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Plaque associated microglia hyper-secrete
extracellular vesicles and accelerate tau
propagation in a humanized APP mouse
model
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Abstract

Background: Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer’s disease.
Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into
neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and
dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia
promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology.

Methods: Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into
the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F)
mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor
(PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested
at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial
extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-
CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC.

Results: Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the
hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice.
Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of
p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated
p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility
gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced
microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia
compared to Mac2− homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-
P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by
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super-resolution microscopy and immuno-electron microscopy.

Discussion: Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aβ plaques and
clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and
exacerbation of tau propagation in AppNL-G-F mice.

Keywords: Adeno-associated virus, Alzheimer’s disease, Amyloid-beta peptide, Amyloid precursor protein,
Extracellular vesicles, Humanized mouse model, Lentivirus, Microglia, Microtubule-associated protein tau, Neuritic
plaque, Tauopathy

Background
Microglia are the immune cells of the central nervous

system and possess a number of specific roles including

synaptic pruning [1, 2], release of pro-inflammatory and

anti-inflammatory cytokines [3, 4], as well as surveying

for and phagocytosing pathologic insults [5–7]. Recently,

a class of disease-activated microglia common in neuro-

degeneration called “MGnD” has been characterized

along with their role in the alleviation or exacerbation of

neurodegenerative disorders [8, 9]. MGnD exhibit char-

acteristics similar to activated microglia and possess a

unique molecular signature that is regulated by Trigger-

ing Receptor Expressed on Myeloid cells 2 (TREM2) and

Apolipoprotein E (ApoE), which disrupts maintenance

of central nervous system (CNS) homeostasis [8, 9].

MGnD microglia, which are identified via immunofluor-

escence against markers such as C-type lectin domain

family 7, member A (Clec7A) and galectin-3 (Mac2),

typically reside around amyloid plaques and phagocytose

not only aggregated proteins, but also apoptotic neurons

and synapses. There is still ongoing discussion as to

whether MGnD microglia are ultimately beneficial or

harmful in neurodegenerative disease. MGnD microglia

may play a key role bridging amyloid plaque toxicity and

tau pathology development in Alzheimer’s disease (AD).

Amyloid plaques precede tau pathology in AD and are

believed to initiate or build upon mechanisms respon-

sible for tau pathology. Indeed, previous reports showed

that amyloid-beta (Aβ) pathology accelerates tau path-

ology development in different mouse models [10–12].

Lately, the interplay between the spread of pathologic

hyperphosphorylated tau (p-tau) and Aβ plaques has

been a subject of investigation as p-tau+ aggregates de-

posited on plaques, referred to as “NP tau”, appear to

affect sequestration and spread of pathologic tau seeds

in a manner that may be dependent on microglia [10,

13]. It is still undetermined whether microglia play a

critical role for the acceleration of tau propagation in

the presence of Aβ plaque deposition.

One of the methods in which we can assess the effect

of microglia on AD pathology is through their selective

depletion. This is accomplished in mouse models of con-

ditional knockdown of microglia, targeted depletion, or

via administration of Colony stimulating factor 1 recep-

tor (CSF1R) inhibitors [14–18]. By using CSF1R inhibi-

tors, along with other means of selective microglia

depletion, researchers examined the effect of depletion

on amyloid plaque deposition, tau pathology and spread,

synaptic integrity, as well as cognition in a variety of

mouse models of neurodegeneration [19–23]. We previ-

ously established a rapid tau propagation model in which

AAV-P301L-tau is injected into the medial entorhinal

cortex (MEC) where p-tau is expressed and eventually

propagated to the granular cell layer (GCL) of the

hippocampal dentate gyrus (DG) in a manner facili-

tated by microglia and exosomes, which are small

extracellular vesicles (EVs) synthesized in multivesicu-

lar bodies [22]. In the present study, we investigated

how microglia may facilitate tau propagation by

injecting AAV-P301L-tau into the MEC of C57BL/6

(WT) and AppNL-G-F knock-in mice while treating

them with a CSF1R inhibitor. AppNL-G-F mice develop

robust amyloid plaque formation by endogenously ex-

pressing three APP mutations [24].

In this study, we revealed that amyloid burden acceler-

ated tau propagation in AppNL-G-F mice compared to

WT mice and depleting microglia dramatically reduced

tau propagation to the GCL. Additionally, increased de-

position of NP tau as well as amyloid plaques following

microglia depletion in AppNL-G-F mice suggested active

clearance of protein aggregates by MGnD microglia.

Interestingly, we observed that Clec7A+ MGnD micro-

glia, activated in response to amyloid plaques and p-tau

strongly expressed an exosomal marker, Tumor suscep-

tibility gene 101, which was absent after microglia deple-

tion. We further constructed a novel lentivirus

expressing mEmerald-CD9 fusion protein (mE-CD9) in

a microglia-specific manner and quantified the release of

mE-CD9+ EV particles from single cells in vivo in the

MEC. We found that the degree of EV release was over

three times highe from Mac2+ MGnD microglia com-

pared to Mac2− microglia. Additionally, co-injection of

mE-CD9 and AAV-P301L-tau revealed incorporation of

p-tau within microglia-specific EVs. MGnD microglia,

which are more prevalent in AppNL-G-F, appeared to re-

lease 3–5 times more p-tau through EVs compared to
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homeostatic microglia. These data highlight a possible

mechanism for the accelerated tau propagation wit-

nessed in AppNL-G-F mice via MGnD microglia-derived

EVs and may shed light on the conflicting microglial

roles in AD pathology development and progression.

Results
Microglia depletion increases plaque deposition

Immunofluorescence against IBA1, a marker for

microglia and macrophages [25], showed that IBA1

was almost completely absent (> 93%) after 2 months

of drug treatment in both groups (Fig. 1a-c). Add-

itionally, overall P2RY12+ area is not statistically dif-

ferent between WT and AppNL-G-F mice, which is also

depleted by PLX5622 (Fig. S1A-B). In the AD brain,

microglia become activated in response to amyloid

pathology and migrate to the region where they com-

pact and phagocytose Aβ plaques [26–29]. We hy-

pothesized that microglia depletion altered the Aβ

plaque compaction in AppNL-G-F mice. Staining with

thioflavin-S revealed the circularity of dense-core pla-

ques was significantly reduced following microglia de-

pletion, suggesting that Aβ plaques were less

compacted in the absence of microglia (Fig. 1d-e).

Consistent with this data, overall Aβ plaque area,

number, and size were significantly increased by

microglia depletion (Fig. 1e). 3D surface renderings of

thioflavin-S plaques revealed a dramatic decrease in

sphericity and increase of plaque volume and area

(Fig. S1C-D). These findings were mostly reproduced

in diffuse amyloid staining with 4G8 (detecting

Aβ17–24, Fig. 1f-g), specifically in the size of plaques

and overall plaque area. Interestingly, immunofluores-

cence for diffuse amyloid with an alternative antibody,

82E1, revealed no differences in plaque pathology

after microglia depletion in the same brains (Fig. 1h-

i). Moreover, 82E1 possessed a distinct staining pat-

tern from 4G8 (Fig. S1E). The 82E1 antibody detects

Aβ1–16, which is analogous to the 6E10 antibody,

most commonly used in studies assessing the effect of

microglia depletion on amyloid burden (Supplemen-

tary Table S1). The discrepancy in the Aβ plaque de-

tection between 82E1 and 4G8 antibodies may be an

important consideration for future studies. In

addition, immunofluorescence against the astrocytic

marker, Glial fibrillary acidic protein (GFAP) revealed

that microglia depletion had no impact on astrogliosis

in WT mice (Fig. S1F-G), confirming results from a

previous report [30]. Furthermore, there was a robust

increase in astrogliosis around Aβ plaques in

AppNL-G-F mice compared to WT mice that was un-

affected by PLX5622 treatment (Fig. S1F-G). Similarly,

a previous report indicated that microglia depletion

did not affect astrogliosis in response to tau pathology

[23]. Together, these results strongly suggest that

microglia play a significant role in prevalence of Aβ

plaques as well as their compaction in AppNL-G-F mice

between 4 to 6 months of age.

Enhanced tau propagation and its reduction by CSF1R

inhibition in App
NL-G-F mice

P-tau propagates from the MEC to the hippocampus,

which are anatomically-connected regions as seen in the

process of tau pathology development in AD. The per-

forant pathway projects from the MEC to the DG and

composes the tri-synaptic circuit together with mossy fi-

bers connecting to Cornu Ammonis 3 (CA3) and the

Schaffer collaterals to CA1 (Fig. 2a) [31]. To determine

the effect of microglia depletion on tau propagation via

the perforant pathway in AppNL-G-F mice, animals were

treated 1 month with PLX5622 or control chow from 4

months of age. AAV2/6 pseudotyped synapsin-1

promoter-driven transgene expression of P301L MAPT

mutant (AAV-P301L-tau) was injected into the MEC

(AP: 4.75, ML: 2.90, DV: 4.64) in AppNL-G-F and WT

mice at 5 months of age as previously described (Fig. 2a)

[22]. The animals were fed PLX5622 or control chow for

another month until the end point of the study (2

months treatment in total). Tau propagation from the

MEC to the DG was assessed by the immunofluores-

cence against p-tau (AT8, detecting pSer202/pSer205 tau).

Following injection of AAV-P301L-tau, we observed

strong AT8+ cell soma staining in the MEC and in the

GCL of the DG in AppNL-G-F mice and also in WT mice

to a lesser extent (Fig. 2b). Furthermore, we also found

AT8+ cells in the hilus and CA1 regions in both WT

and AppNL-G-F mice (Fig. S2A-B), suggesting that p-tau

was propagated through not only the perforant pathway,

but also possibly the temporoammonic pathway, which

projects from the EC layer II to CA1 [32]. These results

were consistent with previous reports showing an aug-

mented effect of amyloid plaques on tau propagation

[10, 12, 33]. Strikingly, microglia depletion effectively

suppressed the tau propagation in both groups (Fig. 2c),

and notably the inhibitory effect of microglia depletion

on tau propagation was more prominent in AppNL-G-F

compared to WT mice.

In addition to AT8+ neurons, neuritic plaque-

associated AT8+ tau deposits (NP tau) were investigated.

One recent study demonstrated the significant effect of

TREM2 mutation on NP tau formation in tau fibril-

injected APPPS1–21 mouse brains, suggesting microglial

involvement in NP tau development [13]. We thus

examined the effect of AAV-P301L-tau propagation on

NP tau formation in AppNL-G-F mice with or without

microglial depletion. Interestingly, AT8+ NP tau sur-

rounding plaques was increased following AAV-P301L-

tau incubation in the MEC, which was further
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significantly enhanced by microglia depletion (Fig. 2d-e).

In the hippocampus, proportions of NP tau showed simi-

lar patterns following injection and microglia depletion,

but were insignificantly different (Fig. S2C). This sug-

gests that tau expressed in the MEC can also spread and

be incorporated in NP tau, which may be actively phago-

cytosed by plaque-associated microglia. Together, these

data provide a strong evidence that Aβ deposition exac-

erbates tau propagation in a microglia dependent

manner.

Fig. 1 PLX5622 treatment ablates microglia and increases amyloid plaque burden. a. Schematic of study design with PLX5622 administration. The
table displays the number of mice used per experimental group. b. Representative images of IBA1 staining in the cortical region from WT and
AppNL-G-F mice administered with control (CTRL) or PLX5622 chow. c. Unbiased quantification of percentage IBA1+ area in the cortex. d.
Representative images of Thioflavin-S staining in the cortex. e. Unbiased quantification of plaque characteristics in Thioflavin-S stained slices in
the cortex. f. Representative images of 4G8 staining in the cortex. g. Unbiased quantification of plaque characteristics in 4G8 stained slices in the
cortex. h. Representative images of 82E1 staining in the cortex. i. Unbiased quantification of the plaque characteristics in 82E1 stained slices in
the cortex. Representative images displayed in a-i are a mix of male and female mice. All values displayed in a-i represent the mean ± standard
error (SEM) for a minimum of 6 animals per group. Graphs comparing values across all 4 groups were analyzed via 2-way analysis of variance
(ANOVA) with Tukey post-hoc analysis for individual comparisons. Graphs comparing two groups were analyzed via Unpaired t-test. *p < 0.05, **

p < 0.01, *** p < 0.001, between indicated groups. #### p < 0.0001 for the PLX5622 factor
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Increased synaptic tagging and EV release signatures in

the amyloid bearing brain

C1q is a protein complex known to be a part of the

complement system and is also mostly derived from

microglia [34]. It is highly deposited on synapses in the

molecular layer of the DG [35, 36]. The expression level

of C1q in the outer molecular layer was significantly re-

duced in AppNL-G-F mice following microglia depletion,

revealing the absence of microglia-derived proteins

(Fig. 3a-b). There was no significant change in C1q

Fig. 2 Aβ deposition accelerates tau propagation in a microglia-dependent manner, while microglial depletion enhances NP tau formation. a.
Schematic of injection coordinate and tri-synaptic pathway. b. Representative images of AT8 staining in the MEC and the GCL region of the DG.
c. Unbiased quantification of AT8+ cell propagation from the MEC to the GCL. Tau propagation values across all 4 treatment groups are
displayed. d. Representative image of plaques in the MEC of non-injected AppNL-G-F mice, injected mice receiving control chow, and injected mice
receiving PLX5622. e. Unbiased quantification of percentage AT8+ plaque area within the MEC. Representative images displayed in a-e are a mix
of male and female mice. All values displayed in a-e represent the mean ± SEM. Graphs comparing values across 4 groups were analyzed via 2-
way ANOVA with Tukey post-hoc analysis for individual comparisons. Graphs comparing values across 3 groups were analyzed via 1-way ANOVA
with Fisher’s LSD post-hoc analysis for individual comparisons. * p < 0.05, ** p < 0.01 between indicated groups
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positivity in WT mice by microglia depletion and C1q

knockout mice showed no positivity as a negative con-

trol. In the AD brain, microglia become activated in re-

sponse to amyloid pathology and migrate to compact

and phagocytose plaque material [26–29]. We next ex-

amined MGnD microglia in the OML and specifically

around plaque regions in AppNL-G-F mouse brains via

Clec7A staining [8]. Clec7A+ MGnD microglia were de-

tected concentrated around plaques and were ~ 80%

eliminated following PLX5622 treatment in AppNL-G-F

mice (Fig. 3c-d). Microglia are known to produce and

secrete EVs more efficiently following activation [37].

We found striking co-expression of Tumor susceptibility

gene 101 (Tsg101), an EV marker in Clec7A+ MGnD

Fig. 3 Increased synaptic tagging and EV release signatures in the amyloid bearing brain. a. Representative images of C1Q, 4G8, and DAPI
staining in the hippocampal region of WT and AppNL-G-F mice administered with control (CTRL) or PLX5622 chow as well as C1Q KO mice. b.
Unbiased quantification of C1Q intensity in the OML of the hippocampus. c. Representative stacked confocal images of 4G8, Clec7A, and Tsg101
staining of plaques in the OML. See also Supplemental Fig. S3A and Video S1. d. Unbiased quantification of percentage Clec7A+ area across the
OML for all groups and of the plaque-specific regions. e. Unbiased quantification of Tsg101 intensity of plaque-positive regions in the OML
compared to background signal. f. qPCR data displaying fold-increases in MGnD and EV-associated markers ApoE, C1Qa, CD9, CD81, CD63,
Tsg101, and P2RY12 expressed in Clec7A+ over Clec7A− microglia. Representative images displayed in a-f are a mix of male and female mice. All
values displayed in a-f represent the mean ± SEM for a minimum of 3 animals per group. Graphs comparing values across all 4 groups were
analyzed via 2-way ANOVA with Tukey post-hoc analysis for individual comparisons. Graphs comparing two groups were analyzed via Unpaired t-
test. * p < 0.05, ** p < 0.01, and *** p < 0.001 between indicated groups. ## p < 0.01 for the PLX5622 factor
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microglia, which was also diminished by PLX5622 treat-

ment (Fig. 3c, e, Supplemental Video S1). This suggests

that MGnD microglia may be over-synthesizing EVs.

Homeostatic microglia, indicated by IBA1+/Clec7A−

cells, do not colocalize with Tsg101 (Fig. S3A). Addition-

ally, Clec7A+/− microglia were isolated from 6-month-

old AppNL-G-F mice via fluorescence-activated cell sort-

ing (FACS) via staining for CD11b, FCLRS, and Clec7A

(Fig. S3B). Clec7A+ microglia show significantly upregu-

lated gene expression of EV markers, such as Cd9 and

Cd63, along with MGnD marker ApoE compared to

Clec7A− microglia (Fig. 3f). Additionally, expression of

P2RY12 was not affected by the MGnD phenotype.

Lastly, plaque-associated Clec7A+ MGnD microglia ap-

pear to internalize NP tau (Fig. S3C and Video S2),

which supports our hypothesis that MGnD microglia

may actively phagocytose NP tau and dystrophic neurites

near the plaques. Together, these findings suggest that

MGnD microglia phagocytose NP tau and hyper-secrete

EVs, which may influence the spread of pathologic tau

seeds.

To directly determine if MGnD microglia release more

EVs compared to homeostatic microglia in vivo, we de-

veloped a novel microglia-specific lentivirus expressing

mEmerald-CD9 (mE-CD9) fusion protein (Fig. 4a) [38].

This lentivirus contains the tandem miR-9 target se-

quence (miR9T) on the 3’UTR, which is targeted by

miR-9-expressing neuronal cells and ensures silencing of

gene expression in any non-microglial cells [39] and

therefore achieving microglia-specific expression of mE-

CD9. We also incorporated the EF1α promoter, which is

highly active in murine microglia [40]. In vitro transduc-

tion of HEK293T cells demonstrates transgene expres-

sion within 48 h (Fig. S4A). mE-CD9 was enriched in the

EV fraction of the conditioned media compared to the

cell lysate (Fig. S4B). The high-titer (~ 1 × 109 TU/mL)

mE-CD9 lentivirus was bilaterally injected into the MEC

of both WT and AppNL-G-F mice at 6 months of age.

Following 10-day incubation, microglia-specific

expression of mE-CD9 was detected by GFP antibody

staining (Fig. 4b). MGnD microglia, which are indicated

by Mac2 staining positivity, were observed as mE-CD9+

plaque-associated microglia in AppNL-G-F brains (indi-

cated by white arrows), and were absent in WT brains

lacking AAV-P301L-tau injection. Triple immunofluor-

escence staining of mE-CD9, IBA1 and P2RY12 showed

that ~ 94% of mE-CD9+ signal co-localized with these

microglia markers (Fig. S4C), indicating microglia-

specific expression of mE-CD9. MGnD were detected by

Mac2 staining [41], which coincide with Clec7A+ MGnD

nearly 100% of the time (Fig. S4D), suggesting that both

antibodies detect the same population of MGnD micro-

glia. Z-stack images of mE-CD9+/Mac2− microglia in

WT mice, and mE-CD9+/Mac2± microglia in AppNL-G-F

mice were captured via Leica SP8 with Lightning super-

resolution confocal microscope and processed in IMAR

IS rendering software to automatically quantify the num-

ber of mE-CD9+ EV particles (white voxels) surrounding

individual microglia (Fig. 4c). Quantification of mE-

CD9+ EV particles localized around individual microglia

revealed that Mac2+ MGnD microglia released over 3

times as many EVs as Mac2− microglia (Fig. 4d). The in-

tensity of Mac2 staining in microglia showed a strong

positive correlation with the particle number of EVs,

suggesting that the MGnD phenotype positively influ-

enced EV release (Fig. 4e). We then isolated the EVs

from the left hemisphere of the bilaterally-injected

brains using discontinuous sucrose gradient ultracentri-

fugation method as previously described [42, 43]. Bio-

chemical quantification of mE-CD9 was performed

using whole brain homogenate and extracellular vesicles

isolated from mE-CD9 lentivirus-injected brains by GFP

ELISA, which cross-react with mEmerald (Fig. S4E).

There was significant enrichment of mE-CD9 in the EV

fraction over brain homogenate both in WT and

AppNL-G-F mice, biochemically confirming the secretion

of mE-CD9+ EVs in vivo. Taken together, these data

demonstrate that MGnD microglia, elicited here by Aβ

plaques, secrete significantly more EVs than non-MGnD

microglia in AppNL-G-F mice in vivo.

P-tau is encapsulated within microglia-specific EVs, which

is augmented in MGnD microglia

If the hypersecretion of EVs by MGnD microglia is in-

volved in the seeding and propagation of pathologic tau

between brain regions, we should be able to observe p-

tau encapsulated by microglia-derived EVs. In order to

investigate this possibility, we bilaterally injected mE-

CD9 lentivirus into the MEC of 4-month-old WT and

AppNL-G-F mice followed by the injection of AAV-

P301L-tau in the same region one month later (Fig. 5a).

Mice were euthanized at 6 months of age. Immunofluor-

escence staining for GFP in order to detect mE-CD9 and

AT8 for p-tau labeling indicated successful co-

expression of mE-CD9 lentivirus and AAV-P301L-tau in

the same region (Fig. 5b). MGnD microglia, indicated by

Mac2+ microglia, were elicited in response to AAV-

P301L-tau injection in both mice, but were significantly

more prevalent in AppNL-G-F mice compared to WT con-

trol mice (Fig. S5A). Confocal z-stack images of

individual p-tau associated microglia demonstrated that

there were both homeostatic microglia and MGnD

microglia in the p-tau-expressing region in either group

(Fig. 5c). As seen before, these microglia appeared to be

surrounded by mE-CD9+ EVs. Renderings of high-

magnification images revealed that p-tau was encapsu-

lated by microglia-specific EVs around homeostatic

microglia and MGnD microglia in the tau-injected brain

Clayton et al. Molecular Neurodegeneration           (2021) 16:18 Page 7 of 16



region (Fig. 5d and Video S3). EVs were isolated from

co-injected brains as described before and subjected to

double immuno-gold labeling of AT8 to detect p-tau (5

nm immuno-gold dot) and GFP to detect membrane-

localized mE-CD9 (10 nm immuno-gold dot). Immuno-

electron microscopic captured images of EVs revealed

the presence of AT8+ p-tau encapsulated by GFP+

microglia-specific EVs (Fig. 5e). EVs surrounding Mac2−

and Mac2+ microglia were quantified as done previously

(n = 8 microglia per group). MGnD microglia secreted

roughly three times as many as EVs as homeostatic

microglia (Fig. 5f). Additionally, the amount of p-tau in-

ternalized by these microglia and their EVs was quanti-

fied (Fig. 5g-h). Regardless of whether in WT or

AppNL-G-F mice brains, Mac2+ MGnD microglia signifi-

cantly internalized and secreted p-tau+ mE-CD9+ EVs

Fig. 4 In vivo imaging of EV secretion from microglia after lentiviral microglia-specific expression of mE-CD9. a. Schematic of mE-CD9 lentiviral
construct. b. Representative images of mE-CD9 lentivirus transduction in WT and AppNL-G-F microglia following injection and 10-day incubation. c.
Representative images of individual microglia and released mE-CD9+ particles showing FSB, Mac2, and mE-CD9. d. Unbiased quantification of mE-
CD9+ voxels surrounding individual microglia (n = 12 microglia per group from 3 mice per group). e. Regression plot of Mac2 staining intensity
versus the number of mE-CD9 particles released by individual microglia. Representative images displayed in a-e are a mix of male and female
mice. All values displayed in a-e represent the mean ± SEM for a minimum of 3 animals per group. Graphs comparing values across all 4 groups
were analyzed via 2-way ANOVA with Tukey post-hoc analysis for individual comparisons. Graphs comparing two groups were analyzed via
unpaired t-test. ** p < 0.01, *** p < 0.001, between indicated groups
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more than Mac2− homeostatic microglia. These data

suggest that microglia-derived EVs distribute pathologic

tau seeds, a phenomenon that is enhanced by the pheno-

typic shift of microglia into MGnD phenotype.

Discussion
Microglia depletion and tauopathy

The role of microglia in mediating the interplay between

amyloid and tau pathologies remains elusive. In the

Fig. 5 Pathologic tau is secreted through microglia-derived EVs. a: The timeline of injection of mE-CD9 lentivirus and AAV-P301L-tau. b:
Representative low-magnification images of the injection site in the MEC showing FSB (blue: amyloid plaque), mE-CD9 (green), Mac2 (red), and
AT8 (magenta). c: Left: Representative images of homeostatic microglia (Mac2−) and MGnD (Mac2+) with phagocytosed AT8+ p-tau and secreted
mE-CD9+ EVs (white) surrounding microglia. Right: Surface rendering images by IMARIS software showing internalized p-tau within microglia or
EVs. d: Representative images of microglia-derived mE-CD9+ EVs (white) containing p-tau (magenta). See also Supplementary Video S3. e:
Immuno-gold electron microscopy images of microglia-derived EV containing mE-CD9 fusion protein (GFP+ 10 nm immuno-gold dots) and p-tau
(AT8+ 5 nm immuno-gold dots). f: Quantification of mE-CD9+ EVs released from homeostatic microglia (Mac2−) and MGnD (Mac2+) in the injected
region. g: Volume of phagocytosed p-tau per microglia h: Quantification of total p-tau released through mE-CD9+ EVs per microglia.
Representative images displayed in a-h are a mix of male and female mice. f-h: n = 8 microglia per group from 5 WT and 5 AppNL-G-F animals.
Graphs comparing values across all 4 groups were analyzed via 2-way analysis of variance (ANOVA) with Tukey post-hoc analysis for individual
comparisons. * p < 0.05 between indicated groups, # p < 0.05, ## p < 0.01 for the Mac2 factor
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current study, we demonstrated that abnormally phos-

phorylated and aggregated tau propagates from the MEC

to the DG in WT and AppNL-G-F mice in a microglia-

dependent manner. We further provided evidence that

the neurodegenerative microglia phenotype MGnD pro-

duce and secrete abundant EVs containing p-tau, indi-

cating a novel mechanism for how activated microglia

may facilitate development and propagation of tau path-

ology. We previously reported the beneficial effects of

microglia depletion as well as inhibition of EV synthesis

and secretion in preventing tau spread in WT and

P301S tau transgenic mice [22, 44]. We witnessed the

same, but even more beneficial effect of microglia deple-

tion in a mouse model exhibiting the other pathological

hallmark of AD, Aβ plaques. Several studies including

ours demonstrate the beneficial effect of CSF1R

inhibitor-mediated microglia depletion on halting tauo-

pathy in different tau mouse models [22, 30, 45]. This

includes the AAV-mediated tau propagation system and

P301S mice, but not in hTau mice expressing human

wildtype tau or aged rTg4510 P301L tau mice, in which

only partial microglial depletion was achieved (Supple-

mentary Table S2) [23, 46]. One CSF1R inhibitor, JNJ-

40346527, was successful in suppressing tauopathy de-

velopment in P301S tau mice and is being tested in a

Phase 1 study of AD cases (NCT04121208).

In this study, we utilized the AppNL-G-F mouse model

and CSF1R inhibitor PLX5622 to determine the effect of

MGnD microglia on tau pathology development. It was

noted previously that at lower doses of PLX5622 treat-

ment, plaque-associated MGnD microglia are specifically

depleted whereas homeostatic microglia are extant [19].

In our study, treatment of mice with 1200 mg/kg

PLX5622 resulted in ~ 93% reduction in the amount of

microglia and ~ 80% of MGnD microglia. We note that

MGnD microglia are conventionally regarded as acti-

vated by Aβ plaques, but seemingly can also become ac-

tivated in response to AAV-P301L-tau injection as

evaluated by MGnD markers, Clec7A and Mac2.

Whether or not MGnD microglia elicited from these

two pathologies are phenotypically different remains to

be investigated in future studies.

Microglia depletion and amyloid plaques

Microglia may play bidirectional roles for Aβ clearance

via phagocytosis, endolysosomal clearance, and seeding

of Aβ aggregates depending on the age of animals and

the stage of Aβ accumulation in the brain. The general

consensus of previous research regarding the effect of

microglia depletion on amyloid deposition is that it is

largely ineffectual aside from those utilizing the 5xFAD

mouse model, which report dramatic improvements

of Aβ pathology following microglia depletion [20, 47–

49]. Here we found that microglia depletion causes a

sizeable increase in compact, but not diffuse amyloid de-

position (Supplemental Table S1). There are several pos-

sibilities which may explain the discrepancy between

ours and the previous findings. Firstly, all of the previous

studies assessing the effect of microglia depletion on

amyloid deposition used transgenic models that overex-

press human APP mutants (Supplementary Table S1).

Deposition as a result of overexpression in combination

with mutation may likely be more intense than the

AppNL-G-F model, which replaces the intrinsic mAPP

gene with the human version expressing three mutations

to increase amyloid deposition [24]. Therefore, depletion

of microglia in the former case may not have as large an

effect on amyloid deposition as in the latter; overexpres-

sion of APP may saturate the ability of microglia to clear

Aβ, resulting in no effect of depletion. Furthermore, the

heterogeneity of mouse models, onset, duration and effi-

ciency of microglia depletion, and techniques for quanti-

fying deposition all make comparisons difficult to

interpret. Among them, only two reports from Spangen-

berg et al. [20, 21] and this study show achievement of

at least 95% depletion of microglia and duration of at

least 2 months.

These studies revealed a reduction in plaque size and

number when microglia are depleted at a young age (1.5

months), suggesting that microglia may play a patho-

logical role in the early stage of Aβ deposition. Most

studies in which amyloid burden is assessed utilize 6E10

for staining, which recognizes residues 1–16 of Aβ. In

this study, we find no effect of microglia depletion on

amyloid deposition using the 82E1 monoclonal antibody,

which recognizes the same residues. However, staining

with 4G8, which recognizes residues 17–24 of Aβ, re-

vealed a dramatic increase in diffuse plaque deposition

that recapitulated the increases found in compact plaque

deposition determined by thioflavin-S staining. We sus-

pect the difference in plaque compaction is most visible

through thioflavin-S staining compared to diffuse plaque

staining possibly because diffuse portions of plaques are

not rigid and fibrillar enough for microglia to interact

with easily, and therefore not much difference is ob-

served here. Future studies to investigate the impact of

microglia depletion on Aβ should use a variety of

markers and techniques to uncover results. Data pre-

sented here suggest that microglia are indeed highly in-

volved in plaque compaction and clearance.

Microglial depletion and NP tau

In this study, overexpression of mutant P301L-tau in the

MEC of AppNL-G-F mice produced two different kinds of

tau pathology: increased AT8+ neurons at the GCL and

NP tau on amyloid plaques. Aggregated and phosphory-

lated tau in dystrophic neurites, recently described as

NP tau, is a known pathological hallmark of AD brains
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[10, 13]. We observed an increase in NP tau accumula-

tion by over-expressing P301L-tau mutation in the MEC

of AppNL-G-F mice. This is supported by a recent study

showing that tau fibril injection in AppNL-F mice induced

NP tau accumulation [10]. We found that microglia de-

pletion increased NP tau accumulation. Loss of Aβ com-

paction after microglial depletion could facilitate a larger

volume of Aβ fibril-induced dystrophic neurites. This is

consistent with the recent report demonstrating en-

hanced NP tau formation in APPPS1–12 mice with

TREM2 knockout or R47H mutant background, which

showed a diminished number of plaque-associated

microglia [13]. Authors speculated that microglial dys-

function increases the susceptibility of dystrophic neur-

ites to develop this pathology, possibly through

increased vulnerability to the toxic effects of Aβ42 in

plaques and not due to the reduction of the phagocytosis

activity of plaque-associated microglia. Here, our results

showing p-tau entrapped by plaque-associated MGnD

microglia provide an additional interpretation: NP tau

may be actively phagocytosed by plaque-associated

MGnD and their depletion allows for greater accumula-

tion of NP tau pathology. Thus, we speculate that

phagocytosed NP tau may also be an important source

for microglia to secrete tau seed-containing EVs.

MGnD microglia-derived EVs and tau propagation

In addition to the new possibility of NP tau-mediated

spread of tau pathology, microglia also phagocytose tau-

containing synapses. It is well known that microglia ac-

tively phagocytose synapses by synaptic tagging with com-

plements (C1q and C3) [50–52], which also play an

important role in Aβ-induced synaptic loss [53]. As shown

in the current and previous studies [36, 54], C1q signal is

highly intense in the OML, and this study shows that it is

microglia-dependent. C1q is likely to play a role in engulf-

ing damaged synapses containing pathological tau seeds

by microglia in the OML. Given that microglia are known

to be activated and recruited to the plaque region where

they surround, phagocytose, and also secrete toxic aggre-

gates through their EVs, we hypothesize that the activity

of plaque-associated MGnD microglia in this region may

inadvertently bolster tau propagation from the MEC to

the DG in AppNL-G-F mice (Fig. 6). Indeed, microglia-

derived EVs are endocytosed by proximal neurons and in-

fluence their activity [55–57]. Another recent report

showed that microglia isolated from AD brains or tau

mice can seed tau in vitro [58]. We developed a way to

measure EV release specifically from microglia in vivo

using the mE-CD9 lentivirus. This allowed us to quantify

the number of mE-CD9+ particles localized around in-

fected microglia using super-resolution microscopy. We

found that EV release was over three-times higher from

MGnD microglia compared to homeostatic microglia.

These data are supported by previous evidence showing

that many EV markers, such as CD63, CD9, CD81, and

Tsg101 are upregulated in MGnD microglia isolated from

APP or APP/PS1 mice [8, 59]. We recapitulated this find-

ing via qPCR using isolated Clec7A+/− microglia and by

immunofluorescence showing co-localization of Tsg101

and Clec7A in MGnD microglia around Aβ plaques in this

study. We utilized the mE-CD9 lentivirus and AAV-

P301L-tau to directly examine the interaction of mE-

CD9+ microglia with p-tau+ neurons, which also induced

MGnD microglia and appear to hyper-secrete EVs. Im-

portantly, mE-CD9+ EVs contained p-tau, suggesting that

microglia-derived EVs have the potential to seed p-tau ag-

gregates in neighboring or distant cells, exacerbating tau

propagation.

In summary, we provide strong evidence that MGnD

microglia release dramatically higher levels of EVs in re-

sponse to amyloid and tau pathology compared to inac-

tivated microglia. Additionally, these EVs appear to

contain pathologic p-tau, suggesting a potential mechan-

ism explaining how Aβ plaques enhance propagation of

tau pathology. It is possible that microglia depletion can

alleviate the propagation of pathologic tau through

alternative mechanisms, such as preventing microglia-

mediated activation of tau kinases through inflamma-

somes [60–63]. Therefore, in order to specifically test

the role of microglia-derived EVs in tau pathology

propagation, future studies involving microglia-specific

ablation of EV secretion are necessary.

Methods
Animals and genotyping

All mouse care and experimental procedures were ap-

proved by Institutional Animal Care and Use Committee

of the Boston University School of Medicine. AppNL-G-F

mice were bred and genotyped in-house. C57BL/6 were

purchased from the NIA. Mice were caged in accordance

with their own sex and housed in a barrier facility with

12 h light and 12 h dark cycles. Roughly half of the ani-

mals used were male and half female between WT and

AppNL-G-F groups. Food and water was provided ad libi-

tum. Throughout the life of all mice, veterinary staff

closely monitored animals for complications. Genotyp-

ing for animals was conducted in house via PCR using

the following primers [24]: E16WT: 5′ – ATCTCGGA

AGTGAAGATG – 3′ E16MT: ATCTCGGAAGTGAA

TCTA WT: 5′ – TGTAGATGAGAACTTAAC – 3′

loxP: 5′ – CGTATAATGTATGCTATACGAAG – 3′.

C1Q KO mice were obtained in good condition from

Jackson Laboratories (Stock No: 031675).

Viral vector production

The AAV2/6-SYN1-P301L tau (AAV-P301L-tau) was

generated as previously described [22]. This virus is
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recombinant AAV2/6 (AAV2/6) pseudoserotype, and

was created at Viral Core Facility, Boston Children’s

Hospital. The vector consists of AAV-2 inverted ter-

minal repeats, the human synapsin-1 gene promoter

driving expression of human P301L tau 1–441, the

woodchuck hepatitis virus post-transcriptional control

element (WPRE) and a bovine growth hormone polyade-

nylation site. Iodixanol step gradient ultracentrifugation

followed by heparin FPLC affinity chromatography and

dialysis in PBS overnight was used to purify and prepare

AAV particles. Viral titers were calculated via q-PCR.

Purity of AAV was determined by SDS-PAGE and Coo-

massie brilliant blue staining.

CSF1R inhibitor treatment and intracranial injection

PLX5622 or control (Plexxikon, Inc., San Francisco, CA),

was impregnated into rodent chow at 1200 ppm (AIN-

76A, Research Diet, Inc., Brunswick, NJ) and provided

the animals in equal quantity starting at 4 months of

age. After one month since the beginning of PLX5622

treatment, intracranial injections of AAV-P301L-tau

were administered to the control- and drug-treated

mice. This AAV expresses the mutant version of human

tau P301L under the syn-1 promoter, which is neuron-

specific [64]. Nine tenths of 1 μL were injected into each

mouse with coordinates (AP: 4.75, ML: 2.90, DV: 4.64)

at a viral titer of 1.2 × 1011 using a robotic stereotaxic

drill & microinjection machine (Neurostar, Tubingen,

Germany) attached with 10-μl syringe (Hamilton, model

701 LT, #80301) and glass capillary (Neurostar) held to-

gether with microelectrode holder (World Precision In-

struments #MPH6S10). Mice were anesthetized during

the procedure with 3% isoflurane and received 1 mg/kg

meloxicam for pain relief. Experimenters were blinded

Fig. 6 Schematic diagram of Aβ plaque deposition and microglia-mediated tau propagation. In the WT mouse brain, tau propagation from the
MEC to GCL neurons is sensitive to microglia. In AppNL-G-F mouse brains, Aβ plaque associated microglia are more phagocytic and hyper-secrete
tau-seeding EVs compared to homeostatic microglia, resulting in enhanced tau propagation from MEC to GCL regions. Both Aβ plaque and NP
tau pathology are increased following microglia depletion, suggesting their active roles on compaction and clearance of Aβ plaques and NP tau
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to which group received PLX5622 and which received

placebo throughout the experiment. Animals experien-

cing undue trauma or distress following injections were

sacrificed and excluded from the study. Following one-

month incubation of virus with continuous PLX5622

treatment, animals were sacrificed via transcardial perfu-

sion with PBS and followed with fixation by 4% parafor-

maldehyde (PFA) solution. Brains were immediately

harvested.

Histological processing and immunofluorescence staining

Brains were immersed in 4% PFA at 4C° for overnight

following harvest. The following day, brains were placed

in 30% sucrose solution in PBS in 4C° for overnight

again in preparation for cryosectioning. Sagittal brain

slices were then gathered using a Cryostar NX50

(Thermo Fisher Scientific, # 957250 K) at 30 μm thick-

ness. Following sectioning, brains were mounted on

superfrost plus microscope slides (Thermo Fisher

Scientific, #22–037-246) and stored at − 80 °C. The fol-

lowing antibodies and reagents were used for immuno-

fluorescence staining: 4G8 1:100 (Aβ17–24, BioLegend,

#800704), AT8 1:300 (pSer202/pSer205 tau, Thermo,

#MN1000), GFAP 1:300 (Cell Signaling Bio, #36705),

C1q 1:300 (Abcam, #ab182451), 82E1 1:100 (Aβ1–16,

IBL, #10323), thioflavin-S 1:50 in 50% ethanol (Sigma,

#T1892-25G), 1-Fluoro-2,5-bis[(E)-3-carboxy-4-hydro-

xystyryl] benzene (FSB, 50 μM) in 10% ethanol (Milli-

pore Sigma, #07602), HT7 1:300 (human tau, Thermo,

#MN1000), Clec7A 1:100 (InvivoGen, #mabg-mdect),

Tsg101 1:300 (Santa Cruz Biotech, #sc-7964), IBA1

(Wako, #019–19,741), DAPI 1:2500 (Thermo Fisher

Scientific, #62248). Rabbit polyclonal anti-mouse

P2RY12 antibody 1:600 was generously provided by Dr.

Oleg Butovsky’s laboratory [65, 66]. Sections were

washed with PBS prior to antigen retrieval with 88% for-

mic acid except for staining with anti-GFP antibody

(Santa Cruz Biotech, #sc-101,536). Blocking solution

consisted of 5% normal goat or donkey serum, 5% bo-

vine serum albumin (BSA), and 1% Triton X-100. All

following primary and secondary staining buffer con-

sisted of 5% BSA, 1% Triton X-100 in PBS. Following

staining, sections were allowed to air-dry and then

mounted using Fluoromount-G (Invitrogen, #00–4958-

02). Tiled images were taken at 20X with an Eclipse Ti

microscope (Nikon Instruments). Confocal images were

taken using SP8 laser confocal microscope with

Lightning (Leica). Images were observed and analyzed

using open-source image processing package FIJI.

Processing of z-stack images and quantification of mE-

CD9+ particles was accomplished using IMARIS

rendering software (Oxford Instruments). The face of

each z-stack is 50-μm by 50-μm and the thickness is ap-

proximately 30 μm.

Microglia isolation and sorting

Mice were transcardially perfused with ice-cold Hanks

Balanced Salt Solution (HBSS) and whole brains were re-

moved. Brain tissue was dissected into 1-mm3 pieces

and homogenized into a single cell solution in ice cold

HBSS using a glass Dounce homogenizer. Single cell sus-

pensions were centrifuged over a 37%/70% discontinu-

ous Percoll (GE Healthcare) gradient. Mononuclear cells

were isolated from the interphase of these layers. In

order to distinguish resident microglia from recruited

myeloid cells, we used a monoclonal antibody that rec-

ognizes FCRLS, which is expressed on microglia, but not

infiltrating myeloid cells [8, 65]. Isolated cells were

stained with anti-FCRLS-APC, along with CD11b-

PeCy7, Ly6C-PercpCy5.5, LIVE/DEAD Blue Dead Cell

Stain for UV Excitation, followed by rat primary anti-

body against Clec7A (1:100) (InvivoGen) and secondary

anti-rat FITC. Doublets were removed and the LIVE/

DEADLO CD11bHI Ly6CLO FCRLS+ Clec7A+/− microglia

populations were isolated.

RNA isolation, cDNA synthesis, and quantitative PCR

For purification of microRNA and total RNA from iso-

lated microglia, the miRNeasy Mini Kit was used accord-

ing to manufacturer protocols (Qiagen, #217004). cDNA

synthesis was achieved using the Superscript VILO

cDNA synthesis kit (Thermo Fisher Scientific

#11754050) with an initial RNA input of 100 ng after

DNase I digestion (Ambion, # AM2222). Quantitative

PCR was carried out in 6 μL total volume. Each reaction

volume consisted of 0.5 μL of primers (Thermo Fischer

Scientific, # 4331182), 1.5 μL of cDNA, 3 μL of water,

and 1 μL of Taqman Fast Advanced Master Mix

(Thermo Fisher Scientific, #4444557). The amplification

was conducted using an ABI Prism 7900HT Sequence

Detection System.

Lentiviral vector production

The pLV-EF1α-mEmerald-CD9-miR9T lentivirus was

generated by modifying commercially available

pLV.PGK.GFP.miR9T lentivirus [39]. The vector back-

bone was modified to contain the murine EF1α pro-

moter and express mEmerald conjugated to CD9

followed by miR9T in the 3’UTR. mEmerald-CD9–10

was a gift from Michael Davidson (Addgene plasmid #

54029; http://n2t.net/addgene:54029; RRID:Addgene_54,

029). Viral particle production and packaging was done

by a commercial source (SignaGen Laboratories,

Rockville MD, USA). The viral titer is >1E + 9 TU/ml.

Lentivirus (1 μL) was injected to the MEC (AP: 4.75,

ML: 2.90, DV: 4.64) of 6 months-old AppNL-G-F and WT

mice and euthanized at 10-day post-injection for immu-

nohistochemical and biochemical analyses.
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Cell culture transduction

Human embryonic kidney 293 T (HEK293T) cells were

cultured in 24-well tissue culture-treated plates with 1%

penicillin-streptomycin (Thermo Fischer Scientific,

#15140122), 10% fetal bovine serum (FBS, Thermo Fi-

scher Scientific, #A3382001) in Dulbecco’s Modified

Eagle Medium (DMEM, Invitrogen #11965118) for 24 h

prior to plasmid DNA transduction. HEK293T cells were

serum-starved for 1 h in DMEM prior to receiving 1 μL

of mE-CD9 lentivirus or control lentivirus.

Immunoblotting

Transfection was performed with pLV-EF1α-GFP-

miR9T or pLV-EF1α-mEmerald-CD9-miR9T plasmid

(2.5 μg/well) using Lipofectamine 3000 (Thermo Fisher

Science, #L3000008). Whole cells and conditioned

medium were collected 3 d after transfection. The condi-

tioned medium was centrifuged at 2000 g for 30 min, at

10,000 g for 30 min, at 144,000 g for 70 min and last pel-

lets were collected as the EV fraction. Whole cells or EV

fractions were lysed with RIPA buffer containing Halt

Protease and Phosphatase inhibitor Cocktail (Thermo

Fisher Science, #78442), and incubated at 95 °C for 5

min with Laemmli sampling buffer (Bio-Rad, #S3401-

10VL) supplemented with 2% v/v 2-mercaptoethanol.

The protein samples (10 μg/lane) were subjected to 10%

SDS-PAGE, transferred to PDVF membrane (Bio-Rad),

and blocked with 3% skim milk in TBS 0.5% Tween20

(TBS-T). The membranes were incubated overnight at

4 °C with anti-GFP mouse monoclonal antibody (Santa

Cruz Biotech, B-2; 1:500), and washed with TBS-T. Then

the membranes were incubated with HRP-conjugated

anti-mouse IgG antibody (Cell Signaling Technology,

#7076; 1:10,000) for 1 h at room temperature. The pro-

teins were detected with Immobilon chemiluminescent

HRP substrate (Millipore Sigma, #WBKLS0100) and vi-

sualized with Chemiluminescent Western Blot Imaging

System (Azure, #C300).

Purification of EVs

Following sacrifice and transcardial perfusion with cold

PBS, mouse brains were cut in half sagittally and the left

half was used for EV purification. Left hemispheres were

sliced with a razor into thin strips > 1mm in width and

subjected to digestion in 1.5 mL of collagenase diluted

into Hibernate E (Invitrogen, #A1247601) (75 U/mL)

(Worthington Biochemical, #LS004180) at 37 degrees

Celsius for 15 min with occasional stirring. Next, prote-

ase inhibitor was added at the recommended dilution

(Thermo Fisher, #P178443) and the brains were mech-

anically homogenized for approximately 2 min and then

subjected to 40-μm filtration (Fisher Scientific, #22–363-

547). Solutions were then processed by sequential centri-

fugation in the following order and the supernatant was

used for the next step each time: 300 g for 10 min, 2000

g for 10 min, and 10,000 g for 10 min. Solutions were

then filtered through 0.22-μm filters and subjected to

ultracentrifugation at 140,000 g for 70 min. Lastly, pellets

were subjected to sucrose gradient and separated at 200,

000 g for 20 h. The 0.65M and 0.8M sucrose fractions

were pooled then diluted in 12ml of cold PBS and sub-

jected to ultracentrifugation at 140,000 g for 70 min.

Immunoelectron microscopy

The EV pellet was then fixed in 4% formaldehyde with

0.1% glutaraldehyde for 2 h at RT then washed with PBS

containing 20 mM glycine. Following fixation, the pellet

was processed for ultra-thin cryosectioning. The pellets

were infiltrated with 2.3 M sucrose in PBS for 15 min,

frozen in liquid nitrogen, and then sectioned 80-nm

thick at -120C° as previously described [22]. Sections

were transferred to a carbon-coated copper formvar grid

and labelling was conducted on a piece of parafilm.

Blocking with 1% BSA for 10 min was used to prevent

non-specific labelling. All antibodies were diluted in 1%

BSA in PBS. Labeling for p-tau was conducted using

AT8 1:30 (pSer202/pSer205 tau, Thermo Fisher Scien-

tific, #MN1000) for 30 min, followed by rabbit anti-

mouse bridging antibody (1:50, AbCam, ab6709) for 30

min and 5-nm protein A-gold (1:50, University Medical

Center, Utrecht, the Netherlands) for 20 min. After four

washes in PBS, the grids were fixed for 5 min in 1% glu-

taraldehyde in PBS, followed by four washes in 20mM

glycine in PBS (to quench free aldehyde groups).

mEmerald-CD9 was labelled using anti-GFP rabbit poly-

clonal antibody (AbCam ab6556; 1:30) followed by 10-

nm Protein A gold (1:50). This was followed by washing

with PBS and water for 15 min. Sections were then con-

trasted with 0.3% uranyl acetate in 2% methylcellulose

for 5 min. Grids were examined at 80 kV with a Tec-

naiG2 Spirit BioTWIN transmission electron micro-

scope. Images were recorded with an AMT 2 k CCD

camera.

Statistical analysis

All statistical analyses were performed in GraphPad

Prism 8 (Graph-Pad Software, Inc). Two-way ANOVA

was used to assess comparisons between all four experi-

mental groups when applicable. Normal distributions

were assumed when making post-hoc analyses and cor-

recting for multiple comparisons (Tukey). In instances

of two group comparisons, unpaired t-tests assuming

equal variances were used.
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