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With the increasing popularization and development of WiFi devices, nowadaysWiFi-based indoor localization has become a hot
topic. TraditionalWi-Fi-based localization technologies which utilize received signal strength indication sufer from indoormulti-
path efects and result in localization performance degradation. Terefore, choosing the appropriate characteristic of the WiFi
signal is crucial for indoor localization. To improve the localization accuracy, we propose PLAP, a passive localization method
using amplitude and phase of channel state information (CSI). Specifcally, Hampel flter is used to process the amplitude signals
and linear transformation is employed for calibrating phases. To extract representative features from calibrated amplitude
and phase signals, we developed a deep learning framework which combines a convolutional neural network (CNN) and a bi-
directional Gated recurrent unit (BGRU) to estimate the location of an objective.Te experimental results show that the proposed
PLAP outperforms other baselines with real-world evaluation.

1. Introduction

Nowadays, indoor localization [1, 2] has been widely used in
many applications, like searching and rescuing people alive
in the earthquake [3], detection for mining safety, battlefeld
military applications, patient monitoring, and intrusion
detection [4, 5], and so on [6–8]. A wearable sensor based
localization technique has been proposed and has shown
decent performance for indoor localization. However, it is
not convenient to equip objectives with sensors in certain
scenarios. In contrast, device-free passive localization
methods can detect objectives without attaching any device
to them. Although camera-based localization has shown its
success in high localization accuracy, it can only work well
under line-of-sight (LOS) environments. At the same time,
several indoor localization technologies based on diferent
devices have been proposed, like Ultrawide Band, Infrared
Ray, and so on. However, Ultrawide Band requires to equip
expensive equipment. Infrared Ray sufers from short
transmission distance, and a large number of sensors need to
be deployed, resulting in high hardware cost requirements
[9].

As we all know, WiFi networks [10] have been ubiq-
uitous indoors. By catching the diferences of wireless links
under the infuence of targets, the researchers have realized
the passive location recognition of moving targets. WiFi-
based indoor localization can deal with the disadvantages of
the aforementioned methods with commercial of-the-shelf
devices. Te basic theory behind WiFi-based localization is
that the movements of objects will introduce refection and
refraction of wireless signals during transmission [11]. By
establishing the nonlinear mapping relationship between the
coordinates of locations and fngerprint signals, we can
predict the target positions. Nowadays, WiFi network in-
terface cards (NICs) make the extraction of CSI convenient
in practical applications [12]. CSI is robust when faced with
the changes of temperature, brightness, noise, and so on.
Tus, utilizing CSI to realize behavior recognition and in-
door localization has gained more attention from
researchers.

Although CSI has been successfully used on various
occasions, in most cases only the amplitude signals of
channel frequency response are considered, and insufcient
attention is paid to phase information. However, phase
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measurements also involve important information of re-
fected signals. Under nonline-of-sight (NLOS) transmis-
sion, the amplitude measurements will show higher
randomness due to typically involving richer refection,
difraction, and refraction efects [13]. On the contrary,
phase measurements change periodically over propagation
distances, which is more robust. Terefore, amplitude sig-
nals cannot fully refect the infected CSI changes of the
target. Te phase information of the wireless link also in-
cludes useful information in the channel response. Tus,
using both phase information and amplitude information
for positioning can make the information richer and more
robust. However, it is infeasible to directly use the raw phase
information for localization since the raw phase information
contains many diferent random errors and changes peri-
odically over propagation distances. To deal with these is-
sues, we propose PLAP, an indoor passive localization
method by considering both amplitude and phase infor-
mation. To be specifc, the proposed PLAP employed the
linear transformation to calibrate the phase measurements
for localization. Moreover, in order to learn informative
features from the amplitude and calibrated phase mea-
surements, we developed a deep learning framework that
combines convolutional neural networks (CNN) and bidi-
rectional Gated recurrent unit (BGRU) to consider both
spatial and temporal correlation over the CSI measurements.
Firstly, CNN is employed to extract spatial correlations over
the amplitude and phase measurements. Secondly, current
LSTM-based models only consider the past measurements
for prediction, while the future measurements also include
important information for localization. Terefore, we used
BGRU to learn representative temporal correlation features
in two directions from the sequential amplitude and phase
measurements by considering both past and future ampli-
tude and phase information.

Te main contributions of this paper are summarized as
follows:

(1) To make full use of CSI data and realize robust lo-
calization, we employed both phase and amplitude
information for localization. Besides; for amplitude,
we use the Hampel flter to flter the recorded am-
plitude information to remove outliers; while the
phase information is unwound by a linear trans-
formation, and the error linear function of band
ofset is constructed to obtain the calibrated phase
information.

(2) We proposed a deep learning model, CNN-BGRU,
to learn both spatial and temporal representative
features from amplitude and phase information. Te
proposed CNN-BGRU model consists of four
modules: CSI data integration and reconstruction
module, spatial feature learning module using CNN,
time-series feature learning module using BGRU,
and output prediction module for location estima-
tion based on amplitude and phase information.

(3) We implement the PLAP system with a desktop and
a router (TP-LINK WDR6500). We verify the

feasibility of the PLAP by carrying out extensive
experiments in three diferent typical indoor envi-
ronments. By revising the driver of 5300 NIC, we
obtained the original amplitude and phase
information.

Te rest of this paper is organized as follows: Te related
studies are provided in Section 2. Section 3 designs and
establishes the localization system; Section 4 describes the
data preparation; Section 5 details the proposed CNN-
BGRU localization model, and Section 6 describes experi-
ments and analysis. At last, in Section 7, we summarize the
work.

2. Related Work

WiFi-based indoor localization is mainly divided into
model-based and fngerprint-based [14]. Te model-based
methods utilize geometrical methods to measure the dis-
tances of several known access points (APs), while the
fngerprint-based ones utilize the received signal that has
pattern diferences in diferent positions for indoor locali-
zation. Model-based localization methods including the
centroid determination method [15], AOA, and TOA [16].

Compared to model-based approaches, the methods
based on fngerprint roundly refect signal propagation in
both LOS and NLOS paths. Tese approaches consider the
fact that the propagation of multi-path at each position is
unique. Because it is readily implemented with hardware,
RSS is widely used in the previous fngerprinting positioning
system. Radar [17] is the 1-st fngerprinting system, which
adopts a deterministic algorithm based on RSS. Horus [18]
achieves better localization accuracy than Radar, which also
utilizes RSS. Unfortunately, the RSS values change signif-
cantly over time because of the multipath fading and
shadows efect.Te error of fngerprint localization based on
RSS is up to 10 dB, which leads to lower accuracy [19].
Terefore, RSS-based fngerprints sufer from poor posi-
tioning performance [20].

Diferent from RSS, CSI could provide richer informa-
tion of subcarriers, which can be helpful for indoor local-
ization. For the past few years, a lot of studies on CSI-based
indoor localization have been presented. Jin’s team [21]
utilizes approximated channel impulse response amplitudes
vectors as the fngerprints. PinLoc scheme of utilizing the
CSI amplitude signals to carry on indoor localization ex-
periments is feasible in diferent scenes [22]. Zhou’s team
raised an equipment-independent algorithm using CSI,
which uses SVM to convert the localization problem to a
regression task [23]. Tis method establishes a nonlinear
mapping relation between the CSI fngerprints and the
target’s locations, which can estimate the target position
according to the corresponding CSI fngerprint. In [24], a
localization method based on the mixture of CSI and RSS is
raised, which has better location accuracy than the location
method using CSI or RSS alone. Later, Wang et al. designed
an autoencoder network, automatically learn diferentiated
features from wireless signals, and then fused these features
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into a machine learning framework based on softmax
function to achieve localization and gesture recognition [25].

In the FIFS scheme, the CSI value is optimized by the
weight of multiple antennas to improve the positioning
accuracy [12]. Deep-Fi [26] is a scheme for indoor locali-
zation using deep learning, it can exploit the characteristics
of CSI amplitude measurements in all antennas. Phase-Fi
[27] proposed a deep learning indoor location method to
calibrate the phase information of CSI. Tis method extracts
phase information from multiple antennas and multiple
subcarriers from NIC, which could extract useful phase
information from diferent channels. However, the data of
CSI is easily afected by environmental changes, so how to
achieve localization with high precision and robustness is
still a challenge.

3. Preliminaries and the Proposed
System Architecture

In this section, the introduction of Channel State Infor-
mation and the framework of the proposed PLAP are
presented.

3.1. Channel State Information. MIMO-OFDM is widely
used for wireless communication systems to mitigate the
efects of the multipath efect. At present, it is simple to
acquire fne-grained physical layer information of the
transmitter and receiver through wireless network cards
which support IEEE 802.11n standards. Te signals of CSI
can provide both amplitude and phase information of
multicarriers.

In the paper, we use 2.4GHz band WiFi signals. We
establish the channel model of the OFDM system below the
mode of 20MHz, it can be expressed as follows:

B � CSI•A + M, (1)

where M is the Gaussian-noise, B and A denote received and
transmitted signals matrix, and CSI represents the CFR. CSIi
denotes the i-th subcarrier’s CFR

CSIi � CSIi


 exp j∠CSIi, (2)

where |CSIi| and ∠CSIi are the CRFs of amplitude and phase
with the i-th subcarrier. In the proposed positioning system,
we extract 30 subcarriers from the OFDM system, which
have the measurements of the amplitude and phase. Nev-
ertheless, the original phase changes periodically and is
difcult to meet the requirements of indoor localization.
Terefore, we use the calibrated phase together with pre-
processed amplitude to form the fngerprint of the target
location.

3.2. System Architecture. Te architecture of the proposed
PLAP localization system is presented in Figure 1. As shown
in Figure 1, without attaching any device to the objectives,
the proposed system only utilizes a desktop computer acted
as the receiver and a TL-WDR6500 as the transmitter. Te

whole system is divided into two parts: the ofine stage and
the online stage.

In the ofine stage, the amplitude and phase information
is collected and the radio map is built. Te amplitude and
phase of CSI information were extracted and preprocessed
by Hample fltering and linear transformation, respectively.
After the calibration of amplitude and phase, we employ the
fusion of the them as a new “fngerprint” for passive indoor
positioning. Next, a CNN-BGRU model is trained to esti-
mate the location of objects and calibrated amplitude and
phase based on the training dataset. Ten, we will give the
details of each part in the following sections.

4. Data Collection and Sanitization

Assume that there are o reference positions
Pc � (xc, yc)(c � 1, 2, 3, . . . , o) in the experimental envi-
ronment. Te radio map consists of the CSI amplitude and
phase information and the corresponding coordinate of each
training point. S � Pc, ξ

d
c ,ωd

c . ξdc and ωd
c are the amplitude

information and phase measuring of the points, respectively.
Besides, d� 0, 1, 2 are the indexing number of each antenna.
Te calibration of amplitude and phase are conducted as
follows.

4.1. Amplitude Denoising. CSI amplitudes refect CFRs with
multipath efects and fades of channels. To better refect the
real amplitude characteristics and reduce the infuence of the
noise inherent in the dynamic environment and equipment,
as well as accelerate the ftting efect of the neural network, it
is necessary to conduct the preprocessing operation of the
CSI acquisition signal. Figure 2 shows amplitude signals
from all antennas in one environment.

Firstly, we can see from Figure 2 that the attenuation of
the amplitude generated by diferent paths is diferent.
Terefore, the amplitude on a single antenna does not ad-
equately refect the location characteristics. Tus, this paper
utilizes three antennas including 90 subcarriers, which could
vastly increase the discrimination of each location point,
resulting in higher localization accuracy. Besides, it can be
seen from the fgure that there are outliers in amplitude
measurements, as a result, the raw amplitude measurements
is unable to estimate the target position information ef-
fectively. Tus, it is necessary to flter and eliminate the
outliers.

To detect and remove outliers, we preprocess the am-
plitude with the four most widely used fltering algorithms,
i.e., Hampel flter, Butterworth flter, discrete wavelet
transform (DWT), and low-pass flter. Figure 3 shows the
raw amplitude information of 1000 packets of amplitude.
Figures 4–7 describe the fltered amplitude data using the
Hampel flter, Butterworth flter, DWT, and low-pass flter,
respectively. As shown in these fgures, the preprocessed
amplitude data is relatively stable with the Hampel fltering
algorithm, demonstrating that the Hampel fltering algo-
rithm has a better efect on eliminating the environmental
noise which afects the positioning accuracy. Terefore, we
choose Hampel as the preprocessing algorithm for
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amplitude measurements. Hampel identifer algorithm
works on a sliding window, which chooses some values in
ρ − zδ, ρ + zδ as outliers, where ρ and δ denote midvalue
and midabsolute deviation of observed values. z denotes
multiples of the standard deviation [28]. Te absolute value

of the median for all elements was used to estimate the
standard deviation of the median of each sample pair. If a
sample difers from the median by more than three standard
deviations, the sample is replaced by the median. More
details of the Hampel flter could be found in [29]. In our
case, according to the experimental analysis, the observation
window’s size is chosen as 100 and z as 3.

We pre-processed amplitude information ξdc with
Hampel flter then produce denoised amplitude information
Ac, which efectively describes the characteristics for each

Rx
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Phase Extraction
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Deep Learning Network

Fingerprint Database

Localization
Algorithm

Estimated
Location

Figure 1: Te architecture of the PLAP system.
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location and then updates the fngerprint database
Ac⟶ ξdc .

4.2. Phase Sanitization. Although CSI phase information
can be easily obtained from the Intel 5300 network card, the
raw phase information can not be used directly for indoor
localization. With both carrier and sampling frequency
ofset, useful information are easily covered in phase mea-
surements. Figure 8 shows that the individual subcarriers of
measured phases are shifted during the acquisition process.
Tus, frstly we need to make the phase information useful
for localization. To this end, we present an efective approach
of linear transformation to correct phases and reduce

random phase shifts. Let ∠θi represent a measured phase of
the i-th sub-carrier.

∠θi � ∠θi − 2π
mi

N
φ + β + Z, (3)

where ∠θi is the real phase, mi is the sub-carrier index of the i

-th sub-carrier (ranging from −28 to 28), φ denotes the
timing ofset, β denotes phase ofset, and Z denotes mea-
surement noise. N � 64 is the size of the FFT in IEEE
802.11n [30].

Te proposed linear transformation can be separated
into two periods. Te frst period shows the linear
straightening, in which the phases are calculated by un-
winding the raw phases. In the second period, the unwinding
phase values are subtracted from the defned linear error
function to obtain the calibrated phase. Figure 9 plots the
phase values after CSI unwinding of the three antennas of
the receiver. It can be seen that the response of various
antenna channel frequencies has a great diference, and with
the increase of the number index, the phases of diferent
antennas all gradually decrease. It is shown that unwinding
calculation can eliminate the periodicity of the raw phase
and enhance the discrimination degree of the phase data.

Removing the time deviation (φ) and phase deviation
(β) is crucial for phase correction. First, a rake ratio of a and
the deviation of b are defned as follows:

a �
∠θn − ∠θ0
mn − m0

�
∠θ29 − ∠θ0
m29 − m0

−
2π
N

φ,

b �
1

n + 1


n

j�0
∠θj

�
1

n + 1


n

j�0
∠θj −

2π
(n + 1)N

φ
n

j�0
mj + β.

(4)

Since the subcarrier frequency is symmetric in IEEE
802.11n standard, the sum of the index numbers of the
subcarriers is 0, so 

n
j�0 mj � 0. Tus, we can present b as

b � (1/n + 1)∠
n
j�0 θj + β. To obtain the calibrated phase,

the raw phase is subtracted from the linear part, which is
expressed as ∠θi (where small measurement noise Z is ig-
nored).Te detailed processing of phase calibration is shown
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in Table 1. Figure 10 shows the calibrated phases in diferent
antennas. Te positioning features of the localization
target also have signifcant diferentiation in each antenna.
In addition, Figure 11 shows the measured (denoted by ×)
and the phase values (denoted by ∗ ) about polar coordi-
nates for 150 packages of CSI for the 8-th sub-carrier. Raw
phase value scatters randomly between 0° and 360°. Due to its
randomness, the raw phase can’t be used directly for indoor
positioning. Te calibration phases are specifc linear con-
version of the phase of each subcarrier on the same antenna,
efectively preventing the phase jump and making it con-
centrated in a certain small sector (330°-0°). Terefore, the
phase shift can be eliminated by a linear transformation, and
the calibrated phase is helpful to improve the indoor lo-
calization accuracy.

By using a linear transformation algorithm, we can
calibrate phase information ωd

c and generate calibrated
phase information Xc. Xc can efectively refect the char-
acteristics of diferent locations under the NLOS path, which
leads to a better understanding of complex radio propa-
gation environment and then update the fngerprint data-
base Xc⟶ ωd

c . A new two-dimensional array consisting of
Xc and Ac is used as the input layer of the proposed

localization model CNN-BGRU. 90 subcarriers can be
gathered by each antenna of the 5300 cards, so the data’s
dimension is o × p × 2 × 90. o represents the number of
reference positions, p represents the number of packets
collected.

5. Proposed CNN-BGRU Positioning Model

Temain idea of the positioning framework based on CNN-
BGRU is to extract and learn multidimensional features
from the relevant characteristics of the CSI data to form a
compound network model. Its positioning framework is
shown in Figure 12. Te whole is composed of three parts,
namely, the spatial feature learning module, time-series
feature learning module, and output prediction module.

5.1. Spatial Feature Learning Module. Since CNN can show
good advantages in the learning of spatial features, it has the
advantages of weight sharing network structure, reducing
the complexity of the network model and the number of
weights. We employed CNN as the feature extractor to learn
the spatial features in each time domain of amplitude and
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Table 1: Phase-calibration.

Input: measured phase vectors ω;
Process:
(1) Set T as the same size of ω;
(2) Set X as the same size of ω;
(3) Set bias � 0, k � 0, b � 0;
(4) Set m� [−28, −26, −24, −22, −20, −18, −16, −14, −12, −10, −8, −6, −4, −2, −1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28];
(5) Set T0 � ω0;
(6) for j � 1 : 29 do

if ωj − ωj−1 > π do
bias � bias+ 1;

end if
Tj �ωj − 2 ∗ bias∗ π;
end for;

(7) Set k � T29 − T0/m29 − m0;
Set b � sumT/30;
for j � 0 : 29 do

Xj � Tj − k∗ mj − b;
end for

Output: Calibrated phase values of X
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phase measurements. Te architecture of the used CNN is
shown in Table 2.Te learned spatial features of CNN are fed
into the BGRU for further temporal feature learning.

5.2. Temporal Feature Learning Module. BGRU is used to
learn the time-related features of CSI and the measurements
at diferent time steps x1, x2, · · ·, xt. Owing to the sequential
modeling capability, long short-term memory (LSTM) has
been successfully applied to CSI-based sensing. However,
conventional LSTM sufers from the problem of vanishing
with long-term dependencies. To solve this problem, Cho
et al. [31] developed GRU, which is a slight variation of
LSTM. Compared with vanilla LSTM, GPUmade two major
changes: frst, it combines the forget and input gates into a
single “update gate;” second, it merges the cell state and
hidden state. Te resulting model is simpler than the
standard LSTM model. To give a clear illustration, a single
cell of GRU is shown in Figure 13.

As shown in Figure 13, GRU consists of two gates, i.e., a
reset gate rt and an update gate zt. Te reset gate determines
how to combine the current input in the state with the
historic memory.Te update gate is responsible for deciding
the degree of historic memory which should be maintained
in the node. Te reset gate and update gate are computed by
the following equation:

zt � σ Wz · ht−1, xt ( ,

rt � σ Wr · ht−1, xt ( .
(5)

Te hidden state ht of GRU at time t can be given based
on the previous hidden state ht−1 and the candidate hidden
state ht as follows:

ht � tanh W · rt ∗ ht−1, xt ( ,

ht � 1 − zt( ∗ ht−1 + zt ∗ ht.
(6)

Te GRU network is simple yet efective and can be
regarded as a light version of LSTMs in terms of compu-
tation cost and complexity.

Nevertheless, the conventional GRU network only
works in one direction for processing a fnite sequence,
which means the current hidden state is generated only by
considering the past information of the sequential data. To
incorporate the information both in the past and future,
we employed a Bidirectional Gated Recurrent Uni
(BGRU) network to generate hidden states in both di-
rections. Diferent from GRU, the BGRU network consists
of two parallel layers propagating in two directions, i.e., a
forward layer and a backward layer, which are shown in
Figure 14.

In BGRU, the hidden state ht of time step t is defned as
the concatenation of the states of the two directions:

Spatio-temporal correlation learning

Predicted
Location

2

512

X1

X2

Xt

BGRU BGRU BGRU

BGRU BGRU BGRU

BGRU BGRU BGRU

CNN-BGRU layerInput Output layer

TimeDistributed Te packing layer
Relu layer
Maxpooling layer

Dense layer
Dropout

Figure 12: Te CNN-BGRU structure.

Table 2: Te CNN structure.

Name Conv1 Conv2 Conv3 Pooling Activation

CNN Filters� 4 8 16 Size� 2× 2 ReLuKernel� 4× 4 4× 4 4× 4
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ht � h
→

t⊕ h
⃖

t,
(7)

where h
→

t and h
⃖

t denote the output vectors of the forward
and backward layers respectively, and ⟶ and⟵ rep-
resent the forward and backward processes respectively. Te
hidden state ht for the BGRU is a concatenation of h

→
t and h

⃖
t.

5.3. Location Prediction Module. It is mainly composed of a
maximum pooling layer and a fully connected layer. Te
extracted spatial and temporal features were fed into the
location prediction module to estimate the target position.
TeMSE loss was employed to train the CNN-BGRUmodel.

6. Experiments and Analysis

6.1. Experimental Setting. In our experiments, a TP-Link
WDR6500 WiFi commercial router was installed as the
transmitter and placed on a workbench with a height of 1.2
meters in the experimental environment. Te receiver is an
HP-800G4 I7 computer.Wemodifed the wireless driver of the
computer with CSI tools and install 12.04LTSUbuntu Linux on
it. Te commercial equipment in this paper uses 20MHz
bandwidth for CSI data acquisition with a 2.4GHz frequency
band. Te Intel 5300 network card is equipped with three 8dB
antennas. Te antennas are fxed on a metal tripod with a
height of 1.2 meter. We set the sample rate as 20 times per
second. Tere are 2000 packages collected at each reference
point, and the distance between each point is 0.6m.

Our experimental environments were located at a
building of a University, including three typical indoor

scenarios, i.e., two indoor laboratory areas (11m× 7m, 8m×

5.6m), and one corridor area (8m× 2m). Figure 15 plots
the foor plan of laboratory A with 45 training points and 12
testing points. Figure 16 shows the layout of laboratory B
with 24 training points and 7 testing points. In addition,
Figure 17 plots the layout of the corridor with 27 training
points and 7 testing points.

6.2. Ablation Study. To evaluate the contribution of each
module (CNN and GRU), we conducted ablative studies on
the data set collected in three environments. Specifcally, we
verify the efectiveness of each with the following model:

(i) CNN [32]: in this case, we only employed the CNN
to extract features

(ii) GRU [33]: in this case, we only used the GRU as the
feature extraction model

Tables 3–5 show the experimental results. From
Tables 3–5, we can draw the following conclusions based on
the ablation experiments: using only CNN or GRU network
for predicted localization, the RMSE is higher than our
proposed model, which indicates that our proposed model
can extract both spatial and temporal representatives from
CSI measurements. Overall, the results show that the pro-
posed method can efectively reduce the localization error.

6.3. Localization Performance. To evaluate the positioning
performance of the proposed PLAP system, Te root mean
square error (RMSE) is used to assess the experimental
results.

 σ  σ  tanh
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Figure 13: Illustration of gated recurrent unit.
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Figure 14: Illustration of bidirectional GRU.
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where E represents the estimated error for all test points, s

denotes all number of testing points, xpc , y
p
c denote predicted

positions and xlc, ylc denote real positions.

11 m

7 
m

Tx

Rx

Training point
Testing point

Figure 15: Floor plan of lab A.
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Figure 16: Floor plan of lab B.
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Figure 17: Floor plan of corridor environment.

Table 3: Mean error S and execution times (lab A).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
CNN 159.34 89.18 1.34
GRU 187.08 109.41 0.50
PLAP 155.11 126.65 0.71

10 Mobile Information Systems



We compared PLAP with six state-of-art models, in-
cluding Random Forest (RF) [34], Extreme Learning Ma-
chine (ELM) [35], K-Nearest Neighbor (KNN) [36], and
DeepNeural Network (DNN) [37]. During the valuation, the
same dataset is used for diferent algorithms. Tables 6–8
present the performance of all algorithms under three dif-
ferent experimental scenarios.

Table 6 presents that the RMSE of PLAP is 1.55 meters in
laboratory A, and the proposed PLAP outperforms other
methods in terms of localization accuracy. Table 7 presents
our system achieves an average of errors of about 1 meter in
laboratory B, which is better than other algorithms. For the
corridor, the localization results are shown in Table 8, the
mean localization error of PLAP is 1.053 meters, and the
standard deviation is also the lowest, which achieves the best
performance compared with other algorithms. Please note
that although the execution time of our proposed PLAP is

not the best, while the execution time is computed with all
testing samples, thus, it can satisfy the real-world
application.

Figure 18 plots the cumulative distribution function
(CDF) for all algorithms in Lab A. As shown in Figure 18,
our PLAP achieves more than 80% localization error under
2.3 meters, while the other schemes have a larger localization
error.

Figures 19 and 20 plot the CDF with all schemes in the
lab B and the corridor, respectively. In Figure 19, our system
achieves more than 80% localization errors under 1.6m,
while the other schemes such as DNN and RF are more than
1.9 meters. Similarly, Figure 20 also demonstrates the su-
perior of our proposed PLAP when compared with other
baselines.

Figures 21–23 show the loss changes of the three envi-
ronmental during the training process. It can be seen that the

Table 4: Mean error S and execution times (lab B).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
CNN 107.17 67.29 1.36
GRU 116.58 96.07 0.78
PLAP 105.14 87.82 0.43

Table 5: Mean error S and execution times (corridor).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
CNN 106.72 63.88 0.20
GRU 136.47 91.82 0.77
PLAP 105.3 46.2 1.90

Table 6: Mean error S and execution times (lab A).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
RF 194.97 100.1 0.59
ELM 177.04 95.35 5.02
KNN 341.71 160.49 0.00
DNN 175.96 106.28 0.26
PLAP 155.11 126.65 0.71

Table 7: Mean error S and execution times (lab B).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
RF 125 73.76 0.33
ELM 137.82 78.77 4.32
KNN 408.29 148.4 0.00
DNN 135.83 70.05 0.29
PLAP 105.14 87.82 0.43

Table 8: Mean error S and execution times (corridor).

Algorithm RMSE (cm) Std. dev. (cm) Exe. time (s)
RF 118.02 68.46 0.36
ELM 166.7 604.49 4.04
KNN 329.21 203.19 0.00
DNN 120.68 69.73 0.27
PLAP 105.3 46.2 1.90
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Figure 18: Te CDF diagram of laboratory A.
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Figure 19: Te CDF diagram of laboratory B.
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loss of the proposed model stably converges to the minimal
loss value with a decent decrease rate.

7. Conclusion

We propose PLAP, an indoor positioning method using
CNN-BGRU to improve the localization performance of
CSI-based localization. Hampel flter is used to process raw
amplitude signals and linear transformation is used to
calibrate the phases. To extract informative features for
diferent locations, a deep network framework CNN-BGRU
is designed to learn the discriminative features from cali-
brated amplitude and phase information. Te experimental
results show that the proposed PLAP could achieve better
localization performance than other baselines.
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