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pLARmEB: integration of least angle regression with
empirical Bayes for multilocus genome-wide association
studies

J Zhang1,4, J-Y Feng1,4, Y-L Ni1, Y-J Wen1, Y Niu1, CL Tamba1, C Yue1, Q Song2 and Y-M Zhang1,3

Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait
nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In
this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background
control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and
environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression
was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other
chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model
were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this
method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from
simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation,
had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient
mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect
mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in
simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in
Arabidopsis thaliana.
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INTRODUCTION

Most complex traits in human, plant and animal genetics are

quantitative traits and these traits are controlled by multiple quanti-

tative trait loci (QTLs). The identification of these loci is usually

performed by QTL mapping or genome-wide association study

(GWAS). A large number of single-nucleotide polymorphisms (SNPs)

can be easily obtained for the genotypes by the rapid development of

sequencing and genotyping technologies. If all the SNPs are included

in a genetic model, the number of SNPs will be much larger than the

sample size. The commonly used methods are infeasible for such an

oversaturated model.

Many approaches have been proposed to estimate the parameters in

the oversaturated model and these approaches include ridge regression

(Hoerl and Kennard, 1970), stochastic search variable selection

(George and McCulloch, 1993; Yi et al., 2003), Bayesian shrinkage

estimation (Meuwissen et al., 2001; Wang et al., 2005), penalized

maximum likelihood (Zhang and Xu, 2005; Hoggart et al., 2008;

Zhang et al., 2012), empirical Bayes (Xu, 2010) and Bayesian-LASSO

(Bayesian-least absolute shrinkage and selection operator; Park and

Casella, 2008; Yi and Xu, 2008). However, these methods are mainly

proposed for linkage analysis in biparental segregation populations,

rather than for GWAS in natural population.

GWAS has been used to dissect the genetic foundation of

quantitative traits (Zhang et al., 2005, 2010; Yu et al., 2006; Kang

et al., 2008; Zhou and Stephens, 2012; Wang et al., 2016). The widely

used approach, such as efficient mixed model association (EMMA;

Kang et al., 2008; Zhou and Stephens, 2012), was proposed for single-

marker analysis under the population structure and polygenic back-

ground controls. However, this method has relatively low power in

detecting small-effect QTLs. To overcome these problems, therefore,

multilocus model methods have been suggested (Fridley et al., 2010;

Lü et al., 2011), for example, a Bayesian-inspired penalized maximum

likelihood approach (Zhang and Xu, 2005; Hoggart et al., 2008) and

PUMA (Penalized Unified Multiple-locus Association; Hoffman et al.,

2013). These methods can be used if the number of variables in the

multilocus model is not too large. Recent strategies for high-

dimensional modeling have focused on reducing the dimension of a

large matrix and then selecting the most potentially associated SNPs by

using shrinkage methods such as the LASSO and SCAD (smoothly

clipped absolute deviation) penalty (Fan and Lv, 2008; Wu et al.,
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2009). Although other multilocus approaches have also been proposed

by Segura et al. (2012), Moser et al. (2015), Liu et al. (2016), Wang

et al. (2016) and Wen et al. (2017), now further refinement and

studies are still needed.

In this study, we integrated least angle regression (LARS) algorithm

with empirical Bayes to perform multilocus GWAS for quantitative

traits, as the LARS algorithm makes LASSO (Tibshirani, 1996) efficient

and acceptable (Efron et al., 2004). To control polygenic background,

we adopted the model transformation of Wen et al. (2017) that

whitens the covariance matrix of the polygenic matrix K and residual

noise. The LARS algorithm was implemented on the transformed

model to select SNPs that are most potentially associated with the trait,

empirical Bayes was used to estimate the effects of all the selected

SNPs and all the nonzero effects were further examined by likelihood

ratio test so as to confirm true quantitative trait nucleotides (QTNs).

We refer to this method as the pLARmEB (polygene-background-

control-based least angle regression plus empirical Bayes). pLARmEB

was validated by analysis of the data sets from a series of Monte Carlo

simulation experiments and seven Arabidopsis flowering time traits.

We also discussed the possibility of applying pLARmEB for linkage

analysis.

MATERIALS AND METHODS

Genetic model
Let yi (i= 1,⋯,n) be the phenotypic value of the ith individual in a sample of

size n from a natural population. The genetic model is expressed by

y ¼ 1mþWaþ Zcþ uþ ϵ ð1Þ

where y= (y1, ⋅⋅⋅,yn)
T; 1 is a n×1 vector of 1 and μ is total average; α

is population structure effect as fixed; γ~MVNm(0,Σγ) are QTN effects

as random, Sc ¼ diag s21;?;s2m
� �

and m is the number of putative QTNs;

W and Z are the corresponding designed matrices for α and γ; polygenic

effects uBMVNnð0;s
2
gKÞ is a n×1 random vector and K is a known

n×n relatedness matrix; and ε is residual error with an assumed MVNn

(0,σ2In) distribution, σ2 is residual error variance and In is an n×n identity

matrix.

As γ is treated as being random, the variance of y in the model (1) is

varðyÞ ¼ ZRcZ
T þ s2gKþ s2In ¼

X

m

k¼1

s2kZkZ
T
k þ s2gKþ s2In

¼ s2
X

m

k¼1

lkZkZ
T
k þ lgKþ In

 !

¼ s2H ð2Þ

where lk ¼ s2k=s
2 (k=1,⋯,m), lg ¼ s2g=s

2 and H=Zdiag{λ1,⋯,λm}Z
T+λgK+In

Using EMMA, we can obtain the estimate of λg, denoted by l̂g . Let

B ¼ l̂gKþ In, an eigen (or spectral) decomposition of the positive semidefinite

matrix B was

B ¼ QBKBQ
T
B ¼ Q1 Q2ð Þ
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0 0

� �
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where QB is orthogonal, Λr is a diagonal matrix with positive eigen-

values, r=Rank(B), Q1 and Q2 are the n× r and n× (n− r) block matrices

of QB, respectively, and 0 is the corresponding block zero matrix (Wen et al.,

2017).

Let C ¼ Q1K
�

1
2

r QT
1 , the model (1) is changed to

yc ¼ 1cmþWcaþ Zccþ ϵc ð4Þ

where yc=Cy, 1c=C1, Wc=CW, Zc=CZ and εc=Cu+Cε~MVNn(0,σ
2In)

(Wen et al., 2017).

In the above model (4), let b ¼
a

c

� �

, Y= yc− 1c μ with a zero mean, and

standardizing each column in matrix (Wc Zc) produces a new matrix X with

Pn
i¼1 xij ¼ 0 and

Pn
i¼1 x

2
ij ¼ 1 (j= 1,⋯,m). Therefore, the model (4) can be

rewritten as

Y ¼ Xbþ ϵ ð5Þ

Parameter estimation
LARS for the full model. LARS is a flexible method for variable selection that

has been described previously (Efron et al., 2004). We used the LARS algorithm

to select the n− 1 variables that are most likely associated with quantitative trait

of interest.

First, let b̂0 ¼ 0, so l̂0 ¼ Xb̂0 ¼ 0

Then, suppose that l̂F is the current LARS estimate and that

ĉ ¼ XT ðY� l̂FÞ ð6Þ

is the vector of current correlations. The active set ∊ is the set of indices

corresponding to covariates with the greatest absolute current correlations,

Ĉ ¼ max
j

ĉj
�

�

�

�

� �

and F ¼ j : ĉj
�

�

�

� ¼ Ĉ
� �

Let sj ¼ sign ĉj
� �

for j∊ F. We can calculate XF= (···sjxj···)j∊F, uF=XFωF,

GF ¼ XT
FXF, FF ¼ 1TFG

�1
F 1F

� ��1=2
, where oF ¼ FFG

�1
F 1F, and 1F being a

vector of 1 with the length of equaling |F|.

Third, update l̂F in the LARS algorithm:

l̂Fþ ¼ l̂F þ ĝuF

where ĝ ¼ min
jAFc

þ Ĉ�ĉj
FF�aj

;
Ĉþĉj
FFþaj

n o

, min+ indicates that the minimum is taken over

only positive components within each choice of j in the formula of ĝ, and

a≡XTuF.

Repeat step 2 to step 3 until a criterion of convergence is satisfied. The above

algorithm was conducted by lars package (http://cran.r-project.org/web/

packages/lars/) in R language.

Usually, if all the marker effects are included in one genetic model, the

parameters cannot be estimated under the situation of m≫n, where n is sample

size and m is the number of variables. As most markers are not likely associated

with the trait of interest, once the markers with zero effects are deleted from the

full model, marker effects of the reduced model is estimable. In each LARS

variable selection, the n− 1 SNPs that are most potentially associated with the

trait are selected to construct the reduced model.

Empirical Bayes estimation in the reduced model. In the reduced model,

y ¼ Xbþ Zcþ ϵ ð7Þ

where y is the same as that in the model (1); β is a vector of fixed effect, γ is a

vector of random effect of the selected markers and X and Z are the design

matrices for β and γ, respectively. All the parameters in the model (7) were

estimated by empirical Bayes proposed by Xu (2010).

The fixed effect β and residual variance σ2 were estimated by

b ¼ ðXTV�1XÞ�1ðXTV�1yÞ ð8Þ

s2 ¼
1

n
ðy � XbÞT y � Xb�

X

p

k¼1

ZkEðgkÞ

" #

ð9Þ

where V ¼ s2Iþ
P

p

k¼1

ZkZ
T
k s

2
k ¼ Is2 þ Zdiag s21;?; s2p

n o

ZT . The random

effect γk of each marker and its prediction error var(γk) were predicted by

best linear unbiased prediction:

EðgkÞ ¼ s2kZ
T
k V

�1ðy � XbÞ ð10Þ

varðgkÞ ¼ s2kI� s2kZ
T
k V

�1Zks
2
k ð11Þ

where s2k ¼
EðgT

k
gkÞþo

tþ2þmk
, ω= τ= 0, and mk is the number of genotypes at locus k.

The method requires inverse of matrix V. If the sample size is large, that is,

pLARmEB for multilocus GWAS
J Zhang et al

518

Heredity

http://cran.r-project.org/web/packages/lars/
http://cran.r-project.org/web/packages/lars/


n4p, binomial inverse theorem (Henderson and Searle, 1980) can be used:

V�1 ¼ ðIs2Þ�1 � ðIs2Þ�1
ZR Rþ RZTðIs2Þ�1

ZR
	 
�1

RZT ðIs2Þ�1 ð12Þ

where R ¼ diag s21;?; s2p

n o

Based on our experiences, empirical Bayes is feasible when the number of

variables is less than 40 times of the sample size. However, this condition is not

frequently met in GWAS. If the LARS algorithm is used to select the variables

that are most potentially associated with the trait under polygenic background

control, the effects of the selected markers can be estimated by empirical Bayes.

Likelihood ratio (LR) test
Based on the estimate of marker effect γk in the reduced model, markers with

ĝkj jo10�4 are considered not to be associated with the trait; however, the

association of the chosen markers with the trait and the effects θ= {γ(1),⋯,γ(q)}

needs to be tested, where q is the number of SNPs in the reduced model. To

test the null hypothesis H0:γ(i)= 0, that is, no QTL linked to the marker, we

conducted an LR test by

LRi ¼ �2 Lðy�iÞ � LðyÞ½ � ð13Þ

where y�i ¼ gð1Þ;?; gði�1Þ; gðiþ1Þ;?; gðqÞ

n oT

, LðyÞ ¼
Pn

i¼1 lnf yi;Xbþ Zc;
�

s2Þ is a log-likelihood function, ϕ(yi;Xβ+Zγ,σ
2) is a normal density function

with mean Xβ+Zγ and variance σ2 and LOD= LR/4.605. The critical value for

significance was set at LOD= 2.0 (Bu et al., 2015).

AIC and BIC for testing goodness of fit of models
The goodness of fit for a statistical model can be measured by

AIC ¼ �2lnðLÞ þ 2k ð14Þ

BIC ¼ �2lnðLÞ þ klnðnÞ ð15Þ

where L is the likelihood function value and k is the number of independent

variables, and n is sample size. Smaller Akaike information criterion (AIC) or

Bayesian information criterion (BIC) value indicates a good fit.

pLARmEB has been implemented in R and its software can be downloaded

from https://cran.r-project.org/web/packages/mrMLM/index.html.

Data sets for analyses
One Arabidopsis data set and four Monte Carlo simulated data sets were used to

validate pLARmEB. Each data set contained phenotypic observations for

quantitative traits and genotypic values for molecular markers.

The Arabidopsis data set. The data set downloaded from http://www.arabi-

dopsis.org/ includes 199 diverse inbred lines each with 216 130 SNPs and 107

traits (Atwell et al., 2010). Among these traits, seven are related to flowering

time, including days to flowering under long days, days to flowering under long

days with vernalization, days to flowering under short days, days to flowering

under short days with vernalization, days to flowering at 10 °C, days to

flowering at 16 °C and days to flowering at 22 °C. We analyzed these traits

using pLARmEB, EMMA, multilocus random-SNP-effect mixed linear model

(mrMLM) and fast multilocus random-SNP-effect EMMA (FASTmrEMMA)

methods. The population structure Q matrix and kinship coefficient matrix K

between all the pairs of lines were used to control population structure and

polygenic background. We also deleted the SNPs with minor allele frequency

o10%. When all the markers on one chromosome were in one genetic model,

the markers on other chromosomes were used to calculate K matrix as

polygenic background control (Rincent et al., 2014; Yang et al., 2014; Wei and

Xu, 2016). Here 50 SNPs most potentially associated with the trait are selected

to construct the reduced model. This number may vary across different

data sets.

Data sets from Monte Carlo simulation in natural population. Three Monte

Carlo simulation experiments were conducted to validate pLARmEB. The three

data sets are the same as those in Wang et al. (2016). In the first experiment, all

the SNP genotypes were derived from 216 130 SNPs reported by Atwell et al.

(2010) and 2000 SNPs were randomly sampled from each chromosome (Chr.).

The positions of these SNPs in the genome were between 11 226 256 and

12 038 776 bp on Chr. 1, between 5 045 828 and 6 412 875 bp on Chr. 2,

between 1 916 588 and 3 196 442 bp on Chr. 3, between 2 232 796 and

3 143 893 bp on Chr. 4 and between 19 999 868 and 21 039 406 bp on

Chr. 5 (Wang et al., 2016). The sample size was 199, and this was the number

of lines in Atwell et al. (2010). Six QTNs were simulated and placed on the

SNPs with rare allelic frequency of 0.30. The heritabilities of the QTNs were set

as 0.10, 0.05, 0.05, 0.15, 0.05 and 0.05, respectively; their positions and effects

are listed in Supplementary Table S1. The total average was set at 10.0 and

residual variance was set at 10.0. For each simulated QTN, we counted the

number of samples in which the LOD (logarithm (base 10) of odds) exceeded

2.0 (Bu et al., 2015). A detected QTN within 2 kb of the simulated QTN was

considered a true QTN. The ratio of the number of such samples to the total

number of replicates (1000) represented the empirical power of this QTN. False

positive rate (FPR) was calculated as the ratio of the number of false positive

effects to the total number of zero effects considered in the full model. To

measure the bias of gene effect estimate, mean squared error (MSE)

MSEk ¼
1

1000

X

1000

i¼1

ðĝkðiÞ � gkÞ
2 ð16Þ

was calculated, where ĝkðiÞ is the estimate of effect γk in the ith sample.

We investigated the effect of polygenic background on pLARmEB in the

second experiment by adding polygenic effects from a multivariate normal

distribution MVNnð0;s
2
pgKÞ, where s2pg is polygenic variance and K is a

pairwise kinship coefficient matrix among individuals. Here s2pg ¼ 2, so

h2pg ¼ 0:092. The QTN size (h2), total average, residual variance and other

parameter values were the same as those in the first experiment, and all the

parameters are listed in Supplementary Table S2.

In the third experiment, we investigated the effect of epistatic background on

pLARmEB. Three epistatic QTNs were added. The related parameters for the

simulated three epistatic QTNs have been described in Wang et al. (2016). The

QTN sizes (h2), total average, residual variance and other parameter values were

also the same as those in the first experiment (Supplementary Table S3).

Monte Carlo simulation experiments in backcross. To test whether pLARmEB

can be used in biparental population, we conducted another simulation

experiment. In this experiment, 200 individuals each with 10 001 evenly spaced

markers on the entire genome of 100 000 cM length were simulated in

backcross population. Eight main-effect QTLs were simulated and placed at

marker positions. The sizes and locations of these QTLs are listed in

Supplementary Table S4. The population mean (b0) and residual error variance

(σ2) were set at 10 and 10, respectively. The number of replicates was set at 200.

RESULTS

Monte Carlo simulation studies

Statistical power for QTN detection. To validate pLARmEB, three

simulation experiments were conducted. In the first experiment, each

simulated sample was analyzed by pLARmEB, least angle regression

plus empirical Bayes (LARmEB), EMMA, FASTmrEMMA, mrMLM

and Bayesian hierarchical generalized linear model (BhGLM). Among

the 1000 samples, the first 100 were further analyzed using the

BhGLM method. As shown in Supplementary Table S1 and Figure 1a,

the average power for the above 6 methods was 77.1, 68.9, 46.0, 70.7,

68.6 and 54.5%, respectively. The method in which polygenic back-

ground was controlled had the highest average power among the six

methods (Figure 1a). To further confirm the effectiveness of pLAR-

mEB, polygenic effect simulated from multivariate normal distribution

(r2= 9.2%) was added to each phenotype in the second experiment

and three epistatic QTNs (r2= 15%) were added in the third

simulation experiment. The average powers based on pLARmEB,

LARmEB, EMMA, FASTmrEMMA, mrMLM and BhGLM were 78.3,

69.6, 42.5, 75.0, 67.6 and 60.7%, respectively, in the second experi-

ment (Supplementary Table S2); and 74.4, 57.5, 39.1, 59.2, 58.9 and
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56.3%, respectively, in the third experiment (Supplementary Table S3).

The highest average power was observed when pLARmEB included

polygenic background control.

Accuracies of estimated QTN effects. MSE measured accuracies of

estimated QTN effects, and low MSE indicates high accuracy for

parameter estimation. As shown in Figure 1b and Supplementary

Tables S1–S3, the average MSEs based on pLARmEB, LARmEB,

EMMA, FASTmrEMMA, mrMLM and BhGLM were 0.0895, 0.1005,

0.5432, 0.2885, 0.0940 and 0.2577, respectively, in the first experiment

(Figure 1b and Supplementary Table S1); 0.0917, 0.0997, 0.5680,

0.3227, 0.0852 and 1.3139, respectively, in the second experiment

(Supplementary Table S2); and 0.0973, 0.1240, 0.5973, 0.3450, 0.1024

and 0.3934, respectively, in the third experiment (Supplementary

Table S3). pLARmEB had the highest accuracy for estimating QTN

effect among the six methods.

FPR and ROC curve. High FPR is a major concern in GWAS. To

overcome this issue, a very high significance level was frequently

adopted in genome-wide single marker scan. In our multilocus

method, a less stringent significance level (LOD= 2.0) was

recommended. We wanted to know whether this criterion produces

high FPR. All the FPR results in the three simulation experiments are

listed in Supplementary Tables S1–S3. Clearly, the FPRs based on

pLARmEB, LARmEB, EMMA, FASTmrEMMA, mrMLM and BhGLM

were 0.0009, 0.0127, 0.0325, 0.0084, 0.0168 and 0.0115 (%), respec-

tively, in the first experiment (Supplementary Table S1); 0.0025,

0.0010, 0.0166, 0.0081, 0.0210 and 0.0093%, respectively, in the

second experiment (Supplementary Table S2); and 0.0089, 0.0031,

0.0253, 0.0148, 0.0265 and 0.0120%, respectively, in the third

experiment (Supplementary Table S3). These results indicate that

pLARmEB had a low FPR.

To compare various approaches for their efficiencies in the

detection of significant QTNs, receiver operating characteristic

(ROC) curve was plotted. ROC is a plot of average power against

FPR. We calculated the corresponding average powers for the 41

thresholds between 10− 6 and 10− 2 in the first simulation experiment,

and compared the ROC curves among the above 6 methods. Under

the 0.01 to 0.001 significant levels, pLARmEB has the highest power to

detect QTN among the six methods (Figure 2).

Computational efficiency. We scanned and identified SNPs that were

associated with the trait on each chromosome using LARS. We then

included all the potentially associated SNPs across the genome into one

genetic model and estimated their effects by empirical Bayes (Xu,

2010). For the first simulation experiment, the above procedures took

4.20, 6.82, 68.77, 8.32, 13.29 and 4100 h (Intel Core i5-4570 CPU

3.20 GHz, Memory 7.88G, Nanjing, China) for pLARmEB, LARmEB,

EMMA, FASTmrEMMA, mrMLM and BhGLM, respectively. pLAR-

mEB took the least computing time among the six approaches. A

similar trend was found in real data analyses (Supplementary Table S5).

Analysis of the Arabidopsis data set

To test the performance of pLARmEB, a data set containing 7

Arabidopsis flowering traits along with 216 130 SNPs in Atwell et al.

(2010) were reanalyzed by pLARmEB, EMMA, FASTmrEMMA and

Figure 1 Average powers in the detection of QTNs (a) and average of mean squared errors in the estimation of QTN effects (b) across six simulated QTNs
using pLARmEB, LARmEB, EMMA, FASTmrEMMA, mrMLM and BhGLM.

Figure 2 Statistical powers of six simulated QTNs in the first simulation
experiment plotted against false positive rate (in a log10 scale) for
pLARmEB, LARmEB, EMMA, FASTmrEMMA, mrMLM and BhGLM.
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mrMLM. All the significantly associated SNPs were used to fit the

regression for each trait and model fitness was reflected by AIC and

BIC values. The AIC values for all the seven traits based on pLARmEB

were much lower than those based on EMMA, FASTmrEMMA and

mrMLM (Table 1). Hence, FASTmrEMMA and mrMLM were better

than EMMA and a similar result was also observed from the BIC

values. The finding suggests that pLARmEB is better in model fit than

EMMA, FASTmrEMMA and mrMLM.

Within 20 kb of each SNP significantly associated with traits, we

mined candidate genes for these traits. Among the genes identified in

previous studies, pLARmEB, FASTmrEMMA and mrMLM identified

more previously reported genes than EMMA (Supplementary Table S6).

For example, pLARmEB, FASTmrEMMA and mrMLM identified more

than three genes for long days with vernalization, whereas EMMA

detected only one gene (AT5G45890). A similar trend was also observed

for other traits (Supplementary Table S6). Among these previously

Table 1 AIC and BIC values for the regression of significantly associated SNPs on each Arabidopsis flowering time trait using pLARmEB,

EMMA, FASTmrEMMA and mrMLM

Trait BIC AIC

pLARmEB EMMA FASTmrEMMA mrMLM pLARmEB EMMA FASTmrEMMA mrMLM

LD 63.53 289.74 263.56 260.60 −26.90 286.62 201.20 195.12

LDV −306.01 −104.50 −157.79 −142.31 −380.99 −113.87 −198.40 −176.67

SD −118.34 118.17 48.55 31.26 −251.10 115.08 2.24 −42.84

SDV −155.98 90.55 124.10 −96.31 −269.53 75.20 78.07 −148.49

FT10 −390.40 28.18 −99.08 −216.17 −514.58 24.92 −164.44 −281.52

FT16 −6.09 222.04 189.81 192.32 −84.40 218.78 144.13 127.06

FT22 182.71 332.36 283.04 235.13 120.72 329.10 230.84 160.09

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; EMMA, efficient mixed model association; FASTmrEMMA, fast multi-locus random-SNP-effect EMMA; FT10,
FT16 and FT22, days to flowering at 10, 16 and 22 °C, respectively; LD, days to flowering under long days; LDV, days to flowering under long days with vernalization; mrMLM, multilocus random-
SNP-effect mixed linear model; pLARmEB, polygenic-background-control-based least angle regression plus empirical Bayes; SD, days to flowering under short days; SDV, days to flowering under
short days with vernalization; SNP, single-nucleotide polymorphism.

Table 2 The previously reported genes for seven flowering time traits in Arabidopsis that were detected only by pLARmEB

Traita Gene Chr. SNP (bp) P-value Effect LOD r2 (%) Traita Gene Chr. SNP (bp) P-value Effect LOD r2 (%)

LD AT3G56960 3 21 079 518 1.52E−03 −0.040 2.18 0.38 SDV AT2G19690

AT2G19760

2 8 516 520 6.65E−05 0.030 3.45 0.43

AT5G11320 5 3594 757 7.54E−05 −0.028 3.40 0.23 AT2G32700 2 13 853 405 4.60E−08 −0.066 6.49 3.29

AT5G64510 5 25 783 160 7.64E−05 0.021 3.40 0.12 AT4G12920 4 7 586 463 3.19E−10 −0.071 8.59 2.07

LDV AT1G68050

AT1G68090

AT1G68130

1 25 525 403 8.71E−08 0.039 6.22 3.40 AT5G01600 5 239 433 8.39E−07 0.036 5.27 0.90

AT2G19690

AT2G19760

2 8 516 520 7.37E−09 0.048 7.26 3.29 AT5G16780 5 5 526 925 4.30E−04 0.024 2.69 0.53

AT3G07050 3 2 215 112 5.69E−06 0.029 4.47 1.99 AT5G45890 5 18 607 728 1.23E−03 −0.014 2.27 0.13

SD AT1G01510

AT1G01530

1 192 020 1.88E−06 0.029 4.93 0.52 FT10 AT1G61290 1 22 619 960 9.12E−06 0.012 4.28 0.56

AT1G68090

AT1G68130

1 25 532 914 7.90E−13 0.036 11.14 1.18 AT2G01200 2 134 343 1.03E−05 −0.013 4.22 0.71

AT2G07020

AT2G07040

AT2G07050

2 2 910 430 3.63E−10 −0.036 8.53 1.71 AT2G03500 2 1 076 833 1.30E−05 0.006 4.13 0.15

AT2G22540 2 9 588 685 1.00E−16 −0.072 16.74 5.41 AT2G18790 2 8 124 967 1.98E−04 0.019 3.01 0.81

AT2G27990 2 11 931 686 4.95E−14 0.041 12.32 2.25 AT3G47870 3 17 653 089 9.62E−08 −0.015 6.18 0.46

AT3G01780 3 286 197 1.29E−04 −0.017 3.18 0.32 AT4G01220 4 518 797 1.47E−07 −0.024 6.00 2.35

AT3G28780 3 10 816 150 2.21E−08 −0.049 6.80 1.50 AT4G33240 4 16 017 869 6.61E−05 −0.006 3.46 0.08

AT3G55200

AT3G55220

3 20 477 225 1.49E−03 0.011 2.19 0.16 FT16 AT2G03060 2 882 256 1.48E−03 −0.022 2.19 0.29

AT4G00650 4 268 809 2.95E−06 0.013 4.74 0.14 AT3G56960 3 21 079 518 3.24E−04 −0.043 2.81 1.01

AT4G03090

AT4G03110

4 1 371 766 1.32E−06 0.023 5.08 0.66 AT4G01220 4 500 090 5.46E−10 −0.090 8.36 3.17

AT5G45890 5 18 611 542 1.00E−07 0.015 6.16 0.22 FT22 AT1G52740 1 19 629 918 3.00E−06 −0.087 4.74 2.24

AT5G59570 5 24 008 772 8.91E−06 0.010 4.28 0.07 AT1G71270 1 26 869 825 8.33E−07 0.118 5.27 1.90

AT5G63160 5 25 347 883 2.62E−04 0.002 2.89 0.002 AT4G34040 4 16 310 486 4.26E−04 0.064 2.70 0.76

Abbreviations: Chr., chromosome; LOD, logarithm (base 10) of odds; pLARmEB, polygenic-background-control-based least angle regression plus empirical Bayes; SNP, single-nucleotide polymorphism.
aTrait abbreviations are the same as those in Table 1.
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reported genes, 48 were identified only by pLARmEB (Table 2).

Interestingly, genes AT2G19690 and AT2G19760 identified by pLAR-

mEB were associated simultaneously with long days with vernalization

and short days with vernalization SDV, and three genes (AT2G07020,

AT2G07040 and AT2G07050) adjacent to the SNP at 2 910 430 bp of

chromosome 2 were found to be associated with short days.

DISCUSSION

Analysis of one random sample in the first Monte Carlo simulation

experiment using LARS, empirical Bayes and pLARmEB showed that

LARS identified many QTNs with small effects in addition to all the

simulated QTNs, and thus its FPR was high (Figure 3a). The empirical

Bayes was also able to identify simulated and small-effect QTNs

although FPR was decreased (Figure 3b), and pLARmEB detected

almost all the simulated QTNs and the effects of nonsimulated QTNs

were almost close to zero (Figure 3c). More importantly, 48 previously

reported genes in Arabidopsis were identified only by pLARmEB.

Therefore, pLARmEB is a good alternative method for

multilocus GWAS.

Although pLARmEB was proposed for GWAS, it is appropriate for

mapping populations of backcross, doubled haploid and recombinant

inbred lines. To illustrate the effectiveness of pLARmEB, pseudo-

markers in every d cM were created genome-wide, and the fourth

Monte Carlo simulation experiment with 200 simulated data sets was

conducted and analyzed using pLARmEB and empirical Bayes. The

higher power for QTL detection and less bias for the QTL-effect

estimates were observed from pLARmEB than from empirical Bayes

(Supplementary Table S4). pLARmEB is also suitable for a population

consisting of chromosome segment substitution lines. However, we

can only scan marker positions, because we cannot calculate

Figure 3 Comparison of least angle regression (a), empirical Bayes (b) and pLARmEB (c) in the estimation of QTN effects in one random sample of the first
simulation experiment.
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conditional probabilities of pseudo-marker positions. If the number of

genotypes in a mapping population is more than two, for example,

AA, Aa and aa in F2, the current method requires some modifications.

Among the previously identified genes in Arabidopsis

(Supplementary Table S6), a few were found commonly by several

approaches and this is different from linkage analysis. The main

reason is that GWAS mapping population has a complicated popula-

tion structure. Although pLARmEB, FASTmrEMMA, and mrRMLM

had similar powers of QTN detection in the simulation experiments,

different previously reported genes were detected in real data analysis.

For example, 48 previously reported genes were identified only by

pLARmEB (Table 2). For this reason, we recommend pLARmEB as an

alternative method for GWAS and also recommend the joint

implementation of several methods in the GWAS analyses of one trait.

The AIC or BIC values of FASTmrEMMA in Wen et al. (2017) and

mrRMLM in Wang et al. (2016) are different from the corresponding

values in this study. In this study, we considered population structure

in GWAS. With the inclusion of population structure in genetic

model, some different SNPs are found to be significantly associated

with the trait. The above two differences result in different AIC or BIC

values for the same trait in different studies.

Multilocus GWAS has become the state-of-the-art GWAS proce-

dure. Iwata et al. (2007, 2009) developed multilocus Bayesian GWAS

approaches for quantitative and ordinal traits, although running time

is a major concern. Segura et al. (2012) proposed a multilocus linear

mixed model method that is simple, stepwise mixed model regression

with forward inclusion and backward elimination. Wang et al. (2016)

suggested mrMLM and Wen et al. (2017) proposed FASTmrEMMA.

To make assumptions more suitable to a given data set, Zhou et al.

(2013) and Moser et al. (2015) proposed a hybrid method of mixed

linear model and sparse regression model, named Bayesian sparse

linear mixed model. In this study, the integration of LARS with

empirical Bayes under polygenic background control provides one

simple and efficient way for multilocus GWAS. In Arabidopsis real data

analysis, the number of SNPs was41000 times larger than sample size

and we were able to scan each chromosome by LARS and include all

the associated SNPs across the genome in the multilocus model and

estimate their effects by empirical Bayes, and thus pLARmEB is better

than EMMA.

To obtain low FPR in GWAS, a relatively stringent significance

criterion is widely adopted, such as Bonferroni correction. Even after

using a less stringent significance criterion (such as LOD= 2.0),

pLARmEB has less FPR and higher power than EMMA. We also

conducted GEMMA (Zhou and Stephens, 2012) and its power is same

as that of EMMA (results not shown). pLARmEB works better than all

the other methods considered.
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