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ABSTRACT 

Background and Aims: Non-invasive biomarkers are urgently needed to identify patients with 

non-alcoholic fatty liver disease (NAFLD) especially those at risk of disease progression. This is 

particularly true in high prevalence areas such as Latin America. The gut microbiome and 

intestinal permeability may play a role in the risk of developing NAFLD and NASH, but the 

mechanism by which microbiota composition disruption (or dysbiosis) may affect NAFLD 

progression is still unknown. Targeted metabolomics is a powerful technology for discovering 

new associations between gut microbiome-derived metabolites and disease. Thus, we aimed to 

identify potential metabolomic biomarkers related to the NAFLD stage in Argentina, and to 

assess their relationship with clinical and host genetic factors. 

Materials and methods: Adult healthy volunteers (HV) and biopsy-proven simple steatosis 

(SS) or non-alcoholic steatohepatitis (NASH) patients were recruited. Demographic, clinical and 

food frequency consumption data, as well as plasma and stool samples were collected. SNP 

rs738409 (PNPLA3 gene) was determined in all volunteers. HPLC and flow injection analysis 
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with MS/MS in tandem was applied for metabolomic studies using the MxP Quant 500 Kit 

(Biocrates Life Sciences AG, Austria). Significantly different metabolites among groups were 

identified with MetaboAnalyst v4.0. Bivariate and multivariate analyses were used to identify 

variables that were independently related to NAFLD stage. Forward stepwise logistic regression 

models were constructed to design the best feature combination that could distinguish between 

study groups. Receiver Operating Characteristic (ROC) curves were used to evaluate models’ 

accuracy. 

Results: A total of 53 volunteers were recruited: 19 HV, 12 SS and 22 NASH. Diet was similar 

between groups. The concentration of 33 out of 424 detected metabolites (25 in plasma and 8 

in stool) was significantly different among study groups. Levels of triglycerides (TG) were higher 

among NAFLD patients, whereas levels of phosphatidylcholines (PC) and lysoPC were 

depleted relative to HV. The PNPLA3 risk genotype for NAFLD and NASH (GG) was related to 

higher plasma levels of eicosenoic acid FA(20:1) (p<0.001). Plasma metabolites showed a 

higher accuracy for diagnosis of NAFLD and NASH when compared to stool metabolites. Body 

mass index (BMI) and plasma levels of PC aa C24:0, FA(20:1) and TG(16:1_34:1) showed high 

accuracy for diagnosis of NAFLD; whereas the best AUROC for discriminating NASH from SS 

was that of plasma levels of PC aa C24:0 and PC ae C40:1. 

Conclusion: A panel of plasma and stool biomarkers could distinguish between NAFLD and 

NASH in a cohort of patients from Argentina. Plasma biomarkers may be diagnostic in these 

patients and could be used to assess disease progression. Further validation studies including 

a larger number of patients are needed. 
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Abbreviations 

ALT: alanine transaminase. 

AST: aspartate transaminase. 

AUC: Area under the curve. 

BMI: Body mass index. 

FA: Fatty acid. 

HV: Healthy volunteers 

LysoPC: Lysophosphatidylcholine. 

NAFLD: Non-alcoholic fatty liver disease 

NASH: Non-alcoholic steatohepatitis. 

PC: Phosphatidylcholine. 

PCA: Principal component analysis. 
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PNPLA3: Patatin-like phospholipase domain-containing protein 3. 

ROC: Receiver operating characteristic. 

SNP: Single nucleotide polymorphism. 

SS: Simple steatosis 

TG: Triglyceride. 
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1. INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease strongly associated with 

obesity, insulin resistance/type II diabetes mellitus, high blood pressure and dyslipidemia [1]. It 

represents a dynamic and progressive spectrum of liver disease encompassing simple fatty 

infiltration of the liver parenchyma (simple steatosis, SS), and fatty infiltration and inflammation 

(non-alcoholic steatohepatitis; NASH). Notably, NASH is not by itself a severe hepatic lesion, 

but it can progress toward cirrhosis, decompensated liver disease, and hepatocellular 

carcinoma [2].  

It is now recognized that NAFLD is the most common cause of chronic liver disease around the 

world, representing a major nutritional concern because of the high worldwide prevalence of 

overweight and obesity. Moreover, NAFLD is rapidly becoming the most common indication for 

liver transplant. Currently, its global prevalence is estimated to be 25%, but higher rates are 

observed in South America (31%) [3,4]. The severity of NAFLD also may be greater among 

people of Native American ancestry, probably due to the higher prevalence in these populations 

of the high‐risk G allele of the single nucleotide polymorphism (SNP) rs738409 in the PNPLA3 

gene, which is robustly associated with susceptibility to the clinical progression of NAFLD [5,6]. 

In order to early prevent liver damage and to improve clinical outcomes, the present challenge 

is to distinguish between SS and NASH as the latter increases the likelihood of liver disease 

progression. In this regard, liver biopsy is the “gold standard” as it provides important diagnostic 

and prognostic information [7]; however, it remains a costly and invasive procedure with 

inherent risks. Thus, it cannot be used as a tool for periodical monitoring. In addition, the 

amount of retrieved tissue can influence the diagnosis; and, interobserver differences are 

frequently encountered [8]. Currently, several serological scores are used in the clinical practice 

to identify patients with advanced fibrosis, but they do not distinguish between steatosis and 

NASH. Besides, they exhibit some limitations as indeterminate results are observed in a high 

rate of patients (30%), many of these scores have been validated in hepatology units and not in 

the general population, and their specificity is lower in some age groups [9,10]. Therefore, there 

is a growing medical need to discover novel non-invasive biomarkers that can predict the initial 

stage and progression of liver disease over time in an accurate manner. 

In the last decade, it was revealed that changes in gut microbiome composition (dysbiosis) and 

bacterial metabolism products derive in alteration of intestinal permeability and function, 

contributing to the pathogenesis of several diseases, including NAFLD. Altered gut microbiome 

and its derived metabolites can facilitate the development of hepatic steatosis in patients at risk 

of NAFLD. Furthermore, gut dysbiosis has been shown to be associated with changes in levels 

of serum metabolites related to NAFLD [11]. In fact, the liver receives a high percentage of its 

blood supply from the splanchnic district through portal circulation, which exposes it to gut-

derived molecules [12]. Since then, several studies have provided abundant evidence of the 

considerable interplay between gut microbiota and microbiota-derived compounds and the 

development and progression of NAFLD and NASH [13,14]. 

Each human’s gut microbiome differs due to enterotypes, body mass index (BMI) level, exercise 

frequency, lifestyle and cultural and dietary habits [15]. In addition, the gut microbiome differs 

among ethnicities [16] and thus, it would be of interest to study the presence of patterns that 

may contribute to a higher NAFLD prevalence or different disease severity in Latin America, 

where data is still scarce.  

In this regard, metabolomics analysis is a new technology to explore mechanisms of different 

diseases, including minimal changes in microbiome-derived metabolites, which provides ample 
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information on new biomarker discovery, disease pathogenesis, diagnosis, and personalized 

treatment. This powerful tool allows for the study of small-molecular intermediates and products 

of metabolism [17]. The analysis of specific patterns of metabolic alterations associated with 

NAFLD can help in providing insight into its etiology and mechanisms, as well as to discover 

novel disease biomarkers. 

Therefore, we aimed to identify microbiome-derived metabolites that could be useful as non-

invasive biomarkers for NAFLD and NASH in patients from Argentina and to assess their 

relationship with clinical and host genetic factors, contributing to gut microbiome knowledge and 

its association with disease in Latin America.  

 

2. MATERIALS AND METHODS 

2.1. Recruited subjects and sample collection 

In this case-control study, adult participants were recruited at Hospital Italiano de Buenos Aires 

and Hospital Alemán, in Buenos Aires city, Argentina.  

Subjects with persistently elevated liver enzymes were assessed by hepatologists at both 

mentioned hospitals and NAFLD was confirmed by liver biopsy and using standard medical 

practice to rule out other liver conditions [18]. Exclusion criteria for NAFLD patients were: 

schistosomiasis, hepatitis B virus (HBV) or hepatitis C virus (HCV) infection or any liver disease 

other than NAFLD, anticipated need for liver transplantation within a year or complications of 

end-stage liver disease such as variceal bleeding or ascites; concurrent medical illnesses; and 

contraindications for liver biopsy. Recruited NAFLD patients were then divided into two groups: 

simple steatosis (SS) and non-alcoholic steatohepatitis (NASH).  

Healthy volunteers (HV) were recruited at the Nutrition Department of Hospital Italiano de 

Buenos Aires after a healthy eating consultation. All individuals had normal clinical and 

hematological examinations. In addition, they had normal liver enzyme levels and did not have 

any record of liver disease by ultrasound, and therefore showed no indication for liver biopsy.  

Exclusion criteria for all groups of subjects were: antibiotics, laxatives or probiotics consumption 

in the preceding 6 months, use of medications known to cause or exacerbate steatohepatitis, 

history of pelvic radiation exposure or chemotherapy, previous gastrointestinal surgery 

modifying the anatomy, history of chronic gastrointestinal disease, inflammatory bowel disease 

or any other gut infectious disease, dietary restrictions (such as vegetarians or vegans), 

consumption of more than 20g of alcohol/day for women and 30g of alcohol/day for men, illegal 

drug consumption, pregnancy or lactating state. 

After signing an informed consent statement upon enrollment, each subject provided one stool 

sample and one fasting blood sample, underwent anthropometric measurements (height and 

weight) and completed a self-administered food frequency consumption questionnaire [19,20]. 

The participants’ demographics and medical history were also reviewed and collected. 

Each stool sample was frozen immediately after collection in the participants’ home freezer 

(−20°C). Within 24 hours, they brought the frozen sample to our lab in an insulated box with 

cooling elements. Samples were stored at −80°C until lyophilization. Each lyophilized stool 

sample was homogenized and aliquoted into 2ml cryotubes and shipped for metabolomics 

analysis to Novartis Institutes for Biomedical Research (NIBR) based in Cambridge, MA, USA.  
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Each fasting blood sample was collected in a tube with potassium-EDTA and processed 

immediately after blood extraction. Plasma was separated by centrifugation at 20-24°C for 10 

minutes at 2500 xg, transferred into a new pre-cooled tube and vortexed. Aliquots of 500µl were 

placed into 2ml cryotubes and stored at −80°C until shipping to NIBR for metabolomics 

analysis. Peripheral blood mononuclear cells (PBMC) were isolated from the buffy coat and 

stored at −80°C. 

This study was approved by the Ethics Committee on Research from the Hospital Italiano de 

Buenos Aires, and it was conducted according to the Declaration of Helsinki.  

2.2. DNA extraction and determination of the SNP rs738409 (PNPLA3) 

Genomic DNA was extracted from PBMC by using QIAamp® DNA Mini Kit (QIAGEN, GmbH, 

Hilden, Germany) following the manufacturer’s protocol. SNP rs738409 in PNPLA3 gene was 

amplified as previously described [6]. The PCR amplified fragments were bi-directionally 

sequenced using Big-Dye Termination chemistry system (Applied Biosystems, Life 

Technologies Corp., Foster City, CA, USA) and the sequencing chromatogram was examined 

by using BioEdit Sequence Alignment Editor version 7.1.3.0. 

2.3. Metabolomic analysis 

Metabolite analysis of plasma and stool samples was performed using the MxP Quant 500 kit 

(Biocrates Life Sciences AG, Innsbruck, Austria). 

Plasma samples were analyzed directly on the kit without the need for extraction.  

For stool samples, 100mg of lyophilized feces were mixed with 6 times the volume of either 

extraction buffer A [ethanol/phosphate buffer (85:15 v/v)] for lipidic compounds or buffer B 

[ethanol/phosphate buffer (20:80 v/v)] for hydrophilic metabolites. In each case, samples were 

then sonicated at 80V for 3 cycles of 30 seconds each, then homogenized in vortex at 4°C for 

10 minutes and centrifuged at maximum speed for 2 minutes at 4°C. Supernatant was 

transferred to a new pre-cooled tube. All samples were dried-down overnight and re-suspended 

into 200ul of the either extraction buffer A or B. Ten-fold dilutions were made from aliquots of 

samples extracted with buffer A.  

Finally, 10µl of each plasma and extracted stool sample were loaded and run in separate 

plates. MxP Quant 500 Column System was used in combination with SCIEX Triple QuadTM 

6500+ mass spectrometer (SCIEX, Danaher Corporation, Washington, D.C., United States) in 

both positive and negative modes. Data acquisition was performed using specific mass 

transitions (MRM pairs) and the Biocrates® MetIDQTM software (Biocrates Life Sciences AG, 

Innsbruck, Austria). 

2.4. Data analysis 

For descriptive statistics, medians and interquartile range (IQR), or absolute number and 

percentages were used. The statistical analysis of demographic, clinical, and human genetic 

data was performed by contingency tables using Chi-square test for categorical variables and 

Kruskal-Wallis and Mann-Whitney U test for continuous variables, using GraphPad Prism 

version 8.0.2 for Windows (www.graphpad.com). For food frequency data analysis, a Chi-

square test with Monte Carlo estimation was performed using IBM SPSS (Statistical Package 

for Social Sciences) Statistics for Windows, version 22.0 (IBM Corp., Armonk, N.Y., USA). In all 

cases, significant differences were considered only for p<0.05. 
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Metabolites data was first filtered according to the plate quality control and the percentage of 

missing values. Metabolites with more than 30% of missing values were not considered for 

further analysis. For the remaining data, missing values were replaced with half of the minimum 

concentration value for each feature.  

Analysis of metabolite concentration data was performed by means of MetaboAnalyst 4.0 

(www.metaboanalyst.ca) [19]. A Kruskal-Wallis test was used where a false discovery rate 

(FDR) adjusted p-value (q-value) <0.05 was considered to be statistically significant within 

groups. Then, a Mann-Whitney U test was performed for one-to-one comparisons between the 

3 groups and between HV and patients with NAFLD (SS + NASH), using IBM SPSS Statistics 

for Windows, version 22.0 (IBM Corp., Armonk, N.Y., USA).  

In order to reduce the dimensionality of the data and visualize samples grouping, principal 

component analysis (PCA) were carried out with R version 3.6.2 [20].  

A correlation matrix between metabolites and subjects’ characteristics with statistically 

significant differences among the three groups of study was built by means of Spearman’s 

correlation using MetaboAnalyst 4.0 (www.metaboanalyst.ca) [19].  

In order to achieve a predictive signature capable of discriminating between HV and NAFLD 

(SS + NASH) and between SS and NASH, forward stepwise logistic regression models were 

constructed using R version 3.6.2 [20] after adjustment for the confounder effect of body mass 

index (BMI) on the stool and plasma data by means of ANCOVA test using IBM SPSS Statistics 

for Windows, version 22.0 (IBM Corp., Armonk, N.Y., USA). Plasma metabolites, stool 

metabolites and/or clinical parameters (BMI and PNPLA3 genotype) were used to design the 

best feature combination that could establish a predictive model for disease. Receiver 

Operating Characteristic (ROC) curves were used to evaluate the accuracy of these models. 

The global performance of each biomarkers model was evaluated using the Area Under the 

Curve (AUC) and the determination of sensitivity and specificity at the optimal cut-off point 

defined by the minimum absolute difference between the sensitivity and specificity curves. 

 

3. RESULTS 

A total of 53 participants were included in this study: 19 HV and 34 NAFLD patients (12 SS and 

22 NASH). Demographic, clinical and genetic data of all the study participants are shown in 

Table 1. BMI was significantly different between groups, being higher among NASH patients 

and lower among HV (q = 4.49e-06). Moreover, the genotypic frequency of rs738409 SNP in 

PNPLA3 gene showed significant differences between groups, being the risk GG genotype the 

most prevalent among NASH patients (q = 0.0198). Food frequency consumption data showed 

that none of the food groups evaluated in the self-administrated questionnaire showed 

significant differences in their consumption between the study groups (Table 2).  

Metabolomic analysis of plasma and stool samples detected a total of 458 metabolites at a 

quantifiable level, of which 424 passed data filtering: 229 metabolites were identified only in 

plasma samples, 24 only in stool samples and 171 in both sample types. Regarding the 3 

groups of subjects, 1, 3 and 7 plasma metabolites were identified only among HV, SS and 

NASH patients, respectively (Supplementary Figure 1). In stool, after using extraction buffer A, 

5, 4 and 10 metabolites were identified only among HV, SS and NASH patients, respectively 

(Supplementary Figure 1). However, extraction buffer B retrieved 3, 3 and 5 stool metabolites 

only detected among HV, SS and NASH patients, respectively (Supplementary Figure 1). The 
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list of these metabolites is shown in Supplementary Table 1 and their category and annotation 

are detailed in Supplementary Table 2. 

An initial PCA, based on the 424 metabolites that passed data filtering, identified sample N05 

as an outlier (Figure 1). Visual inspection of the raw metabolomics data revealed that plasma 

triglycerides (TGs) levels in sample N05 were much higher than their concentrations in the other 

samples, which could probably be explained by the fact that this patient did not fast before the 

blood draw (Supplementary Figure 2). Thus, this sample was withdrawn from further analysis. 

After analysis of the concentration of the detected metabolites, a total of 33 metabolites (25 in 

plasma and 8 in stool) significantly differed among groups (Table 3): all of them showed 

differences between HV and NASH patients; whereas 31 out of the 33 detected metabolites 

were significantly different between HV and NAFLD patients, and 15 metabolites showed 

different concentration levels between SS and NASH patients.  

The majority of the metabolites observed in plasma were lipidic compounds (84%) including 

TGs (44%), lysophosphatidylcholines (lysoPCs; 12%), phosphatidylcholines (PCs; 20%) and 

fatty acids (FAs; 8%), whereas the rest of the plasma metabolites were amino acids (8%), 

carboxylic acids (4%) and amino acid related compounds (4%). In stool samples, the detected 

metabolites were mostly bile acids (37.5%), but amino acids (25%), ceramides (12.5%), 

biogenic amines (12.5%) and nucleobase related compounds (12.5%) were also identified 

(Table 3). The list with the category and annotation of these metabolites are detailed in 

Supplementary Table 2. 

A second PCA based on these 33 significantly different metabolites, showed a clear separation 

of samples in 3 groups, confirming that these metabolites could distinguish between the groups 

of recruited subjects (Figure 2). 

In regard to these 33 metabolites, concentrations of plasma TGs, FAs and amino acids as well 

as the 8 identified stool metabolites were higher among NASH patients when compared to the 

other groups. In contrast, concentrations of plasma lysoPCs, PCs and the carboxylic acid 

hippuric acid were higher among HV (Table 3). In fact, analysis of Spearman’s rank correlation 

coefficients (ρ) confirmed these results: plasma lysoPCs and PCs were strongly negatively 

correlated with stool metabolites, whereas plasma TGs were positively correlated with them 

(Figure 3 and Supplementary Table 3).  

The Spearman rank correlation analysis also showed a significant relationship between the 

PNPLA3 gene and the plasma levels of an eicosenoic acid, FA(20:1) (ρ=0.4240; q=0.035; 

Figure 3 and Supplementary Table 3). Further analysis revealed that the risk GG genotype is 

not only the most frequent among NASH patients, but it is also associated with higher plasma 

concentrations of FA(20:1); whereas lower concentrations of this metabolite were found among 

patients exhibiting the beneficial CC genotype for the aforementioned SNP (p=0.0007; Figure 

4). 

Because NAFLD is closely linked to obesity, the relationship between the concentration of 

plasma and stool metabolites and NAFLD progression was also analyzed considering BMI as a 

covariate. The results showed that 24 metabolites (22 in plasma and 2 in stool) remained 

statistically significant (Table 4). The 19 metabolites with significant differences between HV 

and NAFLD patients were detected in plasma except for stool xanthine, being PC aa C24:0 the 

most significant one (Table 4). In the case of SS and NASH patients, 10 metabolites (8 in 

plasma and 2 in stool) exhibited significant differences between these groups of patients with 

dissimilar NAFLD stages, being PC aa C24:0 the most significant metabolite, as well (Table 4). 
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To validate the importance of these metabolites, and to further gauge their ability to distinguish 

among patients with NASH and NAFLD and healthy controls, several diagnostic models were 

established and their potential predictive utility for the process of NAFLD was assessed by ROC 

curve analysis (Table 5 and Supplementary Figure 3). The predictors for NAFLD and NASH 

identified by logistic regression modelling are summarized in Figure 5. 

It is assumed that the AUROC of a model must be equal to or greater than 0.800 to be 

considered a less invasive test as good as a liver biopsy to evaluate liver damage [21]. Under 

this assumption, all models from the resulting analysis showed strong AUROC values, although 

the model that includes stool metabolites exhibited the lowest AUROC for NAFLD, and the 

clinical model, that includes PNPLA3 genotype and BMI, showed the weakest predictive power 

for NASH. For this latter model, the accuracy for discriminating NASH was lower than that for 

discriminating NAFLD; whereas the inverse was true for the stool model (Table 5 and 

Supplementary Figure 3). 

When compared to stool metabolites, plasma metabolites showed higher accuracy for the 

diagnosis of NAFLD and NASH with AUROC values of 1.00 (Table 5 and Supplementary Figure 

3). Modelling with all the significant features from our study (ALL model) revealed that the best 

AUROC was that of BMI and plasma levels of PC aa C24:0, FA(20:1) and TG(16:1_34:1) for 

diagnosis of NAFLD; whereas the best AUROC for discriminating NASH from SS was that of 

plasma levels of PC aa C24:0 and PC ae C40:1 (Table 5 and Supplementary Figure 3).  

 

4. DISCUSSION 

The microbiome and its derivatives represent a niche to be explored for NAFLD biomarkers 

discovery as its role in the pathogenesis of disease has already been described [11]. In this 

regard, several targeted metabolomic approaches had been carried out in the last years, most 

of them focusing only on lipidomics or analyzing just a few metabolites [22]. However, as 

microbiome is highly modified by several factors including ethnicity, diet and lifestyle [15,16], the 

obtained results are not necessarily applicable worldwide. Each population may have a 

personalized signature of NAFLD biomarkers, which makes it necessary to develop local 

studies, especially in South America where prevalence of disease is the highest [4]. In this 

study, we aimed to identify potential non-invasive, microbiome-derived biomarkers for NAFLD 

and NASH patients in Argentina. Therefore, we studied a wide range of metabolites in plasma 

and stool samples and established relationships with clinical and host genetic factors. 

The recruited volunteers were residents of the same urban geographical area and were divided 

into 3 age and gender-matched groups. Considering that diet has been described as a 

modulator in NAFLD progression and one of the multiple factors that could modify the gut 

microbiota, and consequently its derived metabolites [23,24], we analyzed the food frequency 

consumption data from the recruited volunteers. Although it is recommended that NAFLD 

patients follow a healthy diet [25], our results showed no differences regarding food intake. For 

this reason, diet was not a confounding factor to consider within our cohort and all the reported 

changes in metabolites concentration among groups are independent of dietary factors. 

The GG genotype of rs738409 SNP in PNPLA3 gene was the most frequent among NASH 

patients in our cohort. This risk genotype, which has been associated with severity and 

progression of NAFLD [26], showed a frequency of 55% among the NASH group. This 

prevalence rate is similar to those reported by other studies in admixed populations and could 

possibly explain the higher prevalence of NAFLD in Latin America populations [6,26–28]. 
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In our cohort, BMI was significantly higher among NASH patients when compared to SS 

patients and HV. Being obesity a risk factor for NAFLD, it is expected that patients with disease 

have higher BMIs [29], although NAFLD can also manifest in lean patients [30]. Therefore, BMI 

could be considered as a confounding factor in our study.  

The remaining analyzed clinical characteristics revealed no differences between the study 

groups. Although these variables are usually altered in NAFLD, normal levels of liver enzymes 

and albumin have been demonstrated in subjects within the entire spectrum of NAFLD, and 

therefore these clinical factors have not been very useful in predicting NAFLD [31,32].  

There are multiple factors that may contribute to NAFLD development: gut microbiota dysbiosis, 

fat accumulation -which occurs simultaneously with toxic metabolites generation-, lipotoxicity 

and liver injury [12,33,34]. In our study, metabolomic analysis revealed a few metabolites 

uniquely identified in each study group, which could be useful as potential diagnostic markers. 

Acylcarnitines, which were associated with higher abundance of facultative anaerobes linked to 

inflammatory bowel disease [35,36] were distinctively detected in plasma and stool samples of 

NAFLD patients. Also, histamine was uniquely detected in NASH patients suggesting the 

presence of inflammatory response as it has been previously reported in other diseases [37]. 

Moreover, several metabolites associated with kidney function, such as creatinine were 

uniquely detected in NASH, implying a relationship between NAFLD and kidney disease [38]. 

However, further validation studies with a larger number of patients are needed to confirm these 

findings. 

Quantitative analysis of metabolomic data initially revealed 33 metabolites that were able to 

discriminate between groups; however, after BMI-adjustment, 24 metabolites showed 

statistically significant differences. In agreement with previous studies [39,40], plasma levels of 

TGs, FAs and amino acids were increased in SS and NASH patients, whereas plasma 

concentrations of PCs and LysoPCs were decreased relative to HV.  

Pathogenesis of NAFLD may be favored by higher levels of free FAs, causing inflammation, 

and leading to fat accumulation [41]. Moreover, long-chain FAs had been related to increased 

levels of pathogenic bacteria in the gut, contributing to inflammation and increased permeability 

[42]. 

Increased levels of circulating TGs in NAFLD patients has been also described in patients with 

obesity, diabetes or insulin resistance which are risk factors for this disease [29]. In NAFLD, a 

direct relationship between gut microbiota and TGs levels was described as probiotics 

treatment decreases TGs levels and intrahepatic fat [34,43]. Moreover, liver TGs accumulation 

could also be a consequence of lower concentrations of PCs in plasma [44,45]. In fact, choline 

is the principal precursor for PCs and LysoPCs synthesis, and its deficiency was associated 

with increased microbiota metabolism that could decrease host concentration levels of PC and 

LysoPC in NAFLD and NASH [13,46].  

Hippuric acid is another plasma metabolite that showed significant differences between groups, 

being higher in subjects with SS than in HV and NASH patients. This carboxylic acid is a toxin 

derived of intestinal bacterial fermentation that may contribute to liver toxicity and lipid 

accumulation, and could be an early biomarker for NAFLD contributing to initial stages of 

disease progression [47,48]. 

Amino-acids metabolism has also been described to be modified in NAFLD. Consistently with 

our results, higher glutamate and tyrosine plasma levels, which were associated with gut 

microbiota alterations in obese patients, have been previously reported in NAFLD [40,49]. In 
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addition, our results showed increased levels of cysteine in plasma and stool of NAFLD 

patients, which could lead to higher levels of hydrogen sulfide, a product of bacterial 

metabolism in the gut that could cause inflammation, and consequently gut health alterations. 

As a matter of fact, Fusobacterium is one of the hydrogen sulfide-producing-bacterial genus that 

has been reported at higher abundancy in subjects with liver diseases [50,51].  

Stool samples showed increased concentrations of xanthine among NASH patients, even after 

BMI-adjustment. Higher levels of xanthine, which is implicated in purine metabolism, have been 

reported in cirrhosis and hepatocellular carcinoma [52], suggesting that this increment could be 

associated with DNA damage and carcinogenesis [53]. Furthermore, gut microbiota disorders 

have been related to alterations in nucleotide and purine metabolism [54,55]. Consequently, our 

results suggest that this metabolite could be an early microbiome-derived indicator of 

progression of disease to more severe stages of liver damage. 

Correlation analysis between significant variables showed three blocks of metabolites that 

correlate with each other: plasma PCs and LysoPCs, plasma triglycerides and stool 

metabolites. Our results also showed that plasma PCs and LysoPCs negatively correlate with 

the rest of the significant identified metabolites. Taking together these results with those 

obtained from quantitative analysis, it is possible to hypothesize that there are two groups of 

metabolites: (1) those compounds that seem to be disease risk factors, like plasma TGs and 

stool metabolites, with higher concentrations in subjects with NAFLD, especially in those with 

NASH, and (2) those metabolites which may have a protective effect, such as plasma PCs and 

LysoPCs with decreased levels relative to HV.  

Moreover, our results showed a positive correlation between plasma concentration of 

eicosenoic acid, FA(20:1) and the GG genotype of SNP rs738409 in PNPLA3 gene. This gene 

encodes the patatin-like phospholipase domain-containing protein 3 which has hydrolase 

activity toward TGs and the G allele (I148M) seems to be a loss of function mutation promoting 

lipids accumulation in hepatocytes [56]. In contrast to our results, it has been reported that this 

risk allele was not associated with metabolic changes [57]. However, this study only included 

patients between 34-49 years old and with fatty liver, but not necessarily diagnosed with 

NAFLD. Based on previous reports [34,41], a possible explanation for the encountered 

relationship could be speculated. Dysbiosis may contribute to FAs generation in the bowel and 

absorption due to increased gut permeability. Moreover, it has been described that insulin 

resistance, a risk factor for NAFLD, may increase adipose tissue lipolysis elevating FAs 

transportation to the liver, that can be detected in the bloodstream [34,41].   

Our results showed that measurement of a few plasma metabolites are sufficient to discriminate 

HV from NAFLD patients, and more interestingly, SS from NASH patients with high accuracy 

(AUROC=1.00). These results are superior to those reported by Zhou et al. where a model 

based on clinical variables, PNPLA3 genotype, lipidomics and metabolomics data gave an 

AUROC=0.866 to discriminate NASH from non-NASH subjects. Moreover, our CLINICAL 

model, based just on PNPLA3 genotype and BMI (AUROC=0.73) is comparable to the 

previously described NASH Clin Score model, based on PNPLA3 genotype and other clinical 

data (AUROC=0.778) [39]. With the exception of the STOOL model for discriminating HV from 

NAFLD (AUROC=0.81), the majority of the metabolites-based models in our study had 

AUROC>0.90, constituting promising models compared to those reviewed by Wong et al. [58]. 

It is worth noting that the AUROC of the combined predictive model for disease was equal to 

the one obtained based only on plasma metabolites, indicating that this model could 

significantly simplify daily clinical screening and surveillance of NAFLD or NASH to an easy 
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peripheral blood extraction, compared to the biopsy which is actually considered an imperfect 

“gold standard” method. 

Although our study characterized the profile of a wide range of metabolites in HV and NAFLD 

patients, the low number of samples represents a limitation which does not allow us to make 

robust associations between the obtained results and causality of disease. Another possible 

limitation of our study could be the kit used for metabolomics. The MxP Quant 500 kit (Biocrates 

Life Sciences AG, Innsbruck, Austria) was developed for human plasma samples and it is 

suitable for use with fecal samples; which could possibly explain why most of the metabolites 

were detected in plasma rather than in stool samples, and that plasma metabolites showed the 

strongest associations and diagnostic accuracy. Moreover, the total of stool metabolites 

identified in our study was 67% higher than that reported in the kit application note [59], 

probably due to the applied lyophilization process [60]. Therefore, this finding highlights the 

importance of prudent interpretation of fecal metabolomic data as the results obtained for stool 

samples in our study could differ if water content is not taken into account. 

 

5. CONCLUSIONS 

In conclusion, this study identified several metabolites that could be considered as potential 

biomarkers for the diagnosis and progression of NAFLD in Argentina. BMI and plasma levels of 

PC aa C24:0, FA(20:1) and TG(16:1_34:1) are sufficient to differentiate between HV and 

NAFLD patients with high accuracy; whereas plasma levels of PC aa C24:0 and PC ae C40:1 

can distinguish between SS and NASH patients with high accuracy. Further validation studies 

including a larger number of patients, as well as transcriptomic analysis to establish 

associations between these potential new biomarkers and functional microbiome networks are 

needed. 
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Table 1. Demographic data, clinical characteristics and PNPLA3 genotypic frequency of the 

study subjects. 

Characteristics HV SS NASH q-value 

Age, years, median (IQR) 50.00 (45.00 - 57.00) 60.50 (50.25 - 70.00) 60.00 (43.25 - 64.75) 0.2060 

Male gender, n° (%) 7 (36.8) 3 (25.0) 10 (45.5) 0.5912 

BMI, kg/m2, median (IQR) 23.60 (21.35 - 25.65) 28.85 (25.15 - 31.26) 31.40 (29.43 - 37.00) 4.49E-06 

SNP PNPLA3, GG genotype, n° (%) 3 (15.79) 6 (50.00) 12 (54.55) 0.0198 

AST, UI/L, median (IQR) 25.00 (17.50 - 31.50) 39.00 (24.50 - 53.25) 33.50 (27.25 - 65.50) 0.0670 

ALT, UI/L, median (IQR) 32.00 (21.00 - 42.50) 64.00 (21.25 - 75.75) 65.50 (34.00 - 91.50) 0.0602 

Albumin, g/L, median (IQR) 4.40 (4.25 - 4.64) 4.35 (4.12 - 4.47) 4.14 (4.00 - 4.33) 0.0910 

Platelet count, x109/L, median (IQR) 261.4 (225.5 - 307.0) 230.5 (220.9 - 258.1) 216.3 (165.3 - 273.7) 0.1013 

Prothrombin time, s, median (IQR) 95.0 (84.0 - 98.5) 100.0 (94.5 - 102.0) 100.0 (90.0 - 110.0) 0.1013 

Bilirubin, mmol/L, median (IQR) 0.62 (0.55 - 0.70) 0.60 (0.46 - 0.66) 0.75 (0.56 - 0.97) 0.1013 
BMI: body mass index, SNP: single nucleotide polymorphism, AST: aspartate transaminase, ALT: alanine transaminase. Bold 

letters denote statistically significant differences between groups. 
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Table 2. Food consumption frequency data analysis among groups. 

Food category p-value 

Soft drinks 0.063 

Snacks 0.125 

Sugar (including marmalades and honey) 0.188 

Egg alone or in preparations 0.292 

Raw vegetables 0.292 

Cold cuts 0.417 

Cooked vegetables 0.458 

White meat 0.625 

Alcoholic drinks 0.708 

Legumes 0.750 

Raw fruits 0.792 

Red meat 0.875 

Infusions 0.896 

Milk and its derivatives 0.979 

Cooked fruits 0.979 

Bread and its derivatives 1.000 
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Table 3. Metabolites exhibiting statistically significant different concentrations among groups. Concentrations are expressed as median and 

interquartile range (IQR). 

Metabolite HV SS NASH q-value 
One-to-one comparisons (p-value) 

HV - SS HV - NASH HV - NAFLD SS - NASH 

PLASMA 

PC aa C24:0 0.112 (0.093 - 0.139) 0.098 (0.087 - 0.114) 0.064 (0.057 - 0.079) 0.0004 0.2206 <0.0001 <0.001 <0.0001 

PC ae C40:1 1.22 (1.06 - 1.4) 1.21 (1.045 - 1.29) 0.929 (0.857 - 0.982) 0.0086 0.9539 <0.0001 0.0060 0.0003 

PC ae C42:3 0.786 (0.675 - 1.01) 0.73 (0.64 - 0.834) 0.591 (0.546 - 0.642) 0.0086 0.3290 <0.0001 <0.001 0.0120 

FA(20:3) 1.02 (0.463 - 1.06) 1.45 (0.7765 - 1.645) 1.67 (1.34 - 2.45) 0.0283 0.1153 <0.0001 <0.001 0.1042 

Glutamate 24.3 (15.5 - 35.5) 38.3 (26.05 - 65.95) 45.5 (38.1 - 55.8) 0.0283 0.0357 <0.0001 <0.001 0.4570 

Hippuric acid 10.1 (6.29 - 16.6) 20 (14.45 - 32.85) 5.13 (2.33 - 6.47) 0.0283 0.0221 0.0194 0.5220 0.0003 

lysoPC a C26:0 0.272 (0.213 - 0.364) 0.22 (0.2035 - 0.2375) 0.17 (0.126 - 0.211) 0.0283 0.1246 0.0003 0.0020 0.0043 

lysoPC a C28:1 0.437 (0.333 - 0.493) 0.312 (0.292 - 0.4415) 0.264 (0.213 - 0.294) 0.0283 0.1952 0.0002 0.0020 0.0086 

PC ae C36:2 21.2 (19.3 - 24.7) 19.8 (17.75 - 22.75) 15.7 (13.7 - 19.5) 0.0283 0.3970 0.0002 0.0040 0.0086 

Tyrosine 65 (48.5 - 73.8) 71.5 (64.05 - 88.9) 87.1 (76.5 - 99.5) 0.0283 0.1872 <0.0001 0.0010 0.0449 

FA(20:1) 1.49 (1.16 - 1.83) 2.16 (1.75 - 2.63) 2.41 (1.66 - 3.07) 0.0321 0.0083 0.0002 <0.001 0.5313 

lysoPC a C28:0 0.283 (0.187 - 0.317) 0.224 (0.178 - 0.2495) 0.185 (0.106 - 0.189) 0.0321 0.1027 0.0004 0.0020 0.0177 

TG(16:1_34:0) 2.73 (2.06 - 6.11) 8.54 (6.2 - 12.7) 9.31 (6.51 - 11.3) 0.0329 0.0056 0.0004 <0.001 0.5378 

TG(16:1_34:2) 19.5 (10.5 - 29.6) 38.1 (29.55 - 59.05) 46.6 (31.8 - 60.3) 0.0329 0.0123 0.0002 <0.001 0.6324 

TG(16:0_34:3) 24.4 (13.9 - 31.9) 41.6 (34.5 - 67.1) 57.5 (35.1 - 67.2) 0.0345 0.0109 0.0003 <0.001 0.6961 

TG(16:1_34:1) 29 (17.3 - 53.7) 64.3 (55.35 - 106.05) 74.6 (60.2 - 91.3) 0.0418 0.0109 0.0004 <0.001 0.7475 

Cystine 55.7 (46.4 - 64.4) 72.5 (54.9 - 79.4) 86.5 (64.2 - 96.3) 0.0444 0.0754 0.0004 0.0010 0.1114 

PC ae C40:6 5.03 (4.32 - 5.84) 4.56 (4.225 - 5.405) 3.69 (3.34 - 4.4) 0.0444 0.6188 0.0023 0.0180 0.0048 

TG(16:0_32:0) 10.2 (4.7 - 19.8) 21.2 (16.55 - 35.6) 26.5 (16.7 - 44.8) 0.0444 0.0313 0.0005 0.0010 0.3725 

TG(16:0_34:2) 71.1 (52.3 - 117) 170 (121 - 231) 186 (144 - 265) 0.0444 0.0221 0.0005 0.0010 0.5249 

TG(16:1_34:3) 4.14 (2.51 - 5.53) 7.56 (5.13 - 12.5) 8.42 (5.62 - 9.89) 0.0444 0.0091 0.0006 <0.001 0.8993 

TG(20:4_32:0) 2.5 (1.46 - 3.6) 4.91 (2.56 - 7.555) 5.76 (2.97 - 8.56) 0.0444 0.0220 0.0005 0.0010 0.5637 

TG(16:1_32:1) 6.41 (4.55 - 11.5) 16.9 (11.25 - 23.75) 15.5 (10.5 - 24.3) 0.0453 0.0199 0.0005 0.0010 0.8452 

TG(16:0_34:0) 8.46 (7.24 - 18.7) 20.7 (13.55 - 34.8) 24.8 (19.1 - 39.5) 0.0474 0.0378 0.0006 0.0010 0.4050 

TG(16:1_32:0) 4.64 (2.87 - 8.34) 11.1 (6.945 - 18.05) 12.3 (6.73 - 31.2) 0.0474 0.0216 0.0010 0.0010 0.3075 
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STOOL (ext. buf. A) 

Cer(d18:1/18:0) 0.124 (0.021 - 0.176) 0.174 (0.14 - 0.4175) 0.309 (0.223 - 0.5445) 0.0299 0.0465 0.0001 0.0010 0.1968 

Glycine 2.35 (2.35 - 6.46) 6.54 (2.35 - 7.99) 13.85 (6.5425 - 18.45) 0.0299 0.2584 0.0001 0.0020 0.0315 

Xanthine 8.13 (3.43 - 13.9) 15.7 (5.48 - 24.45) 36.25 (15.475 - 57.8) 0.0299 0.1469 0.0002 0.0010 0.0387 

Spermidine 2.38 (1.49 - 3.42) 1.47 (0.7195 - 6.53) 7.455 (4.0675 - 9.8925) 0.0318 0.8621 0.0005 0.0140 0.0202 

DCA 36.1 (18.1 - 50) 53.6 (41.75 - 73.3) 68.35 (48.65 - 84.725) 0.0318 0.0296 0.0007 0.0010 0.2976 

GDCA 0.156 (0.093 - 0.285) 0.347 (0.2775 - 0.4195) 0.4895 (0.34075 - 1.1125) 0.0318 0.1107 0.0004 0.0020 0.1447 

Cysteine 0.802 (0.652 - 1.21) 0.604 (0.5005 - 0.7345) 1.375 (1 - 1.8675) 0.0318 0.2392 0.0067 0.1810 0.0025 

CDCA 34.7 (18.9 - 50.2) 54.4 (41.55 - 75.9) 68.1 (48.975 - 88.275) 0.0365 0.0287 0.0010 0.0010 0.3587 

STOOL (ext. buf. B) 

Xanthine 181 (89.85 - 278.5) 160 (118.85 - 563.5) 597 (378 - 748) 0.0184 0.2871 <0.0001 <0.001 0.0325 

HV: healthy volunteers, SS: simple steatosis patients, NASH: non-alcoholic steatohepatitis patients, NAFLD: non-alcoholic fatty liver disease. 

Bold letters denote statistically significant differences between groups (p-value < 0.05).  

 

 

 

 

 

 

  

A
ll rig

h
ts

 re
s
e
rv

e
d
. N

o
 re

u
s
e
 a

llo
w

e
d
 w

ith
o
u
t p

e
rm

is
s
io

n
. 

(w
h
ic

h
 w

a
s
 n

o
t c

e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 m

e
d
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t
th

is
 v

e
rs

io
n
 p

o
s
te

d
 A

u
g
u
s
t 2

, 2
0
2
0
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/2

0
2
0
.0

7
.3

0
.2

0
1
6
5
3
0
8

d
o
i: 

m
e
d
R

x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/2020.07.30.20165308


Table 4. Body mass index (BMI)-adjustment of significant metabolites’ p-values by ANCOVA 

test. 

Metabolite 
p-value BMI-adjusted p-value 

HV - NAFLD SS - NASH HV - NAFLD SS - NASH 

PLASMA 

PC aa C24:0 <0.001 <0.0001 0.001 <0.001 

PC ae C40:1 0.0060 0.0003 0.600 0.003 

PC ae C42:3 <0.001 0.0120 0.061 0.056 

FA(20:3) <0.001 0.1042 0.102 0.197 

Glutamate <0.001 0.4570 0.002 0.556 

Hippuric acid 0.5220 0.0003 0.275 0.004 

lysoPC a C26:0 0.0020 0.0043 0.021 0.037 

lysoPC a C28:1 0.0020 0.0086 0.188 0.097 

PC ae C36:2 0.0040 0.0086 0.287 0.018 

Tyrosine 0.0010 0.0449 0.005 0.019 

FA(20:1) <0.001 0.5313 0.005 0.393 

lysoPC a C28:0 0.0020 0.0177 0.003 0.004 

TG(16:1_34:0) <0.001 0.5378 0.008 0.473 

TG(16:1_34:2) <0.001 0.6324 0.008 0.967 

TG(16:0_34:3) <0.001 0.6961 0.011 0.993 

TG(16:1_34:1) <0.001 0.7475 0.009 0.905 

Cystine 0.0010 0.1114 0.043 0.267 

PC ae C40:6 0.0180 0.0048 0.498 0.022 

TG(16:0_32:0) 0.0010 0.3725 0.009 0.262 

TG(16:0_34:2) 0.0010 0.5249 0.016 0.679 

TG(16:1_34:3) <0.001 0.8993 0.010 0.452 

TG(20:4_32:0) 0.0010 0.5637 0.019 0.520 

TG(16:1_32:1) 0.0010 0.8452 0.013 0.532 

TG(16:0_34:0) 0.0010 0.4050 0.011 0.402 

TG(16:1_32:0) 0.0010 0.3075 0.034 0.141 

STOOL (ext. buf. A) 

Cer(d18:1/18:0) 0.0010 0.1968 0.140 0.766 

Glycine 0.0020 0.0315 0.178 0.160 

Xanthine 0.0010 0.0387 0.097 0.052 

Spermidine 0.0140 0.0202 0.562 0.364 

DCA 0.0010 0.2976 0.093 0.319 

GDCA 0.0020 0.1447 0.363 0.326 

Cysteine 0.1810 0.0025 0.924 0.011 

CDCA 0.0010 0.3587 0.093 0.339 

STOOL (ext. buf. B) 

Xanthine <0.001 0.0325 0.023 0.035 
 

HV: healthy volunteers, SS: patients with simple steatosis, NASH: patients with non-alcoholic steatohepatitis, NAFLD: patients with 

non-alcoholic fatty liver disease. 

Bold letters denote statistically significant differences between groups (p-value < 0.05) 
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Table 5. Diagnostic performance of different models for NAFLD and NASH. 

 Model Variables Model p-value Specificity Sensitivity AUROC 
H

V
 v

s
. 
N

A
F

L
D

 

CLINICAL 
PNPLA3 

1.41E-09 0.89 0.91 0.95 
BMI 

STOOL Xanthine 2.49E-05 0.71 0.71 0.81 

PLASMA 

FA(20:1) 

2.57E-12 1.00 1.00 1.00 

TG(16:1_32:1) 

lysoPC a C28:0 

TG(16:0_34:2) 

TG(20:4_32:0) 

ALL 

BMI 

9.08E-13 1.00 1.00 1.00 
PC aa C24:0 

FA(20:1) 

TG(16:1_34:1) 

S
S

 v
s
. 
N

A
S

H
 

CLINICAL 
PNPLA3 

0.0225 0.58 0.57 0.73 
BMI 

STOOL 
Xanthine 

0.0001 0.73 0.75 0.90 
Cysteine 

PLASMA 

PC aa C24:0 

5.98E-09 1.00 1.00 1.00 PC ae C40:1 

PC ae C36:2 

ALL 
PC aa C24:0 

5.09E-09 1.00 1.00 1.00 
PC ae C40:1 
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FIGURE LEGENDS 

Figure 1. Principal component analysis (PCA) based on the 424 metabolites that passed data 

filtering in healthy volunteers (HV, green), patients with simple steatosis (SS, blue) and non-

alcoholic steatohepatitits (NASH, red). 

Figure 2. Principal component analysis (PCA) based on the 33 metabolites exhibiting 

statistically significant different concentrations among groups. Healthy volunteers, simple 

steatosis and non-alcoholic steatohepatitis patients are shown in green, blue and red, 

respectively. 

Figure 3. Heatmap of the Spearman correlation coefficients between plasma and stool 

metabolites, BMI and PNPLA3 genotype. Prefixes “P_”, “SA_” and “SB_” indicate those 

metabolites measured in plasma, or in stool samples extracted with buffer A and B, 

respectively. 

Figure 4. Association between the SNP rs738409 genotype in PNPLA3 gene and FA(20:1) 

concentration in plasma. ***p=0.0007 and *p=0.0811. 

Figure 5. Predictors for NAFLD (A) and NASH (B) identified by logistic regression modelling 

where each Venn diagram represents the input data used for analysis. Significant variables 

identified by each model are displayed inside the corresponding diagram. Up-arrows designate 

variables that may possibly act as risk factors for NAFLD and/or NASH and down-arrows show 

variables that may be associated to a protective effect against the disease. 

 

SUPPLEMENTAL FIGURES LEGENDS 

Supplementary Figure 1. Metabolites identified in each group of subjects according to the 

sample type. Values are shown as absolute number and percentage. HV: healthy volunteers, 

SS: patients with simple steatosis patients, NASH: patients with non-alcoholic steatohepatitis. 

Supplementary Figure 2. Distribution of triglycerides (TG) concentrations (µM) among 

samples. Median values are shown for each sample and the dotted line shows median 

tendency between samples. HV: healthy volunteers, SS: patients with simple steatosis patient, 

NASH: patients with non-alcoholic steatohepatitis. 

Supplementary Figure 3. Receiver operating characteristic (ROC) curves for models based on 

clinical data (CLINICAL), plasma metabolites (PLASMA), stool metabolites (STOOL) and the 

combination of all the previously mentioned variables (ALL) to predict NAFLD and NASH. 
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