns & Tester 2008). This phase is documented as osmotic stress phase. The second 
phase is a slower process which is due to the accumulation of salt to toxic concentrations in the old leaves 
(which do not expand and so no longer diluting the salt inward in them as younger developing leaves do) 
leading to ionic toxicity in the plants (Munns & Tester 2008). This phase is documented as ionic toxicity phase 
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or hyperosmotic stress phase. Ionic toxicity causing from distorted K+/Na+ ratio and deposition of Na+ and Cl- 
ion in leaves over an extended period of time after transpiration, results in injury and/or death of leaves and 
decrease the total photosynthetic leaf area which lower the supply of photosynthate in plants and finally alter the 
productivity. Leaf injury and/or death are documented to the elevated salt load in the leaf that exceeds the 
capability of salt compartmentalization in the vacuoles, that results in the cytoplasm toxic (Munns 2002a, 2005, 
Munns et al. 2006). Beneath such condition, a plant eventually may die (Blaylock 1994). 

 
Figure 1. An outline of two phase growth response against salt stress. (Modification of Munns & Tester 2008) 

Accumulation of Na+ ions 

During salinity, Na+ accumulation is a common phenomenon in leaves rather than in the roots after being 
deposited from the transpiration steam (Amtmann & Sanders 1998, Munns 2002a). In standard physiological 
circumstances, plants maintain a high K+/Na+ ratio in their cytosol (Binzel et al. 1988) but an elevation in 
extracellular Na+ concentrations occurs due to the negative electrical membrane potential at the plasma 
membrane (-140 mV) (Higinbotham 1973) that favors the passive transportation of Na+ ions into cytosol from 
the environment and deposits into leaf cell after transpiration (Fig. 2). The extreme Na+ in the cytosol has been 
exhibited poor survival of plants and eventually death as well (Krishnamurthy et al. 2009). Na+ ions restrict the 
function of potassium which performances as a cofactor in several reactions and hence exhibits direct toxicity 
on the plant. In addition Na+, however, seems to be detrimental to the structural and functional integrity of 
membranes (Iraki et al. 1989). 

 
Figure 2. Accumulation of Na+ ions. Where, a- Passive transportation of Na+ due to the negative electrical membrane 
potential; b- Water loss from leaf by transpiration; c- Deposition and/or accumulation of Na+ in leaf cell. 

Stomatal closure 

A further response of plants to salinity is demonstrated by a reduction in stomatal aperture which is believed 
to induce by the osmotic effect. Salinity disturbs stomatal conductance rapidly and transiently due to interrupt in 
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water relations and sharply the local synthesis of short-lived ABA in roots (Fricke 2004) and immediately 
relocate into the leaves through xylem. ABA then fixes with plasma membrane receptor molecule of guard cells 
and this fixation trigger activation of Ca2+ channel proteins which inflows Ca2+ into the cytosol from outside. 
Simultaneously activation Ca2+ channels present on tonoplast starts to efflux of Ca2+ in cytosol from the vacuole, 
leads to further rise in Ca2+ in the cytosol. High Ca2+ concentration inhibits K+ channel proteins activity though it 
keeps normal Cl- channel proteins activity. Consequently, no K+ is influxed and efflux of Cl- from cytosol 
initiates to enhance cytosolic pH cause depolarization of plasma membrane. At existing circumstances, K+ 
(known as water buoy) is effluxed through Guard Cell Outward Rectifying K+ (GORK) channel triggering lose 
in turgidity in guard cell and cause stomatal closure (Blatt & Armstrong 1993) (Fig. 3). 

 
Figure 3. ABA mediated stomatal closure. Where, a- ABA binds with PM receptor molecule; b- Boost Ca2+ channel protein 
to influx Ca2+ in cytosol; c- Simultaneous Ca2+ efflux in cytosol from vacuole leads further raise in Ca2+; d- Increased Ca2+ 
inhibit the activity of K+ inward channel while keeps normal the Cl- channel activity causing depolarization of plasma 
membrane; e- This situation facilities removal of K+ from guard cell through GORK channel causing stomatal close. 
(Modification of outline of Blatt & Armstrong 1993) 

Inhibition of Photosynthesis 

 
Figure 4. General reactions of photosynthesis and inhibition of photosynthesis during salt stress. 

Salt stress is believed to responsible for lower photosynthesis which is triggered by ABA mediated stomatal 
closure. The diminution in stomatal conductance inhibits the accessibility of CO2 for carboxylation reactions in 
leaves that decreases photosynthesis under stress (Brugnoli & Björkman 1992) (Fig. 4). Besides, one of the most 
noted effects of salinity that reduces the photosynthesis is the variation in biosynthesis of photosynthetic 
pigment (Maxwell & Johnson 2000). The reduction in Chlorophyll content under salt stress is a normally stated 
phenomenon (Chutipaijit et al. 2011). Chutipaijit et al. (2011) demonstrated that subjected to 100 mM NaCl 
showed 30, 45 and 36% reduction in Chlorophyll a (Chl a), Chlorophyll b (Chl b) and carotenoids (Car) 
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contents respectively as compared to control in rice. Photosynthesis is also obstructed when excessive 
concentrations of Na+ and/or Cl– are amassed in chloroplasts. 

Oxidative stress 

Salinity invites oxidative stress through a series of actions. It triggers stomatal closure, leading decreases 
CO2 availability for carbon fixation in the leaves, unmasking chloroplasts to  extreme  excitation  energy which  
in  turn  rise  the  generation  of  reactive  oxygen  species  (ROS)  such  as superoxide  (O2•– ), hydrogen  
peroxide  (H2O2), hydroxyl  radical  (OH•)  and singlet oxygen (1O2) (Apel & Hirt 2004, Foyer & Noctor 2005a, 
Parida & Das 2005, Ahmad & Sharma 2008, Ahmad et al.  2010a, 2011) that initiate programmed cell death 
(Jacobson et al. 1997, Jabs, 1999, Gunawardena et al. 2004) (Fig. 5). On the other hand, physiological water 
deficit because of osmotic effect alters a wide range of metabolic activities (Greenway & Munns 1980, 
Cheeseman 1988) leads to the generation of ROS (Halliwell & Gutteridge 1985, Elstner 1987). ROS are 
extremely reactive and may reason cellular damage through lipid peroxidation as well as proteins and nucleic 
acids oxidation (Hasegawa et al. 2000, Pastori & Foyer 2002, Apel & Hirt 2004, Ahmad et al. 2010a, 2010b) 
demonstrated that generation of ROS is enhanced under saline conditions and ROS-mediated membrane 
destruction has been revealed to be a foremost reason of the cellular toxicity in several crop plants such as rice, 
tomato, citrus, pea and mustard (Gueta-Dahan et al. 1997, Dionisio-Sese & Tobita 1998, Mittova et al. 2004, 
Ahmad et al. 2009, 2010b). 

 
Figure 5. An overview of oxidative stress during salinity stress.  Where, a- No CO2 fixation due to stomatal closure; b- 
Initiation of ROS generation via. mehlar reaction. 

Nutrient imbalance 

High salt concentration due to salinity is believed to cause nutrient imbalance. A number of reports showed 
that salinity decreases nutrient uptake and accumulation of nutrients into the plants (Rogers et al. 2003, Hu & 
Schmidhalter 2005). Rozeff (1995) demonstrated that salinity lower N accumulation in plants due to the 
interaction between Na+ and NH4

+ and/or between Cl– and NO3
– that finally lessen the growth and yield of the 

crop. Plants face phosphorus (P) deficiency in saline soils due to ionic strength effects that decreased the activity 
of PO4

3– and low solubility of Ca-P minerals. Elevated level of Na+ ion concentrations in the soil decreases the 
quantity of available K+, Mg2+ and Ca2+ (Epstein 1983) hence, directing to nutrient imbalance. The solubility of 
micronutrients, pH of soil solution, redox potential of the soil solution and the nature of binding sites on the 
organic and inorganic particle surfaces are the principal factors for the availability of micronutrients in saline 
soils. Zhu et al. (2004) reported that micronutrient deficiencies are common in salt stress because of high pH. 

Plant yield 

The above-stated responses against salt stress lead to the diminution of crop yield which is the most 
noticeable effect in agriculture. Salinity causes great crops reduction and yields almost all plant species except 
some halophytes. Nahar & Hasanuzzaman (2009) showed an application of 250 mM NaCl decreased 77, 73 and 
66% yield in BARI mung-2, BARI mung-5 and BARI mung-6, respectively over control. Later on 
Hasanuzzaman et al. (2009) demonstrated that at 150 mM salinity BR11, BRRI dhan41, BRRI dhan44 and 
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BRRI dhan46 showed loss of grain yield at 50, 38, 44 and 36% respectively over control. Greenway & Munns 
(1980) observed that at 200 mM NaCl, sugar beet (a salt-tolerant species) might have a reduction of only 20% in 
dry weight, cotton (a moderately tolerant) might have a 60% reduction, and as a sensitive species soybean might 
be dead.  In contrast, a halophyte such as Suaeda maritima (L.) might be growing at its optimum rate under 
salinity (Flowers et al. 1986). This reduction of yield and yield components under salt stress may also be 
assigned to low cell expansion, less photosynthetic rate, senescence and production (Seemann & Critchley 1985, 
Wahid et al. 1997). 

PHYSIOLOGICAL AND BIOCHEMICAL BASIS OF SALT TOLERANCE  

Ion Homeostasis and compartmentalization  

Ion homeostasis and compartmentalization is not only indispensable for normal plant growth but is also a 
crucial process for growth and development under salt stress (Niu et al. 1995, Serrano et al. 1999, Hasegawa 
2013). Though halophytes can accept high salt concentration during their growth and development, irrespective 
of their nature, glycophytes cannot tolerate an elevated concentration of salt in their cytoplasm. Hence, the 
additional salt is either sequestered in older tissues which finally are sacrificed or conveyed to the vacuole; 
thereby defending the plant from salinity stress (Reddy 1992, Zhu 2003). NaCl is the most abundant form of salt 
existing in the soil, so the main importance should be given about the transport mechanism and 
compartmentalization of Na+ ion. Cytoplasmic Na+ ion is moved to the vacuole via. Na+/H+ antiporter. Vacuolar 
type H+-ATPase (V-ATPase) and vacuolar pyrophosphatase (V-PPase) are two types of H+ pumps located in the 
membrane of vacuolar (Dietz 2001) responsible for ion homeostasis and compartmentalization. Between them, 
V-ATPase is the most dominant H+ pump plays a significant role in both stressed and non-stressed conditions. 
Under stressed condition, the survivability of the crops/plants greatly depend upon the action of V-ATPase 
whereas it helps to maintain solute homeostasis, stimulating secondary transport and assisting vesicle fusion in 
non-stressed (Dietz 2001, De Lourdes Oliveira Otoch et al. 2001, Wang 2001). De Lourdes Oliveira Otoch et al. 
(2001) observed enhanced functions of VATPase pump and suppressed activity of V-PPase pump in hypocotyls 
of cowpea seedlings under salt stress environment whereas in halophyte Suaeda salsa (L.) Pall. (seepweeds), V-
ATPase activity was upregulated and V-PPase played a minimal role (Wang 2001). 

 
Figure 6. Model of SOS pathway for ion homeostasis and compartmentalization during salt stress. (Modification of outline 
of Gupta & Huang 2014) 

Salt Overly Sensitive (SOS) stress signaling pathway is also responsible for ion homeostasis and salt 
tolerance (Hasegawa et al. 2000, Sanders, 2000). SOS consists of three major proteins: a) SOS1 protein that 
encodes a plasma membrane Na+/H+ antiporter, is crucial in controlling Na+ efflux at cellular level. Besides, 
long distance transport of Na+ from root to shoot is assisted by SOS1. Overexpression of this SOS1 protein 
bestows salt tolerance in plants (Shi et al. 2000, Shi et al. 2002); b) SOS2 protein that encodes serine/threonine 
kinase and consists of a well-developed N-terminal catalytic domain and a C-terminal regulatory domain (Liu et 

al. 2000). SOS2 is activated by the action of both SOS3 protein and salt stress elicited Ca2+ signals; c) Another 
protein in SOS signaling pathway is the SOS3 protein which is a myristoylated Ca2+ binding protein along with 
a myristoylation site at its N-terminus. This myristoylation site shows a crucial role in salt tolerance (Ishitani et 
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al. 2000). C-terminal regulatory domain of SOS2 protein performs as a site of interaction for Ca2+ binding SOS3 
protein resulting in the initiation of the kinase (Guo et al. 2004). The activated kinase then phosphorylates SOS1 
protein thus escalating its transport activity via. Na+/H+ antiporter (Quintero et al. 2002). This result increase 
Na+ efflux and thus ease Na+ toxicity (Martinez-Atienza et al. 2007) (Fig. 6).  

Compatible solute accumulation and osmotic protection 

Biosynthesis and/or accumulation of compatible solutes are inhabitable in stress condition. They are 
uncharged, polar, and soluble in nature and do not interfere with the cellular metabolism even at high 
concentration. The well documented compatible solutes found in are proline (Pro) (Ashraf & Foolad 2007, 
Hoque et al. 2007, Ahmad et al. 2010a, Nounjan et al. 2012, Tahir et al. 2012), glycinebetaine (GB) (Khan et al. 
2000, Wang & Nii 2000, Ashraf & Foolad 2007), sugar (Bohnert et al. 1995, Kerepesi & Galiba 2000), and 
polyols (Ford 1984, Ashraf & Foolad 2007, Saxena et al. 2013) As their biosynthesis and/or accumulation is 
associated to the external osmolarity, the major functions of these osmolytes is to shield the structure of cells 
and to maintain osmotic balance thru continuous water influx (Hasegawa 2013). Besides, an inorganic osmolyte 
recognized as K+ plays an important role in osmoregulation thus salinity mitigation (Shabala 2003, Polash et al. 
2018)  

Proline: Proline (Pro) biosynthesis and/or accumulation are a well-known phenomenon for decreasing salinity 
stress (Matysik et al. 2002, Ben-Ahmed et al. 2010, Saxena et al. 2013). In osmotically stressed cell Pro is 
synthesised either from glutamate or ornithine (Fig. 7). The biosynthetic pathway includes two major 
enzymes; a) pyrroline carboxylic acid synthetase and b) pyrroline carboxylic acid reductase, which are 
responsible for overproduction of Pro in plants under stress (Sairam & Tyagi 2004). Nounjan et al. (2012)  
observed that salt stress resulted in growth reduction, increase in the Na+/K+ ratio, increase in Pro level and 
up-regulation of proline  synthesis  gene  as  well  as  accumulation  of  H2O2, increased activity of 
antioxidative enzymes (SOD, POX, APX, CAT) of rice seedlings. Intracellular Pro provides tolerance 
toward stress and also behaves as an organic nitrogen reserve during stress recovery. Pro assists in 
stimulating the expression of salt-stress-responsive proteins (Khedr et al. 2003) acts as an antioxidant 
feature, suggesting ROS scavenging activity and 1O2 quencher, protects the photosynthetic apparatus (Ashraf 
et al. 2008) thus develop the plant adaptation against salt stress (Smirnoff & Cumbes 1989, Matysik et al. 
2002). Deivanai et al. (2011) demonstrated that pretreatment with 1 mM Pro exhibited advance in growth 
during salt stress in rice seedlings. It has been demonstrated by a study that Pro increases salt tolerance in 
tobacco by intensifying the activity of enzymes participating in antioxidant protection system (Hoque et al. 
2008). Antioxidant enzyme activity such as superoxide dismutase (SOD), catalase (CAT) and peroxidase 
(POD) is significantly inhibited by salt which is upregulated by Pro supplements. Ahmad et al. (2010b) 
observed in olive trees, that Pro supplements appeared to improve salt stress tolerance by regulating 
antioxidant enzymatic activities, enhancing the photosynthetic activity, and thus preserved well plant growth 
and water influx. Besides the exogenous application of Pro significantly mitigate the reduction of 
photosynthesis (Pn), flurescence (Fv/Fm), and chlorophyll (Chl) content under saline conditions. Nounjan et 

al. (2012) reported that exogenous supplementation of Pro repressed the Na+ induced apoplastic flow thus 
reduce Na+ uptake in rice. They also demonstrated that application of Pro to the salt stress environment 
repressed Na-induced trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid uptake and Na+ accumulation, 
whereas the K+ content was fairly increased, leading to a high K+/Na+  ratio under salt stress.  

 
Figure 7. Biosynthesis of Pro from glutamate during salinity. (Modification of Hossain et al. outline 2011a) 

Glycinebetaine: Glycinebetaine (GB) is an amphoteric quaternary ammonium compound and non-toxic even at 
higher concentrations in cell which plays a defensive role to salt stress (Ashraf & Foolad 2007, Chen & 
Murata 2008). The most common pathway of GB synthesis from choline is a two-step reaction, first choline 
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is oxidized to betaine aldehyde catalyzed by choline monooxygenase (CMO) which is further undergoes 
oxidation to form glycine betaine by the activity of betaine aldehyde dehydrogenase (BADH) (Ahmad et al. 
2013) (Fig. 8). Another pathway of synthesis involves three successive N-methylation which are catalyzed 
by, glycine sarcosine N-methyl transferase (GSMT), and sarcosine dimethylglycine N-methyl transferase 
(SDMT) (Ahmad et al. 2013). The foremost roles of glycinebetaine are shields the cell by stabilizing protein 
(Mäkelä et al. 2000), osmotic adjustment (Gadallah 1999), defends the photosynthetic apparatus from stress 
injuries (Cha-Um & Kirdmanee 2010) and reduction of ROS (Ashraf & Foolad 2007, Saxena et al. 2013). 
Rahman et al. (2002) demonstrated the positive effect of GB on rice seedlings when uncovered to salt stress. 
The affirmative effect of exogenous application of GB is related with reduced Na+ accumulation alone with 
the maintenance of higher K+ concentration within all parts of salt-stressed plants. This effect might be due 
to the creation of numerous vacuoles in the root cells in which Na+ is stored and prevent its accumulation in 
the shoots. Cha-Um & Kirdmanee (2010) applied GB on salt-sensitive rice plants bared to 150 mM of NaCl 
stress. The results revealed that GB treated plants exhibited higher water use efficiency (WUE) and pigment 
stabilization, leading to high CO2 assimilation, photosynthetic performance as well as plant height under 
salinized environment. 

 
Figure 8. Biosynthesis of GB from choline during salinity. 

Trehalose: Trehalose (Tre) another compatible osmolyte documented in plants during stress functions as an 
osmoprotectant increasing the plant‟s tolerance to abiotic stress (Zeid 2009, López-Gómez & Lluch 2012). 
Nounjan et al. (2012) monitored the reduction of Na+/K+ ratio in rice seedlings under salt stress condition 
when treated with exogenous Tre. Another experiment demonstrated that pre-treatment of maize seeds with 
Tre (10 mM) exhibited better functions under salt stress environment (Zeid 2009). Tre application also 
believed to ease salt stress over stabilization of plasma membranes, photosynthetic pigments by declining 
ion leakage rate, and boosting the ratio of K+/Na+ in the leaves of stressed plants. However, the exogenous 
role of Tre in mitigating growth inhibition under abiotic stress is still under examination. Further 
investigations are needed for advance understanding about the role of Tre in crop protection under salinity.   

Polyols: Polyols consists of several hydroxyl functional groups, functions as a compatible solute that stabilizes 
the enzymes and scavenges ROS (Ashraf & Foolad 2007) under salt stress conditions. They are categorized 
into acyclic (e.g. mannitol) and cyclic (e.g. pinitol) groups. Mannitol biosynthesis occurs in plants through 
activity of NADPH dependent mannose-6-phosphate reductase under stressed period. Pinitol is also 
biosynthesized within the cell when the plant is exposed to salinity. Pinitol biosynthetic pathway involves of 
two major phases: first formation of ononitol due to the methylation of myoinositol and then epimerization 
ononitol to produce pinitol by the action of inositol methyl transferase enzyme. However, accumulation of 
polyols in plants is correlated with tolerance to drought and/or salinity (Bohnert et al. 1995). 

Carbohydrates: Carbohydrates such as sugars (e.g. glucose, fructose, fructans, and trehalose) and starch 
accumulation occur under salt stress condition (Parida et al. 2004). These carbohydrates is well documented 
in osmoprotection, carbon storage and scavenging of ROS in stress mitigation. Kerepesi & Galiba (2000) 
detected the escalation of reducing sugars (sucrose and fructans) within the cell under salinized environment 
in a number of plants species. In another study, the sucrose content was found to enhance in tomato under 
salinity by increased activity of sucrose phosphate synthase (Gao et al. 1998). On the other hand, sugar 
content, has been reported to both enhance and decline in various rice genotypes under salinity (Alamgir & 
Ali 1999). However, advanced studies are required to reveal the proper mechanisms of carbohydrates against 
salinity alleviation. 

Inorganic osmolytes (K+) in osmoregulation under salinity: Some studies revealed that, inorganic osmolyte 

exhibits an important role in salt stress adaption and/or tolerance rather organic osmolytes (Shabala 2003, 
Polash et al. 2018). According to Hanson et al. (1977) and Moftah & Miche (1987), Pro biosynthesis is not 
always rapid and might not have occurred till the cells are damaged fatally. In this circumstance, K+ an 



Polash et al. 2019 

www.tropicalplantresearch.com  258 

inorganic osmoticum involves in retaining water content as well as cell turgidity by maintaining ionic 
balance (Shabala 2003). 

Antioxidant Regulation of Salinity Tolerance 

SOD, APX, CAT and POD: Deregulation and interruption of electron transport chains (ETC) leads overflow of 
electron in chloroplasts and mitochondria initiate several abiotic and biotic stresses both in living animals 
and plants. Under such environment, molecular oxygen (O2) performances as an electron acceptor, triggers 
production of ROS via. mehlar reaction (Asada 1999). ROS are strongly oxidizing compounds that are 
injurious for cell integrity (Groß et al. 2013). In this context, antioxidant enzymatic and non-enzymatic 
compounds play critical function in detoxifying ROS induced by salinity stress. Biosynthesis and/or 
accumulation of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) is believed to positively 
reduce the salinity stress (Asada 1999, Gupta et al. 2005). SOD commences the process of ROS 
detoxification by converting super oxide to hydrogen peroxide (Alscher et al. 2002, Hernandez et al. 2009, 
Jalali-e-Emam et al. 2011) this hydrogen peroxide further convert into oxygen and water to remove the 
peroxide in plants due action of CAT (Ho et al. 1998). Similar results are also demonstrated by Nounjan et 

al. (2012) on rice and Manivannan et al. (2007) on mung bean. APX antioxidant activity is increased with 
the increase of NaCl concentration, in all the plants species under salt which was supported by (Turan & 
Tripathy 2013) and (Weisany et al. 2012) on soybean plant but Ozturk et al. (2012) reported the reduction in 
APX activity in pea plant. APX play a key role in the conversion of H2O2 into H2O, using ascorbate as a 
specific electron donor (Caverzan et al. 2012, Hossain & Fujita 2013). Salt stress has a significant effect on 
POD activity. Almost all the plants exhibited increasing response in POD activity under salinity stress which 
were reported by Sajjad et al. (2012) in rape cultivars, Weisany et al. (2012) in soybean and Shaheen (2013) 
in eggplant. It is believed that, peroxidase in cytosol and peroxisomes efficiently eliminate H2O2 found 
outside the chloroplast (Asada 1992) (Fig. 9). 

 
Figure 9.  Antioxidant regulation in salt stress alleviation.  

Ascorbic acid: Ascorbic acid (Vitamin C) also known as ascorbate (AsA) is one of the most important 
antioxidant in plant which is manufactured in cytosol of higher plants by conversion of d-glucose. Besides 
assists in numerous physiological developments including growth, differentiation and metabolism in plants, 
AsA significantly eliminates free radicals, thus lessening the impairment caused by oxidative stress 
(Shigeoka et al. 2002, Foyer 2004, Foyer & Noctor 2005a, 2005b). AsA further assists in membrane 
protection (Li & Jin 2007) and also acts a co-factor of violaxanthin de-epoxidase, thereby supports in 
dissipation of excess excitation energy (Pource et al. 2007). Several studies found an elevation level of AsA 
content in the leaves of stressed plants over control (Panda & Upadhyay 2004, Parida et al. 2004, Agarwal & 
Shaheen 2007, Mohamed et al. 2010). AsA induced enhancement in the growth of salt-stressed plants 
coupled with an increase in CAT, POD and SOD activities (Munir & Aftab 2011). Exogenous application of 
AsA facilitates many enzyme activities and decreases the injury caused by oxidative processes (Shalata & 
Neumann 2001, Athar et al. 2008). Tomato seedling treated with exogenous AsA helps to reduce lipid 
peroxidation thus recovers plants from salt stress (Shalata & Neumann 2001). Later on Hamada & Al-
Hakimi (2009) stated the role of exogenous application of AsA in countering the inverse effects of salt stress 
on membrane integrity, pigments biosynthesis and net photosynthetic rate in sun flower plants. However, 
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salt-induced drop in leaf Chl a and b concentrations in chili was enhanced with AsA pre-treatment (Khafagy 
et al. 2009).  A study by Azzedine et al. (2011) described that the exogenous application of AsA was helpful 
to alleviate the negative effect of salt stress on plant growth by increasing leaf area, enriching Chlorophyll 
and Carotene contents, boosting Pro accumulation and declining H2O2 content. 

Glutathione: Glutathione (GSH) is another strong antioxidant documented in plants which counteracts the 
damage of principal cellular components due to ROS generation (Pompella et al. 2003). GSH also defends 
proteins from denaturation and function as a substrate for glutathione peroxidase (GPX) and glutathione-S-
transferases (GST), which regulates in the removal of ROS (Noctor et al. 2002). It also contributes in 
regeneration of ascorbate via. ascorbate-glutathione cycle (Foyer et al. 1997). A study by Aly-Salama & Al-
Mutawa (2009) reported that exogenous application of glutathione helped to maintain plasma membrane 
permeability and cell viability under salt stress in onion. Combind application of glutathione and ascorbate 
assists in increasing morphological parameters, antioxidant activity and mineral ion content while exposed to 
salinized environment (Rawia et al. 2011). 

Tocopherols: Tocopherols are amphiphilic antioxidants belong to the family of vitamin E also found in plants 
in stress mitigation. Tocopherols are known to reduce the ROS levels in photosynthetic membranes and 
restricts the extent of lipid peroxidation thru decreasing lipid peroxyl radicals (LOO•) (Maeda et al. 2005, 
Munné-Bosch 2005). Rady et al. (2011) demonstrated that exogenous α-tochopherol application enhanced 
total soluble sugars content and the activities of CAT, POX, PPO and PAL under salt stress. Pre-treatment 
with α-tochopherol  also  enriched  the  mineral  nutrient  content  in  the  plant  with  simultaneous increase 
in Pro, total phenols and free amino acids. Application of α-tocopherol helps to reduce salt-induced leaf 
senescence by decreasing the Na+ and Cl– content and increasing the K+, Ca2+ and Mg2+ contents (Farouk  
2011). In addition, tocopherols involve in ROS, antioxidants, and phytohormones mediated signaling 
network thereby maintain cellular signaling in plants (Munné-Bosch 2007). 

Roles of polyamines in salinity tolerance 

Polyamines (PAs) are small and poly cationic aliphatic molecules with low molecular weight found in entire 
the plant kingdom. Besides its functions in normal growth and development, dormancy breaking and 
germination, improvement of flowers and fruits, and senescence (Galston et al. 1997, Panicot et al. 2002, Knott 
et al. 2007, Gupta et al. 2013a). PAs are related with stress tolerance in plants (Yang et al. 2007, Groppa & 
Benavides 2008, Gupta et al. 2013b). The most familiar and documented PAs within the plants are diamine 
putrescine (PUT), triamine spermidine (SPD) and tetra-amine spermine (SPM) (Martin-Tanguy 2001, 
Kuznetsov & Shevyakova 2007, Alcazar et al. 2006, 2010a, 2010b, Hussain et al. 2011, Shu et al. 2012). 
Among them, PUT is the smallest PAs and is originated from either ornithine or arginine with the assistance of 
ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) enzyme respectively (Gupta et al. 2013b, 
Hasanuzzaman et al. 2014). The triamine SPD and tetramine SPM are produced by successive addition of amino 
propyl group with PUT and SPD, respectively, which is catalyzed by spermidine synthase (SPDS) and spermine 
synthase (SPMS) (Fluhr et al. 1996, Alcazar et al. 2006). The significant roles of PAs have been documented 
with alteration of gene expression for the biosynthesis and/or accumulation of osmotically active solutes, 
maintenance of membrane integrity, better photosynthetic efficiency, drop in ROS generation and accumulation 
of Na+ and Cl− ion in different organs (Navakoudis et al. 2003, Roy et al. 2005, Tisi et al. 2008, Duan et al. 
2008, Afzal et al. 2009, Roychoudhury et al. 2011) in salinized environment. Recently several studies have been 
stated that PAs functions as cellular signals associated with ABA hormonal pathways (Alcazar et al. 2010a, 
2010b, Gill & Tuteja 2010). Tun et al. (2006) reported that, PAs like SPM and SPD are related to potent 
inducers of NO, which is acknowledged as another potent signaling molecule in plants. 

Moreover, exogenous application of PAs has been discovered to boosts the level of endogenous polyamine 
during stress. It has been reported by Duan et al. (2008) and Liu et al. (2006) that, exogenous treatment of PAs 
improves salt-induced fall in photosynthetic efficacy though their effect is soundly associated with both 
concentration and strength of stress levels. Amri et al. (2011) presented that; application of exogenous PAs with 
different concentrations may assist to alleviate the detrimental effects of salt stress on growth and development 
of pomegranate. Exogenous Put significantly reduced the Na+ and Cl– accumulation in shoots and roots, 
membrane damage and enhanced RWC, pigments content thus photosynthetic rate in salt-treated Citrus 

aurantium L. (Sharma et al. 2011). Exogenous SPD to nutrient solution resulted in improvement of the salt-
induced growth reduction, membrane injury, photosynthesis inhibition, simultaneously with an escalation in 
endogenous PAs, Pro, and boost up antioxidant enzyme activities in the roots of saffron (Duan et al. 2008).    
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Roles of signaling molecules in Salinity Tolerance  

Nitric oxide: Nitric oxide (NO) is a volatile gaseous signaling molecule, is concerned with the seed 
germination, growth and development, respiration, flowering, cell death, and stress response (Delledonne et 

al. 1998, Lamattina et al. 2003, Crawford 2006, Besson-Bard et al. 2008, Zhao et al. 2009). Bajgu (2014) 
recently demonstrated that NO inhibits lipid peroxidation by countering with lipid radicals and improves the 
action of antioxidant enzymes. Another important role of NO is related to regulation of plasma membrane 
H+-ATPase that creates an H+ gradient, bestowing the force for Na+/H+ exchange which influences K+ and 
Na+ homeostasis (Crawford 2006, Zhang et al. 2006a). Supplementation of exogenous of NO plays a 
significant roles in stress alleviation (Hossain et al.  2010, Sung & Hong 2010, Xiong et al. 2010) that have 
been associated to improved antioxidant activities, repression of lipid peroxidation (Zhao et al. 2004)  and 
modulation of ROS detoxification system (Mishra et al. 2011). 

Hydorgen peroxide: Earlier hydorgen peroxide (H2O2) is considered as ROS which is unwanted but 
unavoidable by-product under stress. But a recent study by Rhee (2006) has publicized its crucial role as 
redox signaling molecule in maintaining of normal growth and developmental processes, comprising with 
oxidative stress and therefore it has been well-known as an indispensible evil for cell signaling. H2O2 

functions in stress signals transduction (Hung et al. 2005, Hernandez et al. 2009) and association within 
H2O2 and signaling networks has been significantly recognized for numerous stress responses (Larkindale & 
Knight 2002, Apel & Hirt 2004, Cheeseman 2007). Exogenous application of H2O2 improves the membrane 
properties and minimum altered in ion leakage pattern in compared to controls. Recent studies have revealed 
that pre-treatment with exogenous H2O2 counteract abiotic stress by maintaining leaf water relations, 
reducing peroxidation of membrane lipids, increasing stomatal conductance (gs) thus photosynthetic 
efficiency and improving the activities of antioxidant enzymes (Azevedo Neto et al. 2005, Wahid et al. 
2007).  In addition, it is believed that H2O2 pre-treatment reduces Na+ and Cl– content accrued by salinity 
and maintains greater tissue K+ and Ca2+ thus develops higher  K+/Na+ ratio. However further research are 
required for better understanding about this field. 

Hormone regulation of salinity tolerance  

Abscisic acid: Abscisic acid (ABA) is one of the most essential phytohormone that plays a significant roles in 
many physiological processes associated with germination, growth and development, regulation of stomatal 
movement, biosynthesis of storage proteins and lipids and leaf senescence (Tuteja 2007). Besides, one of the 
major functions of ABA is in response to various abiotic stresses, stress signaling and osmotic stress 
tolerance. Upon subject to salt stress, plants show a proportional rise in ABA concentration due to water 
deficiency rather than ionic toxicity (Zhang et al. 2006b). A several studies demonstrated that synthesis of 
endogenous ABA in root xylem is associated with decrease leaves conductance after transported to leaves 
thus restricts of leaf growth (Jaschke et al. 1997, Cramer & Quarrie 2002, Cabot et al. 2009, Atkinson & 
Urwin 2012, Babu et al. 2012). On the other hand, ABA functions as a cellular signal that regulates the 
expression of a number of salt and water deficit-responsive genes. The biosynthesis and/or accumulation of 
ABA mitigates the negative effect of salinity on photosynthesis, assimilates translocation and thus growth 
(Popova et al. 1995, Jaschke et al. 1997). Gurmani et al. (2011) reported that the supplementation of ABA to 
Oryza sativa cv. IR-6 (rice) has an important role in alleviating salinity stress. ABA in roots assists to 
decrease Na+ and Cl– ion concentrations by accumulating in vacuoles, increase K+ and Ca2+, Pro 
accumulation and soluble sugar content which is crucial for adaptation under salinized environment (Jaschke 
et al. 1997, Chen et al. 2001, Gurmani et al. 2011). ABA also plays an important role in improving of xylem 
water potential as well as water uptake to the plant during salinity (Fricke et al. 2004).  

Indole Acetic Acid: Besides functioning in various physiological and biochemical processes, indole acetic acid 
(IAA) also helps in decreasing salt-mediated injuries though there are very few reports regarding this event. 
Gulnaz et al. (1999) demonstrated that, salt-induced reduction in wheat seed germination is recovered by 
IAA treatment. Later on Akhiyarova et al. (2005) stated that IAA assists in formation of an attraction signal 
in the growth zone of leaf in response to saline stress. Exogenous application of auxin has been found to 
increase in plant morphological attributes in salt-stressed plant (Akbari et al. 2007). Foliar application with 
IAA counteracted the salt-induced negative effects by increasing essential inorganic nutrients accumulation 
and maintaining membrane permeability (Kaya et al. 2009). Kaya et al. (2009) also demonstrated an 
increase in chlorophyll, RWC content and decrease Na+ concentration, electrolyte leakage while treated with 
exogenous IAA. 
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Gibberellic acids: Gibberellic acids (GAs) play an important role in seed germination, leaf expansion, stem 
elongation and flowering (Magome et al. 2004, Kim & Park 2008) thus in growth and development of 
plants. Besides their crucial use in several physiological and biochemical processes, they are well-recognized 
phytohormones in alleviating salinity (Kaya et al. 2009). Salt stress impairs the seed germination processes 
and reduces the growth and grain yield of wheat which is progressed by application of GA3 (Kumar & Singh 
1996). Exogenous application of GA3 is reported to decrease the inhibitory effect of salt stress on growth 
traits, increase in   photosynthetic pigments, RWC and enzymatic activity (Ali et al. 2011). Hamayun et al. 
(2010) observed the positive effect of exogenous GA3 on salt-stressed soybean plant by boosting up the level 
of phytohormones, growth and development. Recent studies have shown exogenous application of GA3 
lessened the negative effects of NaCl-induced salinity by enhancing RWC, Chl content and counteracting the 
electrolyte leakage (Ahmad et al. 2009), regulating the ions uptake, ion partitioning and hormones 
homeostasis (Iqbal & Ashraf 2013), lowering stomatal resistance and increasing plant water relationships 
(Maggio et al. 2010). Lipid peroxidation is indispensible in salt stress counteracting by application of GA3 
thus shows improve resistance to salinity (Ahmad et al. 2009). 

Jasmonic acid: Jasmonic acid (JA) and its methyl esters are crucial cellular regulators included in varied 
physiological and developmental processes, like germination, root growth, fertility, stomatal regulation, fruit 
ripening and senescence (Wasternack & Hause 2002, Cheong & Choi 2003, Hossain et al. 2011b). Rohwer 
& Erwin (2008) stated the positive role of JA in plant responses to abiotic stresses; however, the role of most 
of the derivatives of JA is still unclear. There are little reports on the function of exogenous JA in plant 
response to NaCl salt stress. JA pre-treatments assist in the synthesis of abundant proteins (Known as JIPs) 
in response to abiotic stress alleviation and/or tolerance (Sembdner & Parthier 1993). MeJA (methylated 
ester of JA) supports protection in stress by osmoregulation and enhanced Pro accumulation (Fedina & 
Tsonev 1997). Exogenous application of JA on salt treated plants regulates the balance of endogenous 
hormones such as ABA (Kang et al. 2005), GAs (Seo et al. 2005) which grant significant protection 
mechanisms under salinized environment.  

Salicylic acid: Salicylic acid (SA) is a plant-derived phenolic compound that performs a significant role in plant 
growth and development alone with the response to abiotic stresses (El-Tayeb 2005, Ahmad et al. 2011, 
Fragnière et al. 2011, Tahjib-Ul-Arif et al. 2018). El-Tayeb (2005) found increased synthesis of Chl and 
carotene (Car), and maintained membrane integrity to barley with SA pre-treatment leading to the 
development of plant growth.  Several studies have demonstrated that SA improves salinity tolerance by 
restoring membrane potential and checking salt-induced K+ loss (Jayakannan et al. 2013), accumulating of 
K+, and soluble sugars in roots (El-Tayeb 2005). SA treatment showed improved growth, lessened lipid 
peroxidation and membrane permeability in maize (Gunes et al. 2007), minimized leaf Na+, Cl−, and H2O2 
content with increased photosynthesis in mungbean (Nazar et al. 2011) and lntil (Stevens et al. 2006, Poór et 

al. 2011), enhanced grain yield in wheat (Arfan et al. 2007) under salinized condition. SA application 
triggers the accumulation of ABA and IAA, assists in the development of anti-stress programs in wheat 
seedlings thus, accelerates growth and developmental processes (Sakhabutdinova et al. 2003). Gémes et al. 
(2011) reported SA-induced generation of H2O2 and NO are believed to assist in cross-tolerance to various 
stressors. Exogenous application of SA decreased the NaCl-induced electrolyte leakage and showed adaptive 
responses in alfaalfa plant under salt stress (Torabian 2011). Moreover, Yusuf et al. (2012) observed SA 
induced antioxidant activities (SOD, CAT and POX) in mustard which might be accountable for improved 
tolerance of mustard to NaCl stress. 

Brassinosteroids: Brassinosteroids (BRs) is one of the most recent groups of phytohormones act as a strong 
growth inducer and stress response aid (Anuradha & Rao 2001, Krishna 2003, Ashraf et al. 2010, El-
Mashad & Mohamed 2012). Anuradha & Rao (2001) reported that BRs plays an important role in activation 
of seedling growth and development (Clouse & Sasse 1998) under salt stress which was related with 
increased levels of nucleic acids and soluble proteins. Several studies have revealed the prospective 
application of BRs in agriculture to improve yield and regulate crop growth under stress (Houimli et al. 
2010, Hayat & Ahmad 2011, El-Mashad & Mohamed 2012). Exogenous BR application increases the fresh 
and dry weight of plant (Houimli et al. 2010), enhances plant biomass in wheat (Shahbaz & Ashraf 2007), 
and alleviates the injurious effect on nuclei and chloroplasts (Krishna 2003). Foliar application of BRs assist 
to overcome the adverse effect of salinity on photosynthetic pigments, crop productivity thus increased yield 
attributes in wheat (Eleiwa et al. 2011), increase  the concentration and total uptake of nutrients (N, P, K, 
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Fe, Mn, Zn and Cu) in straw and grains (Eleiwa & Ibrahim 2011). Later on, El-Mashad & Mohamed (2012) 
demonstrated that foliar spray of BR (0.05 ppm) alleviated salt stress by b activities of enzymatic and non-
enzymatic antioxidants. 

Application of macromolecules in salt stress tolerance 

In the recent era scientist have been showing much interest to demonstrate the positive role of Ca in 
alleviating the adverse effect of NaCl-induced salt stress (Roy et al. 2019). Application of Ca plays a part in the 
regulatory mechanisms that activate the plants adapt to adverse salinized condition by improving RWC plants. 
Ca treatment increases the photosynthetic capacity by rehabilitating the photosynthetic pigments, reduces the 
oxidative damage through regulating the antioxidant defense mechanism and Pro biosynthesis (Parvin et al. 
2015, Roy et al. 2019). 

Trace elements in salt stress mitigation 

Selenium: During the last two decades several studies documented the positive effect of selenium (Se) on plant 
growth, development and productivity at low concentrations (Turakainen et al. 2004, Hasanuzzaman & 
Fujita 2012a, Hasanuzzaman et al. 2012b) alone with resistance to certain abiotic stresses (Cartes et al. 
2010, Chu et al. 2010, Djanaguiraman et al. 2010, Hasanuzzaman et al. 2010b). Exogenous application of 
Se counteract the inimical effect of salt stress by regulating the SOD  and  POD  activity when applied to a 
concentrations ranging 1–5  mM  (Terry  et  al. 2000), enhancing Pro content (Djanaguiraman et al. 2005), 
reducing NaCl-induced  lipid peroxidation (Walaa  et  al. 2010). 

Silicon:A few evidences have been documented about the positive role of silicon (Si) to counteract the salt 
stress. Kim et al. (2014) Showed that (Si) application to rice root zone prompted the hormonal and 
antioxidant responses thus significantly increased rice plant growth under salinity stress.  

CONCLUSIONS  

Based on a profuse research findings, it is obvious that salt stress has detrimental effects on the physiological 
and biochemical processes associated with growth, development, the yield of plants. Counteracting the negative 
effect of salinity involves a complex of responses at the cellular, molecular, metabolic, physiological as well as 
whole plant levels. Plentiful research on cellular, metabolic and physiological strategies regulation demonstrated 
the positive role against salt stress tolerance and/or adaptation by controlling ion uptake, transport and balance, 
improving osmotic regulation, hormone metabolism, antioxidant enzymatic activity, and stress signaling. 
Further experiments are needed to launch for better understanding of the underlying mechanisms in salt stress 
mitigation.  
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