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Plasma and cellular fibronectin: distinct and
independent functions during tissue repair
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Abstract

Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair.

The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert

effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as

they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional

matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell

function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated

by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major

components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to

misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with

cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate

aberrant tissue-repair processes.

Introduction
Fibronectin (FN) is a ubiquitous and essential component

of the extracellular matrix (ECM). It functions both as a

regulator of cellular processes and an important scaffold-

ing protein to maintain and direct tissue organization

and ECM composition.

During tissue repair, the body acts in a series of tightly

regulated steps to rapidly reconstitute damaged tissue:

the formation of a fibrin clot acts as the platform for

granulation tissue assembly, with subsequent contraction

and remodeling of the ECM to reform normal tissue

[1,2]. Different forms of FN play differential and tempo-

rally discrete roles during tissue repair. Plasma FN and

cellular FN possess distinct structures and rates of assem-

bly into three-dimensional matrices.

In this paper, we discuss the differences in the structure

of plasma and cellular FN, and their roles during the dif-

ferent stages of tissue repair. We summarize current the-

ories of how FN is assembled into a three-dimensional

matrix, and how this process is regulated. Understanding

this complex matrix-assembly process may highlight

potential targets for therapeutic advancement in the

treatment of aberrant tissue-repair conditions.

Structure of fibronectin isoforms

FN is a multi-domain glycoprotein composed of an array

of multiple repeated modular structures: twelve FN type I

repeats (FNI), two FN type II repeats (FNII), fifteen con-

stitutively expressed and two alternatively spliced (in this

paper, referred to as EIIIA and EIIIB) FN type III (FNIII)

repeats, and a non-homologous variable (V) or type III

connecting segment (IIICS) region. The multimodular

structure and intermodular regions allow flexibility of the

FN molecule, which is involved in regulating its function

[3-8]. These modules are organized into functional

domains, including the N-terminal 70-kDa domain

(FNI1-9), the 120-kDa central binding domain (CBD;

FNIII1-12) and the heparin-binding domain HepII

(FNIII12-14). The specific domains of FN can interact

with multiple binding partners, including other ECM

components and cell-surface receptors [9]. FN is secreted

as a dimer maintained by two disulfide S-S bonds at its

C-terminus [7,10-12] (Figure 1).

Plasma fibronectin

Plasma FN is synthesized by hepatocytes and secreted into

the blood plasma, where it circulates at 300-400 μg/ml

[13] in a soluble, compact, inactive form. In soluble plasma
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FN, only one subunit possesses a V domain, and the EIIIB

and EIIIA modules are absent [14-16]. Only very low levels

(1.3-1.4 μg/ml) of FN possessing the EIIIA and/or EIIIB

modules (cellular FN) have been reported to circulate in

the blood plasma [17], but blood plasma levels have been

shown to increase after major trauma resulting in vascular

tissue damage, after inflammation, and in diseases such as

atherosclerosis, ischaemic heart disease and stroke [18-21].

Cellular fibronectin

Cellular FN is synthesized by many cell types, including

fibroblasts, endothelial cells, chondrocytes, synovial cells

and myocytes [22]. Cellular FN is a mixture of FN iso-

forms. The alternative splicing of EIIIB and EIIIA and

more complex splicing of the V or IIICS domain during

transcription of cellular FN allows different isoforms of

FN to be expressed in a tissue-dependent, temporally

regulated, and cell-type-specific manner [15,23-26]. In

humans, 20 potential FN isoforms can be generated

[27]. Increased expression of the EIIIA+ and EIIIB+ iso-

forms of FN are associated with areas of physiological

or pathological tissue remodeling, including wound heal-

ing and tissue repair. The observed isoforms of FN, and

their association with physiological or pathological con-

ditions, are outlined in Table 1. These isoforms modu-

late the properties of the ECM, and affect cellular

processes.

The orientation and rotational interdomain flexibilities

of FNIII modules are known to be affected by neighboring

domains, so the inclusion or exclusion of alternatively

spliced domains may change the global conformation of

FN, affecting the presentation of FNIII loop structures and

binding sequences to modulate FN-cell signaling and FN-

FN interactions during matrix assembly [9,28-33]. The

structural composition of the different FN isoforms are

important, as they play distinct roles in early and late

wound-healing events [16].

Fibronectin in early wound-healing responses

Plasma FN is a major component of the fibrin clot. Mul-

tiple mechanisms allow FN to be incorporated into the

fibrin matrix. FN can interact via non-covalent interac-

tions with fibrin via its FNI1-5 and FNI10-12 domains [34].

FN is also covalently crosslinked to fibrin by activation of

the blood coagulation cascade involving activated Factor

XIIIa (plasma transglutaminase or coagulation factor

XIII) [2,14,16,35]. This crosslinks FN via glutamine resi-

dues within its N-terminus [36] to the fibrin a chains via

ε-(g-glutamyl) lysine cross links [37]. Furthermore,

plasma FN can also be bound and then assembled into a

high-molecular-weight multimeric matrix on the platelet

surface. Platelet activation by thrombin induces increased

cell-surface expression of the major platelet integrin

aIIbb3, which binds and assembles FN via a fibrin-inde-

pendent mechanism [38-44]. Platelets also express a

lower number of a5b1 and avb3 receptors on their sur-

face, which mediate platelet adhesion [45]. Aggregated

Figure 1 Fibronectin (FN) and FN fragments. FN is composed of a series of FNI repeats (dark-gray boxes), FNII repeats (circles), conserved FNIII

repeats (light-gray boxes) and alternatively spliced FNIII repeats (EDA).
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platelets can also assemble FN via a fibrin-dependent

pathway [44]. The polymerization of fibrin into a three-

dimensional network has been shown to be essential for

FN assembly, as the g chain of unprocessed fibrinogen

signals via aIIbb3 to inhibit this process [38].

Platelet-producing megakaryocytes endocytose and

pinocytose FN from the plasma, which becomes pack-

aged into the a granules of platelets [46]. This has been

shown to involve the aIIbb3 integrin; mice with a muta-

tion in the gene encoding the fibrinogen g chain (which

prevents fibrinogen interactions with aIIbb3), von Will-

ebrand factor null mice, and fibrinogen null mice show

increased FN levels in their a granules [47-49]. Upon

platelet activation, FN is released from a granules in a

process called degranulation. The FN released from pla-

telets can also assemble on the surface of platelets

Table 1 Cellular fibronectin (FN) isoforms reported during physiological and pathological conditions

FN isoform Characteristics Ref.

Physiological wound
healing

EIIIA Expressed in tubular basement membrane by endothelium in rat model of acute renal failure; involved in
regeneration of proximal tubules

[237]

Increased expression by alveolar septal cells, albeolar macrophages and endothelial cells upon acute hyperoxic lung
injury

[238]

Absence results in abnormal wound healing in EIIIA-/- mice [90]

Expressed in rat model of liver injury by sinusoidal endothelial cells [98]

EIIIB Increased levels in blood plasma after acute major trauma [18]

Increased expression by chondrocytes in muscularized arteries upon acute hyperoxic lung injury [238]

EIIIA and EIIIB Observed in granulation tissue by 7 days; EIIIB+ levels remain increased even after 14 days; EIIIA+ found around
arterioles in connective tissue adjacent to the wound after 4 days

[95]

Deposited in basement membrane zone of keratectomy wound models of corneal injury in rats [239]

Detected in ulcerated gastric tissue in rat models [240]

EIIIA, EIIIB and V All isoforms upregulated during rat corneal wound healing [241]

Pathological conditions

Fibrosis

EIIIA Idiopathic pulmonary fibrotic fibroblasts isolated from patients express higher levels of EIIIA+FN [201]

Involved in lung fibrogenesis in rat models of pulmonary fibrosis [201]

Highly expressed in mesangium and interstitium in rat glioblastoma multiforme and Habu snake venom models of
renal fibrosis

[202]

Increased expression in acute and chronic cutaneous graft-versus-host disease [200]

Increased in fibrotic periglomerular regions and areas of interstitial fibrosis [26]

Increased expression in human hepatic fibrosis [242]

Can induce the conversion of lipocytes to myofibroblasts; may play a role in hepatic fibrogenesis [98]

EIIIB Increased in obsolescent glomeruli [26]

EIIIA and EIIIB Increased in glomerulosclerotic lesions and fibrous crescents [26]

Tumorigenesis

EIIIA Increased expression in hepatocellular carcinomas [242]

EIIIB Increased expression in interstitium and vascular intima of many primary human tumors including meningioma [243]

Expressed around neovasculature and stroma of many malignant head and neck tumors [244]

Detected around tumor stroma, tumor vasculature and in tissue adjacent to the invasion front of oral squamous cell
carcinomas

[245]

Detected in the stroma, in the cytoplasm of tumor cells and endothelial cells in the neovasculature of head and
neck squamous cell carcinomas

[246]

EIIIA and EIIIB Expressed in tumor blood vessels in mouse model of pancreatic tumorigenesis [247]

Present around the blood vessels of intratumoral microvessels in breast carcinomas. [248]

Other

EIIIA Increased plasma levels in synovial fluid of rheumatoid arthritic joints [249]

EIIIA, EIIIB and V Increased expression in rat model of hypertension, especially of EIIIA+ form after 21 d [250]
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[42,46,50]. FN incorporation into the fibrin matrix is

important for various platelet functions, including adhe-

sion, migration and aggregation (Figure 2) [16,36,38,45,

46,48,49,51-98]. However, in vitro fibrin assembly was

shown to be unaffected by a complete absence of plasma

FN [51]. Furthermore, plasma FN conditional knockout

mice, or mutant mice with reduced plasma FN levels of

50% or 70-80%, were shown to have normal clotting

and bleeding times. Minimal effects on wound healing

in these mice were seen in vivo [17,51,52]. Cellular FN

isoforms possessing the alternatively spliced EIIIA and

EIIIB domains, derived from platelets, are thought to

compensate for the loss of plasma FN in these condi-

tions [51]. Although it has been shown that cellular FN

isoforms are not efficiently incorporated into the fibrin

clots in vitro, it is thought that they may be sufficient to

allow normal wound-healing events in vivo.

The fibrin-FN provisional matrix allows FN to adopt

extended conformations within the fibrin-FN matrix,

which leads to the exposure of cryptic cell binding

domains to facilitate cellular processes (Figure 2) [36].

For example, fibroblast activation by various growth fac-

tors such as platelet-derived growth factor requires spe-

cific sequences within the heparin domain and IIICS

region [99].

Fibronectin in the late wound-healing responses

Endothelial cells and fibroblasts repopulate the wound

and deposit cellular FN, an important and abundant

component of granulation tissue [1,2,66,100]. FN

Figure 2 Functions of plasma and cellular fibronectin (FN) during wound healing. The different forms of FN play distinct roles during the

different stages of wound healing.
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organizes into fibrillar structures within the stroma of

granulation tissue, and forms a dense network around

fibroblasts, which polarize along the FN fibrils, parallel

to the epidermis [66,95]. FN assembly into a three-

dimensional fibrillar network on the cell surface is vital

for establishing and maintaining tissue architecture and

for regulating cellular processes including adhesion

[57-60], spreading [101], proliferation [58,101-103],

migration [99,104-106] and apoptosis [107,108] (Figure

2). The three-dimensional FN structural matrix plays an

important role in regulating both ECM composition

[61,67] and the deposition of other ECM molecules,

including collagen types I and III [61,68-74], fibrinogen

[75], fibrillins 1 and 2 [76-78], fibulin [79], laminin

[61,73,80] and tenascin (TN)-C [81,82]. Reticulin has

also been shown to colocalize with FN fibrils within the

granulation tissue [66]. The FN matrix can also seques-

ter growth factors and associated proteins, including

bone morphogenetic protein-1 [83], vascular endothelial

growth factor (VEGF) [84] and latent transforming

growth factor (TGF)-b binding proteins (LTBP) 1, 3 and

4 [67,85-87] to regulate cell signaling events. While the

FN matrix is continuously assembled, remodeled and

turned over by cells, a more mature and stable ECM

network assembles on this FN-matrix scaffold [61,85,88]

(Figure 2).

FN in the wound site is also vital for regulating the

neovascularisation of granulation tissue during the reso-

lution of tissue injury. Exposure of different ECM protein

conformations in the vascular basement during wound-

ing acts as an important cue to regulate angiogenesis

[55,96]. FN expression, especially of isoforms possessing

the alternatively spliced EIIIA+ and EIIIB+ modules are

highly upregulated around neovessels and capillary

sprouts within the highly vascularized granulation tissue

[95,97,98]. An FN fibrillar network has been shown to be

required for proliferation and migration of human umbi-

lical-vein endothelial cells in a three-dimensional envir-

onment [109], and functions to promote endothelial-cell

survival [24,110] (Figure 2).

Myofibroblast differentiation is dependent on the pre-

sence of both TGF-b and EIIIA+FN and on the dramatic

changes in the mechanical properties of the wound micro-

environment [89,111,112]. Myofibroblasts form specialized

actin-associated fibronexus adhesion complexes, which

function in mechano-transduction to allow transmission

of intracellular actin-generated contractile forces and the

sampling of extracellular tension [111-114]. These specia-

lized adhesion complexes may also function in myofibro-

blast-dependent contracture of the wound, which acts to

‘shorten’ and remodel the collagen-rich matrix, resulting

in closure of the wound and recapitulation of normal

tissue architecture and function.

The data highlighted here indicate distinct and discrete

roles for the two different forms of FN during tissue injury

and repair. Plasma FN and cellular FN are differentially

expressed both temporally and spatially during wound

healing: plasma FN circulates in the blood and functions

during early wound-healing responses, whereas cellular

FN is expressed and assembled locally and functions dur-

ing later wound-healing responses. However, despite this

non-overlapping expression and localization of the FN iso-

forms during wound healing, exogenous plasma FN can

be assembled into pre-existing or newly assembling cellu-

lar FN matrices even if the plasma FN is isolated from a

different species [115-117]. Although plasma FN shows

slower initial kinetics of assembly than cellular FN [12],

these data imply that plasma and cellular FN could poten-

tially perform the same functions. Supporting this hypoth-

esis, conditional plasma FN knockout mice were found to

have normal wound healing and hemostasis [51], suggest-

ing possible compensation by cellular isoforms of FN.

However, in other physiological and pathological pro-

cesses, these isoforms have been shown to be distinct and

unique in their functions; plasma FN was found to be

essential for protecting neuronal and non-neuronal cells

from apoptosis after transient focal cerebral tissue ischae-

mia [51] and after traumatic brain injury [118], as cellular

FN is not expressed in these damaged brain tissues.

Furthermore, EIIIA-FN null mice were shown to have

impaired abnormal skin wound-healing responses with

reduced cell compaction and edematous-like areas within

the granulation tissue and delayed re-epithelialization [90].

These results would suggest that EIIIA+FN plays an

important role in the resolution of late wound-healing

processes. Tan et al. reported that EIIIA-FN null mice on

a different background strain showed no effect on wound

healing, but did show reduced atherosclerosis, suggesting

that cellular isoforms of FN contribute to pathological

conditions [119]. These studies suggest independent roles

for the different isoforms of FN, which cannot always be

compensated for in their absence.

Fibronectin-matrix assembly

There is still much that we do not know about how FN

is assembled or how the rate of deposition is controlled.

Understanding the mechanisms that regulate FN-matrix

assembly will allow us to control this process when it

becomes misregulated.

Plasma FN in solution alone will not polymerize [120]

and will not form a three-dimensional matrix in the

absence of cells [116]. Both plasma and cellular FN are

expressed and secreted in a soluble, compact form, which

is maintained by intramolecular electrostatic interactions

between the FNI1-5, FNIII1-2, FNIII2-3 and FNIII12-14
domains [7,10-12] (Figure 3A). In low-salt conditions,
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this compact quaternary structure can be seen by elec-

tron microscopy [6,8], and Förster resonance energy

transfer studies have shown that the arms of soluble FN

overlap each other [121]. FN mutants lacking FNIII12-14
or having this region replaced by the alternatively spliced

FN type III domains A1-A3 from tenascin-C (TN-C), had

lower sedimentation coefficient values, reflecting adop-

tion of a more open conformation and highlighting the

importance of FNIII12-14 in maintaining these intramole-

cular interactions [7].

FN-matrix assembly is a stepwise, cell-mediated pro-

cess [122,123]. The process seems to be rapid, as initial

FN deposits appear at the cell surface within 10 minutes

of plating, and in the conditioned medium within 30

minutes [122]. FN dimerisation is required for FN

assembly, as mutation of C-terminal cysteines results in

the loss of fibrillogenesis [124]. This process is briefly

discussed below, but is discussed in more depth else-

where [125].

Initiation of fibronectin-matrix assembly

Initiation of assembly involves FN binding to cell-surface

receptors (Figure 3A(i, ii). Integrins that bind FN are

summarized in Table 2, although some (for example,

avb1) do not support FN fibrillogenesis. Mice engineered

to be deficient in FN, a5, b1 or av, or to express FN-

RGE (FNRGE/RGE; the RGD integrin-binding sequence of

FNIII10 is mutated to RGE) all exhibit embryonic lethal-

ity, highlighting the importance of FN fibrillogenesis and

the FN fibrillar matrix during development [126-128].

FN is thought to bind first to the cell surface via FNI1-5
within the 70-kDa N-terminal domain of FN (hereafter

referred to as ‘70-kDa’; Figure 3Ai) [58,124,129-135].

Initiation of FN-matrix assembly occurs at focal contacts,

which are initial sites of ECM contact on the cell periph-

ery, which are rich in paxillin, vinculin, phosphotyrosines,

and b1 and b3 integrins [136,137]. The receptor(s) for

70-kDa have not yet been clearly elucidated. Interactions

with avb3 integrins have been shown to interact with the

novel Gly-Asn-Gly-Arg-Gly (GNGRG) motif in FNI1-5
[126,138]. However, recent work has shown that muta-

tion of the two GNGRG sequences within 70-kDa has no

effect on the binding of 70-kDa or FN to adherent cells

or on the ability of 70-kDa to compete for FN binding

[139]. However, this study did show that interactions of

cells with 70-kDa did require activated avb3 integrins

[139], and it has also been shown that in vivo, the pre-

sence of pre-existing three-dimensional FN matrices also

stimulates avb3 activation to induce FN-matrix assembly

[116]. Another possible integrin-binding site is the Ile-

Gly-Asp (IGD) sequence in FNI9[140]. It has been sug-

gested that initiation of FN-matrix assembly may be a

Figure 3 Stages of fibronectin (FN)-matrix assembly: initiation,

unfolding and fibrillar assembly. (A) FN initiation involves

interactions with cell-surface receptors: (i) FNI1-5 within the 70-kDa

domain binds to cell-surface receptors possibly including integrins,

(ii) FNIII9-10 binds to integrin a5b1, (iii) integrin activation by

outside-in or inside-out signaling induces integrins to adopt a high-

affinity state and allow FN binding and (iv) FNIII12-14 binds to

heparan sulfate proteoglycans (HSPGs). (B) FN unfolding: (i) FN

binding to cell-surface receptors induces cyctoskeletal

reorganization of the actin cytoskeleton and myosin II-dependent

contractility that results in (ii) receptor clustering and translation.

This causes the tethered FN molecules to become unfolded. (C)

Unfolding of FN results in the exposure of FN binding sites that

allow FN-FN intermolecular interactions to occur. The domains

important for each step are circled and denoted.
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process that is not dependent on a single integrin or

region within FN, but may involve many different mole-

cules [125].

Other integrins may also be involved in the initiating the

assembly of specific FN isoforms. In an interesting study,

which demonstrated the essential role of FNIIIA+FN in

lymphatic-valve development,a9b1 integrin was shown to

be required for the assembly of EIIIA+FN by lymphatic

endothelial cells [80]; however, this assembly mechanism

may be isoform-specific, as a separate study found that

overall FN-matrix assembly by EIIIA-FN null fibroblasts

was unaffected [119].

It is well established that an essential step in the pro-

gression of FN-matrix assembly involves a5b1 integrin

binding of the RGD loop on FNIII10 and the neighboring

PHSRN sequence in FNIII9 in the CBD of FN

[116,141-146] (Figure 3Aii). a5b1 integrin binding to

CBD is a high-affinity interaction (Kd = 0.2 μmol/l by

solid-phase binding) [28]. FN mutants with loss of the

RGD site or a mutation within the RGD site were found

to be unable to assemble a complex fibrillar network,

forming only linear fibrillar arrays at the periphery of

cells [12,139]. Antibodies against the RGD domain or

small RGD peptides can also inhibit FN-matrix assembly

[126,133,134,147,148]. Furthermore, FNRGE/RGE-expres-

sing mouse embryos had normal FN distribution, and

isolated embryonic fibroblasts could assemble short,

thick, FN fibrils, confirming that FNIII10 interactions

with a5b1 are not essential for assembly initiation [126].

The interaction of integrins with FN provides ‘outside-

in’ signals [149], and induces integrin clustering in focal

adhesions [60]. Ligation of integrins can also induce

intracellular signaling and the activation of integrins to

a higher-affinity binding state by ‘inside-out’ signaling.

Phosphorylation of integrin cytoplasmic domains and

subsequent integrin activation by signaling molecules

such as talin requires myosin II-dependent cell-gener-

ated tension, which is activated by force-induced

conformational changes [60,146,150,151]. ‘Outside-in’

signals can be translated into ‘inside-out’ signals via a

feedback loop [141,149,151] to regulate adhesion-com-

plex formation, integrin affinity and FN-matrix assembly

[116,146,151] (Figure 3Aiii). ‘Inside-out’ signaling and

integrin activation and clustering may precede FN bind-

ing during embryogenesis: integrin a5b1 activation and

clustering was shown to be initiated by Eph/Ephrin sig-

naling with subsequent FN-matrix assembly [152].

Cell-surface heparan sulfate proteoglycans (HSPGs)

have also been shown to play an important role in FN-

matrix assembly (Figure 3A (iv)) [153,154]. The HepII

domain of FN (FNIII12-14) can interact with heparin

[155], and the FNIII13 module is the primary binding

site [156-158], suggesting that this FN domain is

involved in the binding of HSPGs. Syndecan-2, which is

the major syndecan of fibroblasts, has been shown to be

an important HSPG for FN fibrillogenesis during zebra-

fish development [159], and supports FN-matrix assem-

bly [160].

It should be noted that models of fibril initiation are

often elucidated from two-dimensional cellular experi-

ments, in which cells also form distinct adhesive struc-

tures. In three-dimensional cultures, cells that assemble

FN do not form distinct focal or fibrillar adhesions, but

instead form long, slender ECM attachments that con-

tain both classic focal-adhesion and fibrillar-adhesion

components: a5, paxillin, vinculin, focal-adhesion

kinase, phosphotyrosine, and activated b1 [62]. These

FN-assembly complexes probably involve a multitude of

cell-surface receptors, HSPGs and signaling molecules

that act in concert to facilitate FN-assembly initiation

[125,161].

Fibronectin unfolding, elongation and fibril formation

Upon binding to integrins and other cell-surface recep-

tors, FN then has to be unfolded from its compact

structure into an extended structure (Figure 3B)

[3,4,121].

Table 2 Fibronectin (FN)-binding integrins

FN receptor Supports fibrillogenesis Domain References

a3b1 + 70-kDa [63,146]

a4b1 + IIICS (V) CS1 region and EIIIA [63,146]

a5b1 + FNIII9-10 (RGD) [22,60,143,144,251]

a9b1 - EIIIA [65]

a8b1 - FNIII10 (RGD) [63,64]

avb1 - FNIII10 (RGD) [63,64]

avb3 + FNIII10 (RGD) or possibly 70-kDa [139,143,144]

avb6 + FNIII10 (RGD) [63]

aIIbb3 + FNIII9-10 (RGD) [38,63,145,252]

+ = Has been reported to be involved in FN fibrillogenesis.

- = Has been reported to be involved in adhesion to FN but not fibrillogenesis.
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An intact actin cytoskeleton is essential to generate cell

tension and a cytoskeletal force, which translates into a

temporal change in traction force that induces conforma-

tional changes of the cell-surface-bound FN and allows

integrin crosslinking, clustering and subsequent transloca-

tion [4,60,121,136,162-164] (Figure 3Bi). FN unfolding is

dependent on b1-FN translocation from focal contacts to

central tensin-rich fibrillar-adhesion complexes [136] (Fig-

ure 3Bii), and FN fibrils are shown to form from the con-

tinuous extension of FN molecules and their

intermolecular associations [136,148,162]. FN unfolding

exposes binding sites buried in the soluble structure to

promote the interaction of FN with other FN molecules

and ECM components [165]. Cell contractility may require

a submembranous pool of myosin II, controlled by myosin

light chain kinase via RhoA-Rho kinase II-dependent

[165-167] or RhoA-independent pathways [97,166,168].

Cells in three-dimensional microenvironments may favor

different isoforms of myosin II for generating intracellular

forces compared with cells cultured in two-dimensional

environments [169]. The transduction of intracellular

cytoskeleton-generated forces and extracellular mechanical

stresses are communicated via cell-ECM contacts, allow-

ing the cell to respond to changes in its microenvironment

[161,170,171].

During embryogenesis, an alternative mechanism for

production of intracellular tension involves the activation

of the non-canonical Wnt/PCP signaling pathway, Rho

GTPase Rac, p21 activated kinase (Pak) and cadherins,

which generate cytoskeletal tension via cell-cell adhesion.

This tension is transmitted via b1 to cell-surface-bound

FN to mediate fibril formation [172]. In support of this

process, inhibition of b1 function inhibits convergence

extension tissue morphogenesis and cadherin-mediated

cell adhesion [173]. The presence of multiple pathways to

mediate cell contractility demonstrates the importance of

this generated force in FN-matrix assembly.

FNI1-5 [58,124,174,175], FNIII1-2 [10,134,165,174,176],

FNIII4-5[177] and FNIII12-14[132] are important domains

for FN fibrillogenesis, and play a role in mediating and

regulating intermolecular FN-FN interactions [12,124]

(Figure 3C). The EIIIA or EIIIB domains can also pro-

mote FN-matrix assembly, possibly by exposing integrin-

binding sites in neighboring domains: FNIII10 (EIIIB) and

IIICS region (EIIIA) [94,178].

FN module unfolding and exposure of cryptic FN-FN

binding sites further promote FN fibrillogenesis [121].

FN linker domains and the FNIII modules possess

inherent elasticity [179-182]. Domains shown to possess

cryptic binding sites include FNIII1[183-185], FNIII1-2
[10], FNIII10[184], FNIII7 and FNIII15 [186] (Figure 3C).

A peptide sequence derived from FNIII1 (FNIII1-C) can

induce superfibronectin formation; that is, high-molecu-

lar-weight, crosslinked aggregates of FN, which resemble

cell-assembled FN fibrils [185,187], indicating how effec-

tive these cryptic binding sequences are in promoting

FN-FN interactions.

FN molecules are organized into thin fibrils of 5 nm in

diameter, formed from the overlapping and staggering of

extended FN dimers and the crosslinking of FN into stable

multimers [69]. FN fibrils then become laterally associated

into thicker fibrils of 6-22 nm in diameter [69]. Further

FN-fibril interactions allow the formation of high-molecu-

lar-weight, complex, branched, fibrillar FN matrices,

which are detergent-insoluble [122,123,129]. FN cross-

linking and multimerization may occur via a partially cryp-

tic endogenous protein disulfide isomerase activity present

in FNI12, as reported by Lagenbach et al. in RNase refold-

ing experiments [69,188]. However, there is some question

as to whether covalent disulfide crosslinking is a true phe-

nomenon; there are suggestions that FN associates via

non-covalent protein-protein interactions [189,190]. The

high-molecular-weight multimers seen in non-reduced

SDS-PAGE gels are suggested to be a mixture of other

ECM proteins such as fibrillin, which ‘block’ FN dimers

from migrating through the gel [190]. This is not unex-

pected as FN is known to interact with many different

ECM components, and these protein-protein interactions

may well attenuate its migration through SDS-PAGE gels.

Once assembled, FN fibrils are continuously polymer-

ized and remodeled within the fibrillar matrix on the

cell surface [61]. FN remodeling is a dynamic process, in

which fibrils continuously detach, contract, bend,

stretch, extend, retract and anneal to neighboring fibrils

[85,87,162,164,191,192]. In vivo, the fibrillar ECM struc-

ture is deformed by local cell migratory and protrusive

activities [76,85,192,193], and large-scale tissue motion,

particularly during embryogenesis [76,85]. This strongly

extensible behavior is due to mechanical unfolding and

refolding of FNIII modules [194].

Pre-existing three-dimensional matrices act as scaf-

folds for further FN deposition; new fibrils colocalize

with pre-existing matrix [116,193,195]. Cells cultured in

native ECM scaffolds deposit more soluble FN onto pre-

existing FN fibers, requiring lower concentrations of FN

for initiation [116,193]. New FN molecules deposited by

cells onto a mature matrix are unfolded more than cells

cultured on ‘soft’ polyacrylamide substrates [195]. ECM

crosslinking has also been shown to increase the rate of

de novo FN stretching by cells but to reduce overall

deposition of soluble FN molecules [193,195], suggesting

that ECM maturation is a mechanism that regulates the

rate of FN deposition.

Fibronectin and aberrant wound-healing conditions

FN-matrix assembly has to be tightly regulated. Cellular

FN homeostasis is maintained by continual FN assembly

and loss from the pericellular matrix [61]. Persistently
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high levels of FN promote cell proliferation, survival sig-

nals, and strong cell-ECM adhesions. Conversely, loss of

FN-matrix assembly is observed in some transformed

cells [168,196], and may be important during cell-migra-

tion events such as metastasis. In addition, loss of FN

deposition [61,72] would accentuate the loss in the

assembly of other ECM components within the wound

bed, as seen in chronic non-healing wounds, even

though FN expression persists and is actually increased

in the surrounding dermis [197,198].

Fibronectin in fibrotic conditions

FN plays an important role in the development of fibrotic

disease [27]. Fibrosis is characterized by an excessive

deposition of connective tissue that leads to the impair-

ment of organ structure or function, and is considered a

chronic inflammatory tissue-repair response, similar in

structure and composition to granulation tissue [199,200].

In fibrosis, there is a key interplay between the immune

response, fibroblastic-cell response and ECM, which

results in the formation of fibrotic lesions.

Although collagen is the most predominant ECM com-

ponent of fibrotic tissue, excessive deposition of FN also

occurs, and precedes the collagen deposition (Table 1)

[201-208]. In glomerular and interstitial fibrosis, there is

markedly increased expression of total FN levels, with

increased levels of EIIIA+, EIIIB+ and oncofetal (IIICS+)

isoforms detected in distinct areas of the kidney and in

areas of fibrosis [26,202-204]. Fibrogenesis is driven by

fibroblasts and myofibroblasts, which show increased

migration, proliferation, ECM synthesis and assembly

within affected tissues [114,199,209]. The presence of both

alternatively spliced EIIIA+FN and pro-inflammatory cyto-

kines such as TGF-b1 have been shown to be required in

the differentiation or transdifferentiation of cells to myofi-

broblasts [210]. For example, experiments with EIIIA null

mice suggest that EIIIA+ isoform of FN induces a-

smooth-muscle actin myofibroblast differentiation in the

presence of TGF-b1. In the absence of EIIIA+ FN, there is

continuous interstitial fibrosis after bleomycin treatment,

but no switch to a chronic fibrotic response mediated by

myofibroblasts. Furthermore, these experiments also

showed that EIIIA+FN is required for latent TGF-b1 acti-

vation, and plays a response in fibroblast response to

TGF-b1 [201,211]. TGF-b1 and the TGF-b family have

been shown to activate the Smad family of transcription

factors (including Smad3), which are involved in the

expression of profibrotic genes [212]. Furthermore, mouse

models of atherosclerosis have shown the essential role of

FN in initima-media thickening in vivo [68]. Using a 49-

residue sequence from the FUD domain of the F1 adhesin

protein produced by Streptococcus pyogenes (pUR4), which

has been shown to inhibit FN-matrix assembly by binding

to the N-terminal 70-kDa domain of FN [213], this study

demonstrated that inhibiting FN-matrix assembly in vivo

significantly reduced intimal, medial and adventitial thick-

ening, collagen deposition, cell proliferation, and inflam-

matory-cell infiltration after induction of atherosclerosis

[68]. The results confirm the essential role FN plays in

mediating ECM deposition and inflammatory response,

which are corollaries of fibrosis. This study also showed

promise for possible in vivo applications for inhibiting FN

assembly.

Recently clinical studies have shown that use of a 585

nm flashlamp-pumped pulsed-dye laser resulted in the

regression or arrest of keloid development by reducing

the expression of TGF-b1in keloid tissues and increasing

the expression of matrix metalloproteinase (MMP)-13

(also called collagenase-3) [214]. As many fibrotic condi-

tions are largely untreatable, it is imperative that the

mechanisms involved in the development and mainte-

nance of these diseases are understood so that effective

therapies can be developed.

Regulation of fibronectin-matrix assembly

FN expression and assembly is stimulated in a cell-specific

manner by a multitude of molecules (Table 3). Stimulation

of FN expression, secretion and assembly by these agents

emphasizes the complexity and requirement for tight reg-

ulation of this process. As mentioned earlier, TGF-b1 and

connective tissue growth factor are key cytokines involved

in upregulating FN expression during fibrogenesis

[212,215,216]. FN deposition also requires RhoA-mediated

cell contractility [4,121,165-167] (Table 3). FN can also be

Table 3 Regulators of fibronectin (FN) mRNA expression

and assembly

References

Positive regulators of FN mRNA

TGF-b1 and the TGF-b family [212,253-255]

Platelet-derived growth factor-BB [256]

Insulin-like growth factor-1 [256]

Hepatocyte growth factor [257]

Glucose [258,259]

Glucocorticoids [260]

Negative regulators of FN mRNA

Cell contractility inhibitor [3,121]

RhoA inhibitors [165-167]

Positive regulators of FN assembly

Sphingosine-1-phosphate [261]

Estrogen [262]

Plasminogen activator inhibitor type I [263,264]

Urokinase plasminogen receptor [265]

Connective tissue growth factor [266]

Lipoprotein A [165,167]

TGF = transforming growth factor.
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degraded by multiple proteases including MMP-9 [217].

FN fragments and modules can also inhibit FN-matrix

assembly by competing for FN-assembly sites [187], which

could act as a feedback system to regulate FN levels on

the cell surface. The increased levels of proteases such as

neutrophil elastase in chronic wound exudate, which can

act to degrade FN [218-222], could further contribute to

this condition. Aged clots in chronic wounds contain

highly crosslinked fibrin, which is stripped of other func-

tional proteins by the strongly proteolytic environment

[223]. These examples illustrate the importance of FN and

its assembly in regulating and resolving wound-healing

processes to maintain tissue architecture.

FN fibrils are continuously remodeled and turned over,

which is mediated via a b1-dependent, caveolin-1-depen-

dent and low-density lipoprotein receptor-related protein

(LRP)-independent endocytic mechanism [85,224]. FN

becomes targeted to the lysosomes and degraded intracel-

lularly [61,88]. As FN is assembled into high-molecular-

weight multimers by an endogenous disulfide isomerase

activity [188], some reverse proteolytic activity must occur

to allow FN endocytosis [61,88]. Furthermore, b1 integrin

clustering can induce polarized expression of membrane

type 1 (MT1)-MMP to invasive structures to cause loca-

lized ECM degradation [225]. Indeed, endocytosis of fibril-

lar FN from pre-assembled matrices was shown to be

much slower than endocytosis of soluble FN [224]. Inter-

estingly, mature FN matrices are as highly dynamic as

immature FN matrices, but ECM maturation has been

reported to assemble less dynamic ECM networks over

time, which loses this dynamic remodeling [85].

Other ECM components can also influence FN-matrix

assembly. Low levels of vitronectin (VN) have been shown

to enhance FN-matrix assembly by increasing the expres-

sion of matrix-assembly sites on the cell surface [136,226].

However, high concentrations of VN are inhibitory for

FN-matrix assembly [226-228]. The HepII domain of VN

has been shown to interact with avb3 and avb5 integrins,

preventing actin microfilament reorganization and causing

loss of FN-matrix assembly sites [228]. Loss of collagen

type VI also impairs complex FN-matrix assembly; FN

fibrils become oriented parallel to the long axis of the cell

[229]. As discussed earlier, the individual FN domains

including 70-kDa can also inhibit FN-matrix assembly by

interfering with fibril formation by the full-length

molecules.

Work carried out in our laboratory has also shown that

smaller domains of TN-C, but not the full-length protein,

can inhibit FN-matrix assembly [230,231]. As TN-C is

only coexpressed with FN in areas of physiological and

pathological tissue remodeling and the presence of

encrypted inhibitory activity within the individual TN-C

domains suggests TN-C may also play an important role

in regulating FN-matrix assembly. This highlights how

ECM composition and the breakdown of ECM compo-

nents can also act as a further level of control, which

could be exploited to control pathological wound-healing

events.

Future perspectives

Current therapies used to treat fibrotic conditions are

well summarized and discussed elsewhere [232-234]. It is

now appreciated that fibrosis can be considered an aber-

rant wound-healing response as the understanding of the

mechanism of its development is better understood

[234]. For example, anti-TGF-b has been successfully

shown to reduce skin and pulmonary fibrosis in mice

with sclerodermatous graft-versus-host disease, a mouse

model of the systemic fibrotic condition scleroderma

[235]. However, anti-TGF-b therapy has not been as suc-

cessful in human systemic sclerosis (SSc): in a placebo-

controlled phase I/II trial, systemic and repeated dosing

of CAT-192, an antibody developed against active TGF-

b1, showed no efficacy in a cohort of 45 patients with

early-stage diffuse cutaneous SSc [236]. That study also

had higher mortality rates than shown in trials of other

drugs to treat diffuse cutaneous SSc, although whether

this is due to other factors was not clear [236]. The lack

of success might also have been due to the fact that other

TGF-b isoforms have profibrotic effects [212], highlight-

ing the complex interplay between the immune system,

the ECM and cell signaling during wound healing and

aberrant wounding responses. The interplay between

cells and the ECM in the regulation of homeostasis and

response to physiological and pathological events is com-

plex, and it will be vital to understand these in order to

develop therapies that can modify these processes.

Further research into the mechanisms that regulate

FN-matrix assembly will help us understand how we can

regulate it to prevent aberrant deposition that contributes

to pathological conditions. In particular, the effect of

other ECM proteins on the FN-assembly process may

comprise a regulatory mechanism that could be further

explored and exploited therapeutically. For example,

ECM proteins such as TN-C are re-expressed only in tis-

sues undergoing active remodeling, such as in fibrotic

lesions. However, the role of these molecules in fibrotic

tissues and their effects on FN expression, deposition or

assembly are still unclear. Elucidation of the complex

interplay between resident ECM constituents is likely to

reveal how physiological, synergistic control of matrix

remodeling is mediated.

Conclusions
The plasma and cellular forms of FN play temporally and

spatially distinct and vital roles during the progression of

wound healing. Plasma FN circulates in the blood plasma

in an inactive form, and is stored in the a-granules of
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platelets until activated by the wound response and sti-

mulation of the coagulation cascade. Plasma FN is then

deposited and crosslinked to the provisional FN-rich

matrix, and functions to stimulate platelet adhesion and

aggregation, and fibroblast spreading and invasion into

the clot. Cellular FN is then synthesized by the migrated

cells within the clot, and assembled into a complex, fibril-

lar matrix on the cell surface, which directs the deposi-

tion of other ECM proteins and the migration, adhesion

and differentiation of fibroblasts. Many mechanisms are

involved to regulate FN-matrix assembly, and there is

now also growing evidence that in addition to regulation

via molecules, the ECM composition and structure itself

are also important.

As ECM assembly is such a complex process, under-

standing the mechanisms involved is vital if we are to

manipulate this process. The fact that other ECM com-

ponents can affect the deposition and assembly levels of

FN suggests further levels of control that could be

exploited in cases of dysfunctional wound-healing

events. It may be that modifying the microenvironment

by altering the expression of other ECM components

may be sufficient to induce the resolution of such aber-

rant tissue-repair processes, which can lead to condi-

tions such as fibrosis.
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