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Background

Plasmids are extra-chromosomal fragments of DNA that replicate autonomously in the 

host cell. �ey often carry genes that can provide a benefit under specific environmen-

tal conditions [1]. �ese mobile genetic elements remain a major biological concern for 

health and agriculture policies due to their ability to accumulate and spread resistance 

genes. Indeed, the frequency of plasmids, and of the resistance genes they carry, can 

increase quickly in populations thanks to their high mobility both within hosts (through 
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chromosomal integration) and between hosts (through horizontal gene transfer, hereaf-

ter HGT). Due to their high mobility and the function of the genes they carry, plasmids 

have a great ecological importance in many bacterial communities.

Until recently, the identification and isolation of these mobile genetic elements was 

limited to a narrow subsample of the bacteria diversity. Most past studies have only 

focused on specific species-plasmid associations of medical or agronomic interest [2, 

3]. On the one hand, the plasmid characteristics determining their role in resistance 

propagation were established by phenotypic approaches, which require the focal strain 

to grow on culture media. �ese approaches could assess the ability of genetic elements 

to transfer small conjugative plasmids carrying selectable markers into a new recipient, 

i.e. transfer, replication and expression of selectable markers [4], but were useless for non 

conjugative plasmids. On the other hand, PCR-based detection methods [5] could detect 

the number of copies for specific plasmid sequences, but did not allow to understand the 

ecological characteristics of mobile genetic elements, as for example their host range.

�e fast development of sequencing technologies and reduction of sequencing costs 

led to the rapid increase of available genomic and metagenomic data sets. �is mate-

rial contains a vast amount of information on plasmid diversity, plasmid host-range, 

resistance conferred to specific host taxa, etc. that could allow to better understand 

the circulation and spread of plasmids and the genes they carry. Accessing this infor-

mation requires new tools to process partially assembled datasets to identify plasmids 

sequences.

Well-defined plasmids can be identified through homology search (e.g., Plasmid-

Finder [6], PLACNET, PLACNETw [7]). �ese programs basically look for similarities 

between a query sequence and a local database. Query and subject sequences are usually 

quite long (at least several hundreds of bases), so the probability of finding similarities 

by chance (and thus to wrongly identify a sequence as plasmid) is very low. Homology 

search is usually very precise and reliable. However, current data limitations can sub-

stantially decrease the sensitivity of this method. Indeed, it requires an exhaustive data-

base composed of a wide variety of genomics data, enough to cover many taxa, and even 

if this is the case, rare plasmids may not be identified. In particular, the range of taxa in 

which a plasmid can be replicated and maintained (i.e., its host range [5]) can greatly 

vary: some being restricted to a few close species, and others consisting in a wide range 

of taxa across the phylogeny. �us, plasmids with a narrow host range (especially when 

only present in uncultivated species) could be nearly impossible to identify through 

homology.

In the absence of an exhaustive database, an accurate identification method requires 

to define broader associations with plasmids. �is can be achieved by the reconstruction 

of plasmids through homology-based clustering (PLACNET, PLACNETw [7], MOB-

recon [8]): the query sequences which are homologous to the same reference plasmid 

sequences are likely to be part of the same plasmids. �is approach can be successful in 

two cases: (1) if the generated graphs are manually pruned by an expert user (PLACNET, 

PLACNETw [7], but this strongly impedes the possibility to apply this method to large 

datasets) and (2) if the query sequences are also compared to complementary databases 

(e.g. insertion sequences and repeated elements, MOB-recon [8]).
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Other algorithms identify plasmids in draft genomes and metagenomes without rely-

ing on homologies, but rather on k-mers frequencies: PlasFlow [9]; cBar [10]; Plasmid-

Seeker [11]; PlasClass [12]; PPR-Meta [13]). Scoring sequences based on their k-mers 

frequencies is quick, automated, and adaptable to various data, and may result in valu-

able predictions (e.g., more than 95% of correct predictions for PlasFlow [9]). However, 

the frequencies of k-mers cannot be estimated with precision in a short contig, even 

when short k-mers (e.g., 7-mers for PlasFlow [9]) are used. For this reason, k-mer-based 

methods systematically rule out contigs below 1  kb. To get around such limitations, 

more recent approaches rather rely on mathematical models of sequence composition, 

such as one-hot matrices (PPR-Meta, [13]), thereby achieving better performances on 

short sequences.

Overall, the current plasmid identification methods are limited, in either precision or 

sensitivity. �ese limitations are not problematic for certain applications: for example, 

k-mer-based methods are well adapted to detect plasmid sequences in metagenomics 

samples containing many uncultivable species and homology-based approaches are well 

suited if users focus only on a few plasmids of interest. Yet, no tool is currently avail-

able to classify, with both high precision and sensitivity, a large data set of sequences 

as plasmid or chromosome. Such a tool would be very useful for example to monitor 

the spread of a gene family (e.g., antibiotic resistance genes) using partially assembled 

genomic datasets. Indeed, 90% of available assemblies on public repositories (up to 100% 

for species with few sequenced genomes) are partially assembled genomes (contigs or 

scaffolds). It is thus not possible to rely on the size of the genomic elements and their 

content in specific sequences (as ribosomal RNA genes or origin of replications) to clas-

sify them as chromosome or plasmids and an accurate plasmid identification method is 

required.

Here, we present PlasForest, a new tool for classifying contigs in partially assembled 

genomic datasets as plasmid or chromosome. Contrary to classical homology-based 

tools, our method does not attempt to assign query contigs to specific subject sequences, 

but rather to sort contigs in plasmid and chromosome sequences through a machine 

learning algorithm fed with parameters extracted from an homology search against an 

exhaustive plasmid database, as well as other variables (e.g., contig size and %G + C con-

tent). PlasForest can discriminate plasmids from chromosome sequences with an overall 

F1 score of 0.950 for any bacterial contig in genomic datasets. In particular, PlasForest is 

able to detect up to 77.4% of plasmid contigs under 1 kb with only 2.8% false-positives 

and up to 99.9% of plasmid contigs over 50 kb with less than 2.2% false-positives. Com-

pared to other currently available tools, PlasForest has a significantly better capacity 

to correctly identify plasmids from chromosomes in partially assembled genomes. We 

implemented this tool in a user-friendly pipeline able to identify plasmids in large data-

sets in a reasonable amount of time.

Results

PlasForest is a tool that allows to assign contigs in genomic datasets to plasmid or chro-

mosome by using a random forest classifier on variables extracted from a homology 

search. We tested the sensitivity of its performances to various changes in the training 



Page 4 of 17Pradier et al. BMC Bioinformatics          (2021) 22:349 

process, and we provide a comparison with other classical plasmid identification tools 

on large genomic datasets.

Pipeline description

A pipeline executing all analyses required for PlasForest was encoded in Python 3.6. �is 

pipeline performs all the different steps described in Fig. 1. First, it filters query contigs 

by their annotations, to avoid re-identification of sequences already described as chro-

mosome or plasmid (step 1). If the user wants to re-assign contigs with Plasforest, this 

step can be skipped with option -r. Feature acquisition (step 2) consists of submitting the 

filtered sequences to BLASTn against a local copy of the plasmid database, and calcula-

tion of the overlaps between query and subject sequences. Features are then computed 

for each query contig on its sequence and the distribution of overlaps. �e pipeline thus 

extracts seven features: average overlap, contig size, G + C content, max overlap, median 

overlap, number of hits, variance overlap (see Fig. 2A). �e classification (step 3) passes 

features to the random forest classifier, which outputs the predicted identification for 

each query contig. �e output can also include the best hits that were found in the plas-

mid database with option -b and/or the features used for classification with option -f. 

Progression of the pipeline can be displayed if run with option -v. Predictions can be 

Fig. 1 General method of classification implemented in PlasForest
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split to several threads with the multithreading option -threads and/or to several batches 

with the option -size_of_batch.

We tested runtime and memory usage for the pipeline on a subset of 1000 contigs 

randomly drawn from the COMGENOME dataset (see Methods). For a single thread, 

PlasForest takes on average 490 s and uses a maximum of 2.3 gigabytes of memory (com-

pared to respectively 300 s and 600 megabytes for PlasClass—a k-mer-based tool—on 

the same dataset). �e evolution of these performances with the number of threads is 

displayed in Additional file 1: Fig. S1.

Reliability of the classi�cation method

PlasForest was trained on artificial draft genomes, created by randomly cutting com-

pletely assembled genomes into contigs following a size distribution observed in actual 

draft genomes (Additional file 4: Table S1), that we called balanced training set (Addi-

tional file 5: Table S2A). When run on the testing set (Additional file 6: Table S2B) with 

all seven features (Fig. 2A), PlasForest presented a good ability to discriminate between 

plasmid and chromosome sequences, with both a high sensitivity (92.7%) and a high 

precision (97.3%). We tested the sensitivity of PlasForest qualitative changes by evaluat-

ing the change in performance when adding or removing features in the training of the 

classifier and when resampling the training dataset and the plasmid database.

�e classifier was trained several times on the balanced training set, by feeding it with 

different combinations of features. Predictions of the classifiers were made on the testing 

set. �e classification showing the highest MCC (Matthews correlation coefficient) was 

the one using all the features considered (average overlap, contig size, G + C content, max 

overlap, median overlap, number of hits, variance overlap), and the three variables that 

Fig. 2 Chosen features and their importances in the classification process. A Schematic representation of 

the features extracted from contigs, including homology-based features (number of hits, maximum overlap, 

average overlap, median overlap, variance of overlaps, contig size) and sequence-based feature (G + C 

content). B Impurity-based feature importance computed with scikit-learn library for the seven features kept 

in the classifier
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showed the highest feature importance were the maximal overlap, the number of hits, 

and contig size (Fig. 2B).

Bootstrapping the training set and the plasmid database showed that the performance 

of PlasForest presents a very low sensitivity to the resampling of the training set (see 

Fig. 3A). However, the performance of PlasForest decreases substantially when the com-

position of the plasmid database is resampled (see Fig. 3B). Removing sequences from 

the plasmid database can therefore significantly diminish the ability of plasForest to cor-

rectly assign contigs.

Benchmark of plasmid identi�cation methods

We compared the predictions of PlasForest on our testing dataset (see Table  1 and 

Fig. 4), with those of three classification methods based on genomic signatures (PlasFlow 

[9], PPR-Meta [13], and PlasClass [12]) and one classical homology-based classification 

method (MOB-recon [8]). PlasmidSeeker [11] was not included in our analysis, because 

it requires to know the species from which the genome comes and therefore cannot be 

used on a wide scale.

PlasForest is overall the most sensitive classifier, being able to predict 92.7% of plasmid 

contigs. However, for sequences below 2  kb, PlasForest is less sensitive than PlasFlow 

with down to 77.4% of plasmids correctly predicted. PlasForest had the highest preci-

sion, followed by MOB-recon (with respectively 2.7% and 6.1% of sequences incorrectly 

predicted as plasmids). �e precision of PlasForest is lower than that of MOB-recon 

only for contigs below 1  kb (respectively 2.8% and 0% of sequences incorrectly pre-

dicted as plasmids). On these two indices, PlasForest is therefore globally the best soft-

ware, though other classifiers can have higher sensitivity or precision for short contigs. 

However, PlasFlow suffers from low precision, especially below 5 kb (up to 70.6% of false 

positives between 1 and 2 kb), and the sensitivity of MOB-recon can be very low (down 

to 0.3% of true positives below 1  kb, down to 50% above 50  kb). PlasForest therefore 

Fig. 3 Sensitivity of PlasForest to resampling. A Performances after 50 resampling of the balanced training 

set. B Performances after 50 resampling of the plasmid database. The initial performances of PlasForest on the 

testing set are displayed with red dots. The distribution of performances for PlasForest when resampling 50 

times either the plasmid database or the balanced training set are displayed in grey boxes
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outperforms all other programs on the composite indices as well, with the highest MCC 

(globally 0.945, and even 0.988 for contigs above 50 kb) and the highest F1 score (glob-

ally 0.950, and even 0.988 for contigs above 50  kb), except for contigs between 1 and 

Table 1 Compared performances of PlasForest and 4 other plasmid identification softwares on the 

testing dataset

Contig size Index PlasFlow PlasClass Mob-Recon PPR-Meta PlasForest

[50 bp, 1 kb) Sensitivity 0.850 0.672 0.003 0.585 0.774

Precision 0.373 0.473 1 0.550 0.972

F1 0.518 0.555 0.006 0.567 0.862

MCC 0.203 0.309 0.047 0.361 0.819

[1 kb, 2 kb) Sensitivity 0.832 0.749 0.888 0.763 0.826

Precision 0.294 0.451 0.973 0.558 0.986

F1 0.434 0.563 0.928 0.644 0.899

MCC 0.284 0.451 0.914 0.555 0.883

[2 kb, 5 kb) Sensitivity 0.871 0.787 0.870 0.805 0.903

Precision 0.308 0.464 0.946 0.552 0.975

F1 0.455 0.584 0.907 0.655 0.938

MCC 0.386 0.518 0.893 0.599 0.929

[5 kb, 50 kb) Sensitivity 0.899 0.816 0.729 0.889 0.976

Precision 0.366 0.432 0.932 0.413 0.971

F1 0.520 0.565 0.818 0.564 0.973

MCC 0.518 0.545 0.811 0.557 0.971

[50 kb, + ∞) Sensitivity 0.912 0.761 0.500 0.944 0.999

Precision 0.374 0.423 0.919 0.259 0.978

F1 0.530 0.544 0.648 0.406 0.988

MCC 0.559 0.543 0.669 0.459 0.988

Overall Sensitivity 0.883 0.785 0.670 0.831 0.927

Precision 0.348 0.443 0.939 0.431 0.973

F1 0.499 0.566 0.782 0.568 0.950

MCC 0.483 0.531 0.775 0.540 0.945

Fig. 4 Compared performances of PlasForest and 4 other plasmid identification methods on the testing set
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2 kb where it is outperformed by MOB-recon. Even for very short contigs (under 1 kb) 

for which k-mers-based methods usually have poor results, PlasForest remains a reliable 

classifier, with MCC = 0.819 and F1 = 0.862 (respectively MCC = 0.361 and F1 = 0.567 

for PPR-Meta, the second-best classifier for these sizes).

Applicability of PlasForest to other datasets

We tested further the ability of PlasForest to predict contigs of plasmid origin on three 

additional datasets. We also compared the results obtained with PlasForest to the results 

obtained with the four other programs on these three datasets. �e COMGENOME 

dataset gathers artificial contigs, randomly cut with the same size distribution as the test-

ing set, but drawn from complete genomic assemblies that were released after the train-

ing and testing sets were constituted (Additional file 7: Table S3). �e CONTIG dataset 

contains partially assembled genomes which were present neither in the training nor in 

the testing datasets (Additional file 2: List S1), and the METAGENOME dataset contains 

genomes that were partially assembled from metagenomic short reads (extracted from 

the datasets of [14] and [15], Additional file 3: List S2). Contrary to the COMGENOME 

dataset, the genomes used to create the CONTIG and the METAGENOME dataset were 

not annotated, so we could not measure the accuracy of the predictions of the different 

programs on these datasets.

On the COMGENOME dataset (see Table  2), PlasForest performances are reduced 

compared to its performances on the testing set, notably in sensitivity (only 54.3% 

true positives, compared to 85.7% true positives detected by PlasFlow). Yet, PlasFor-

est remains as precise, with only 11.3% false positives (compared to 9.3% false positives 

detected by MOB-recon). Overall, on this dataset, it remains the best classifier, with 

MCC = 0.663 and F1 = 0.674 (respectively MCC = 0.522 for MOB-recon, and F1 = 0.538 

for PlasFlow).

On the CONTIG dataset (see Fig. 5A), PlasForest and PlasFlow agree to predict that 

14,427 contigs originate from plasmids (80.9% of plasmids predicted by PlasForest). 

However, 52,999 contigs that PlasFlow detects as plasmids are identified as chromo-

somes by PlasForest (39.6% of chromosomes predicted by PlasForest). PlasFlow is thus 

the plasmid identification method whose predictions resemble less those of PlasForest 

(Cohen’s κ = 0.187). In general, plasmid identification methods based on k-mers disagree 

with the predictions of PlasForest on this dataset (Cohen’s κ = 0.232 between PlasClass 

and PlasForest, and Cohen’s κ = 0.205 between PPR-Meta and PlasForest). On the con-

trary, though PlasForest and MOB-recon only agree to predict that 7350 contigs origi-

nate from plasmids (41.2% of plasmids predicted by PlasForest), only 3783 contigs that 

Table 2 Compared predictions of PlasForest and 4 other plasmid identification softwares on the 

COMGENOME dataset

Index PlasFlow PlasClass Mob-Recon PPR-Meta PlasForest

Sensitivity 0.857 0.723 0.338 0.665 0.543

Precision 0.392 0.460 0.907 0.414 0.887

F1 0.538 0.563 0.493 0.511 0.674

MCC 0.493 0.500 0.522 0.436 0.663
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MOB-recon detects as plasmids are identified as chromosomes by PlasForest (2.8% of 

chromosomes predicted by PlasForest). Predictions of MOB-recon and PlasForest thus 

globally agree substantially (Cohen’s κ = 0.459).

On the METAGENOME dataset (see Fig.  5B), PlasForest and MOB-recon globally 

identify very few contigs as plasmids (respectively 0.18% and 0.24% of contigs). On the 

contrary, PlasFlow, PlasClass and PPR-Meta all predict a much higher number of con-

tigs as plasmids (up to 25.4% of contigs for PlasClass). However, it is important to note 

that these three methods have a low level of agreement regarding which contigs are pre-

dicted to be plasmids: PPR-Meta and PlasClass agree on only 48.4% of contigs predicted 

as plasmids by PPR-Meta (Cohen’s κ = 0.271), while this number drops to 36.8% when 

comparing PPR-Meta and PlasFlow (Cohen’s κ = 0.269).

Discussion

PlasForest is a homology-based approach, combined with machine learning, which 

detects plasmids in contig and scaffold genomes. Its operating principle is to seek 

homologies between query contigs and a large plasmid database, and then to assign a 

plasmid/chromosome identity to queries with a random forest classifier.

Here we showed that PlasForest is able to deal with large datasets without prior knowl-

edge of the taxonomic background, and that it identifies plasmids with both a high sen-

sitivity and a high precision in unassembled genomes. All the plasmid identification 

software tested had either a higher false negative error rate or a higher false positive 

error rate than PlasForest, especially on very short contigs (below 1 kb). PlasForest did 

not always have the lowest individual error rates, but it optimized the tradeoff between 

sensitivity and precision, and as a consequence had the highest values of the compos-

ite indices F1 and MCC for the vast majority of the size classes. In terms of biologi-

cal material, PlasForest can be used on draft genomes (in form of contigs and scaffolds) 

as well as on assembled genomes. PlasForest has been trained and tested on artificial 

Fig. 5 Agreement of plasmid identification for PlasForest and 4 other plasmid identification methods on the 

CONTIG and METAGENOME datasets. A Number of contigs identified as plasmids in the CONTIG dataset. B 

Number of contigs identified as plasmids in the METAGENOME dataset. The CONTIG dataset gathers 151,634 

contigs collected from 1328 partially assembled genomes. The METAGENOME dataset gathers 143,663 

contigs collected from 1000 partially assembled genomes drawn from metagenomic datasets



Page 10 of 17Pradier et al. BMC Bioinformatics          (2021) 22:349 

draft genomes and has good performance on them (overall MCC = 0.945; and even 

MCC = 0.819 on contigs below 1 kb).

K-mer-based approaches were traditionally the most reliable plasmid identification 

methods. However, the number of possible k-mers increases exponentially with k and 

accurately estimating the frequency of all possible k-mers requires large contigs even for 

small values of k. For example, estimating the frequency of all 256 possible 4-mers in 

a contig requires thousands of bases, while the size of the shortest known plasmids is 

below 1 kb [16]. �us, PlasForest outperforms those methods, especially on short con-

tigs, because the quality of the genomic signature is much less dependent on contig size 

with homology-based features than with k-mers. K-mer-based approaches are thus valu-

able only when used on long contigs or in some very specific contexts: for example, Plas-

midSeeker [11] achieves up to 100% sensitivity and 99.8% specificity in whole genome 

sequencing reads by ruling out as chromosomal the k-mers which are shared with a 

complete, reference assembly. However, the use of PlasmidSeeker on broad diverse 

datasets is practically infeasible: it requires to know the species from which the genome 

comes from and that at least one genome has been assembled for this species [11].

�e high precision of PlasForest is inherited from its homology-seeking basis. �ough 

homology-based approaches may traditionally show little sensitivity, due to their inabil-

ity to detect unrelated plasmids, the performances of PlasForest and MOB-recon have 

significantly improved plasmid identification. One of the reasons why PlasForest is as 

sensitive as (or even more than) k-mer-based approaches is that it aggregates measures 

of homologies in a classifier. �us, it not only considers the presence of homologies, 

but it also measures the quality and diversity of these homologies and this improves the 

accuracy of the identification process.

Many bacterial species remain uncultivable but an increasing number of metagen-

omics tools have allowed access to genomic data in environmental samples without 

the necessity of obtaining pure cultures. Other identification tools specially designed 

for such data (e.g., PlasFlow [9]) offer the opportunity of taxonomic assignment of the 

sequence identified as belonging to plasmids. During the development of PlasForest, we 

addressed the classification of contigs from genomic (and not metagenomic) data into 

plasmids or chromosomes. �e pipeline of PlasForest offers the possibility to identify 

which plasmids from the database have the strongest homology with the query. It should 

be noted though, that the taxonomic assignment can strongly depend on (1) the plasmid 

host range and (2) horizontal gene transfer events that are yet massively undetermined 

in bacteria. Any attempt (from PlasForest or from any other method) of taxonomic 

assignment for broad host range plasmids is thus at least imprecise and can sometimes 

be impossible [17].

Finally, PlasForest is the best alternative for plasmid identification in genomic assem-

blies. However, as PlasForest mostly relies on homologies with a plasmid database, the 

vast majority of plasmids it is able to detect are related to those of its database. It thus 

showed reduced performances when resampling its database or when testing it on the 

COMGENOME dataset, which included genomes published after the construction of 

the training and test sets. Unrelated plasmids, especially with narrow host ranges or 

when the host is uncultivable, are difficult to detect through this method so far. �us, 

in its current state, PlasForest cannot be applied to detect plasmids in metagenomic 
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assemblies. Both PlasForest and MOB-recon, two identification methods that were 

initially designed for genomic assemblies, detected very few contigs as plasmids in the 

METAGENOME dataset. �ough it is very difficult to predict the actual frequency of 

contigs originating from plasmids, it is e.g. 12.7% in the COMGENOME dataset. It is 

thus far higher than 0.2% so PlasForest and MOB-recon most probably have a very low 

sensitivity for metagenomic assemblies. However, we argue that investing in homology-

based approaches for plasmid detection in metagenomic assemblies is crucial. Indeed, 

methods based on detection of k-mers probably allow to detect a much higher number 

of plasmid contigs in unknown species, but they also have a high false-positive rate: they 

detected up to 25% of plasmid contigs in the METAGENOME dataset. We also showed 

that their predictions are in high disagreement with one another, therefore rendering 

them hard to rely on. �at is why assembling methods such as metaPlasmidSPAdes [18] 

also rely on homology search, but these methods only apply to newly sequenced datasets 

and in general substantially increase the running time of assembly. As novel methods 

to detect plasmids in metagenomes need to rely on homology search, new datasets will 

be required. Some sequences from assembled plasmidomes (some being already avail-

able on MG-RAST database [19]) could be incorporated in the plasmid database of 

PlasForest. But most importantly, when plasmids can be mechanically separated from 

chromosomes in metagenomic samples [20], both chromosomes and plasmids should 

be sequenced: PlasForest could then be trained on annotated metagenomic datasets. As 

these datasets become more and more available, it will be possible to update PlasForest 

such that it will become able to detect plasmids in metagenomes.

Conclusions

In its current state, among all softwares tested, PlasForest is the best identification 

method for plasmids in contigs and scaffolds. As shown with the COMGENOME 

dataset, PlasForest still outcompetes other methods on recently released genomes. We 

released PlasForest as a user-friendly pipeline, including the trained classifier and the 

plasmid database, directly available on GitHub (https:// github. com/ leaem iliep radier/ 

PlasF orest). Further releases (at least on a half-year basis) will include a plasmid data-

base updated with the new plasmid sequences submitted to public repositories, and a 

new classifier trained on this database. �is complemented database should be regularly 

trimmed, in order to keep it of reasonable size without decreasing the performance of 

PlasForest. Especially in order to identify plasmids in metagenomic data with better 

accuracy than k-mer-based approaches, plasmidomes should be included in the plasmid 

database and the classifier should also be trained on annotated metagenomic assemblies.

Methods

�e aim of PlasForest is to combine both the high precision of homology search with 

the broad sensitivity of signature-based classifiers in order to discriminate contigs of 

plasmid origins from contigs of chromosomes. We trained a classifier for which deci-

sion relies on the homology of sequences with a large database of plasmid sequences. We 

simulated contigs by randomly cutting assembled genomes, to construct both a data-

set to train the classification algorithm (the training set) and a dataset to measure the 

https://github.com/leaemiliepradier/PlasForest
https://github.com/leaemiliepradier/PlasForest
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classification performance (the testing set). We then compared the classification perfor-

mance to other plasmid identification tools.

Data collection

Plasmid database

All bacterial plasmid sequences were downloaded from the NCBI RefSeq Genomes FTP 

server (ftp:// ftp. ncbi. nlm. nih. gov/ genom es/ refseq; September 1st, 2019). �is database 

is composed of 36,450 sequences that we used as reference for homology seeking via 

BLAST tool [21] ⁠(e-value <  10–3).

Training and testing datasets

To train the classifier and measure its performance, we randomly sampled 10,152 bacte-

rial genomes classified as ’complete’, downloaded from the NCBI Refseq Genomes FTP 

server (ftp:// ftp. ncbi. nlm. nih. gov/ genom es/ refseq).

To mimic the sequence material on which PlasForest will be applied (contigs from 

unassembled whole genomes), the empirical distribution of contig sizes was established 

from more than 100,000 Refseq unassembled genomes (see Additional file 4: Table S1 

for the chosen distribution). �is distribution was then artificially recreated from com-

plete genomes in the training and testing sets by cutting plasmids and chromosomes 

at random locations and keeping a defined number of each contig size in plasmids and 

chromosomes. Only contigs larger than 50 bp were kept, since most current sequencing 

approaches do not produce shorter reads [22]. We ended up with approximately 70% of 

the generated contigs (552,410 contigs coming from 7,400 genomes) to train PlasFor-

est. Genome annotations were used to identify contigs as plasmids or chromosomes 

(see Fig. 6A). �e remaining 30% of the generated contigs (108,175 contigs coming from 

2,752 genomes) were used as a testing set. In these two datasets, plasmid contigs were 

not at the same frequencies for all the contig sizes (e.g., > 30% under 1 kb and 2% over 

100 kb). �is could have led to an artificial detection bias based on contig size (e.g., a 

better identification of small plasmid contigs). �us, we split the initial training dataset 

into contig size categories (50 bp to 1 kb, 1 to 2 kb, 2 to 5 kb, 5 to 10 kb, 10 to 50 kb, 50 

to 100  kb, and over 100  kb), and randomly removed plasmid or chromosome contigs 

from each category to keep the fraction of plasmid contigs constant (around 10%) across 

contig sizes. �is new dataset is thereafter called balanced training set (Additional 

file 5: Table S2A). No manipulation of the testing set was performed (Additional file 7: 

Table S2B).

Use case datasets

We created three other datasets to validate the performance of our approach on several 

use cases (see Fig. 6B).

�e CONTIG dataset was created by using all the 1328 bacterial genomes classified as 

’contig’ that were released on RefSeq between September 1st and 30th, 2020. �is dataset 

gathered 151,634 contigs (see Additional file 2: List S1 for the list of genome identifiers).

�e COMGENOME dataset was created by using all the 653 bacterial genomes clas-

sified as ’complete’ that were released on RefSeq between September 1st and October 

31st, 2020. �ese genomes were thus released after PlasForest was trained, and none 

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq
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of their sequences were used to create either the training and testing sets or the plas-

mid database. To simulate draft genome assemblies, the sequences from these genomes 

were randomly cut into contigs following the same size distribution as used to create the 

training and testing sets (Additional file 4: Table S1), but no correction was applied to 

the frequency of contigs of plasmid origin. �is process resulted in 57,605 contigs (see 

Additional file 7: Table S3 for the list of artificial contigs).

�e METAGENOME dataset was created by using two subsamples of draft genomes 

assembled from metagenomic short reads. 500 genomes were randomly sampled from 

the Human Gastrointestinal Bacteria Genome collection [14], and 500 genomes from 

the Genomes from Earth’s Microbiomes catalog [15], thus bringing together 143,663 

contigs (see Additional file: List S2 for the list of genome identifiers).

Construction of PlasForest

Extraction of the features

All contigs were compared against the plasmid database using BLASTn [21]. Pair-align-

ments with homologous sequences (hereafter referred to as “hits”) were kept if their 

e-value was below  10−3. For each contig and homologous sequence, we computed over-

lap as the fraction of the query contig aligning to the homologous sequence hit. �e 

G + C content of all contigs was computed with the function SeqUtils.GC from the 

Biopython library in Python 3.6 [23].

Our aim is not to assemble plasmids (or to assign contigs to precise replicons), but to 

identify contigs that originate from plasmids. �is motivates for a distinct design from 

other homology-based approaches. By combining both homology search and measures 

of nucleotide composition, we aim to obtain a strong distinction between plasmids and 

Fig. 6 Datasets and application of a hold-out method for supervised learning. Schematic representation 

of the processes that allow to generate the datasets used to build PlasForest and to benchmark its 

performances. A 10,152 bacterial genomes from NCBI Refseq Genomes FTP server were randomly cut into 

contigs, and were distributed into the following datasets: the (balanced) training set contains 70% of the initial 

10,152 genomes assemblies and it is used to train the random forest classifier; the testing set contains 30% of 

the genomes. B Other genome assemblies were drawn from more recent releases of NCBI Refseq Genomes 

FTP or from other sources to build the COMGENOME, CONTIG, and METAGENOME datasets. With the testing 

set, they are used to benchmark the performance of PlasForest compared to other plasmid identification 

methods
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chromosomes. We therefore selected features as follows. (1) Maximal overlap was 

measured among hits in the subject database, because we expect that query plasmid 

contigs should form longer alignments with sequences from the plasmid database than 

query chromosomes. (2) Contig size was included as short contigs align more often than 

large contigs with the subject database. (3) �e number of hits, the average overlap, 

the median overlap, and the variance of overlaps provide other parameters of the dis-

tribution of overlaps among hits, that may help distinguish between chromosomes and 

plasmids. Indeed, due to recombination events, one may expect that query chromosome 

contigs will align with subject plasmids, but more rarely than query plasmid contigs. (4) 

Finally, the G + C content was also included, as the nucleotide composition of plasmids 

are most often different from those of chromosomes [24]. �is set of features used to 

train the classifier is schematically displayed in Fig. 2A.

Training of the classi�er

We extracted the differences in the features of plasmid contigs and chromosome contigs 

thanks to a random forest classifier. �is approach relies on a multitude of independent 

decision trees, which allows for a reduction of individual error [25]. �e aim was there-

fore to build a model able to predict, from the extracted features, whether a contig comes 

from a plasmid or a chromosome. �e random forest classifier algorithm was trained 

with the RandomForestClassifier function from scikit-learn library [26] in Python 3.6, 

using the seven features described above. �e number of random decision trees was kept 

to 500, as out-of-bag error estimate (i.e., the internal error of individual decision trees 

during the training process) did not significantly decrease when using more trees. �e 

global classification method of PlasForest is described in Fig. 1.

Sensitivity of the classi�er

We tested the sensitivity of PlasForest (1) to the composition of the plasmid database 

and (2) to the composition of the balanced training set, by performing two independent 

bootstrap analyses. To assess the importance of the composition of the plasmid data-

base, we resampled the plasmid database with 50 different seeds. We then computed 

new features for each contig of the balanced training set and testing set. A classifier was 

trained on the balanced training set for each resampled plasmid database, and its perfor-

mance was measured on the testing set. To test the sensitivity to the composition of the 

balanced training set, we resampled the balanced training set 50 times, while the testing 

set did not change. We trained classifiers on the resulting balanced training sets, and 

measured their performances on the testing set.

Measure of classi�cation performances

Indices of binary classi�cation performance

In order to measure the performance of our trained algorithm to correctly identify plas-

mid sequences and to compare its performance to other available tools, we computed 

indices derived from the confusion matrix that are commonly used in binary classifi-

cations. Sensitivity (sometimes indicated as recall) is the fraction of positive data (in 

our case, plasmid contigs) which has been correctly identified as positive and allows to 

measure the false negative error rate. Precision (also indicated as the positive predictive 
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value) corresponds to the fraction of positive results that are actually true positives and 

allows to measure the false positive error rate. A good classifier should be able to opti-

mize both sensitivity and precision i.e. in our case, identify as many plasmid contigs as 

possible without misidentifying chromosome contigs as plasmids. For this reason, we 

calculated “composite” indices that reflect the overall performance of the classifier. F1 

score corresponds to the harmonic mean of sensitivity and precision: it therefore ranges 

from 0 (i.e., either precision or sensitivity or both are null) to 1 (i.e., there are neither 

false positives nor false negatives). F1 score does not take into account true negatives. 

We also calculated Matthews Correlation Coefficient (MCC). �is metric corresponds 

to a correlation coefficient between the observed and the predicted classifications and 

is generally regarded as a balanced measure that can even be used if classes are of very 

different sizes [27]. Values range between + 1 for a perfect prediction, 0 for a random 

prediction, and -1 for a prediction in total disagreement with the observed data.

Comparison with other softwares

We ran 4 other plasmid identification softwares on the same datasets as PlasForest, and 

compared their predictions and performances to those of PlasForest. �e version 1.1 

of PlasFlow was downloaded from https:// github. com/ smaeg ol/ PlasF low⁠. Taxonomic 

assignments were not taken into account to assess the performance of the classification. 

To avoid the algorithm assigning sequences as “unclassified”, we used a threshold value 

of 0.5. MOB-suite was downloaded from https:// github. com/ phac- nml/ mob- suite, and 

MOB-recon was run with default values. MOB-recon clustering algorithm requires draft 

genome assemblies as inputs, so contigs on which MOB-recon was tested were gathered 

by their genome of origin. PlasClass was downloaded from https:// github. com/ Shamir- 

Lab/ PlasC lass and the program was run with default values. �e virtual machine ver-

sion of PPR-Meta was downloaded from http:// cqb. pku. edu. cn/ ZhuLab/ PPR_ Meta, and 

the program was run in VirtualBox v. 5.2.42 with default values. When the algorithm 

assigned sequences as “phage”, they were considered as negative predictions.
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HGT: Horizontal gene transfer; MCC: Matthews correlation coefficient.
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