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Plasma cells (PCs) are responsible for the production of protective antibodies against 
infectious agents but they also produce pathogenic antibodies in autoimmune diseases, 
such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoanti-
bodies are thought to arise through germinal center (GC) responses. However, class 
switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this 
pathway has also been implicated in SLE. The pathway from which PCs originate may 
determine several characteristics, such as PC lifespan and sensitivity to therapeutics. 
Although both GC and EF responses have been implicated in SLE, we hypothesize that 
one of these pathways dominates in each individual patient and genetic risk factors 
may drive this predominance. While it will be important to distinguish polymorphisms 
that contribute to a GC-driven or EF B cell response to develop targeted treatments, 
the challenge will be not only to identify the differentiation pathway but the molecular 
mechanisms involved. In B  cells, this task is complicated by the cross-talk between 
the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which 
contribute to both GC and EF responses. While risk variants that affect the function of 
dendritic cells and T follicular helper cells are likely to primarily influence GC responses, 
it will be important to discover whether some risk variants in the interferon and TLR 
pathways preferentially influence EF responses. Identifying the pathways of autoreactive 
PC differentiation in SLE may help us to understand patient heterogeneity and thereby 
guide precision therapy.

Keywords: systemic lupus erythematosus, autoantibodies, B cells, plasma cells, tolerance

iNTRODUCTiON

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the 
production of pathogenic autoantibodies that target a variety of nuclear self-antigens, some of 
which cross-react with tissue antigens. These autoantibodies cause tissue inflammation and lead 
to organ damage in the kidneys, skin, and more. Presence of IgG ANA is a diagnostic feature 

Abbreviations: AID, activation-induced cytidine deaminase; BCR, B  cell receptor; BM, bone marrow; CSR, class switch 
recombination; DC, dendritic cell; EF, extrafollicular; FDC, follicular dendritic cell; FO, follicular; GC, germinal center; ICOS, 
inducible T-cell costimulator; IFN, interferon; MHC, major histocompatibility complex; MZ, marginal zone; PB, plasmablast; 
PBMC, peripheral blood mononuclear cell; PC, plasma cell; pDC, plasmacytoid dendritic cell; SHM, somatic hypermutation; 
SLE, systemic lupus erythematosus; Tfh, T follicular helper; TLR, Toll-like receptor.
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for SLE and other systemic autoimmune diseases, and these 
antibodies have an important role in disease pathogenesis (1, 2).  
In contrast, IgM ANA are considered to be protective against 
autoimmunity. They can be present in healthy individuals and 
assist in the non-inflammatory clearance of cellular debris and 
inhibit responses induced by IgG ANA (3–5). Other isotypes 
include IgA and IgE, but the pathogenicity of these isotypes has 
been less well studied.

Antibodies are secreted by plasma cells (PCs), which arise as a 
terminal differentiation step from B cells. Most of our knowledge 
of immune tolerance to nuclear antigens, and the break of toler-
ance in SLE patients, is derived from studies with B cell receptor 
(BCR)-transgenic mice and single cell studies in humans, where 
self-reactivity is usually censored in developing B cells prior to 
their achieving immunocompetence (6, 7). Autoreactive cells that 
escape these mechanisms often become anergic (8–10), a process 
that mitigates against these cells giving rise to high affinity IgG 
autoantibody-producing PCs.

Plasma cells can arise through two pathways: through activa-
tion of B cells and direct differentiation in extrafollicular (EF) foci 
or through a germinal center (GC) response. Although tradition-
ally pathogenic high affinity autoantibodies have been associated 
with the GC response, recent insights have implicated the EF 
pathway in SLE as well. We hypothesize that both pathways can 
contribute to production of SLE autoantibodies. Understanding 
the regulation of each pathway and how genetic risk alleles may 
preferentially target one or the other of these pathways will be the 
focus of this review.

Different subtypes of PCs have been described, including 
plasmablasts (PB), pre-PC, early PC, short-lived PC, and long-
lived PC. These terms are sometimes used interchangeably 
or not clearly defined. The confusion in part derives from the 
original paradigm that the EF pathway only results in short-lived 
proliferating PBs, whereas the GC pathway was thought to result 
only in long-lived quiescent PCs (11). However, lifespan and 
proliferation can operate independently from each other, such 
that there are short-lived PCs which are not proliferating, and 
long-lived PCs from GC origin can proliferate prior to becoming 
quiescent (12–14). In addition, PC differentiation is a continuum 
where expression of canonical B cell markers [B220, CD19, major 
histocompatibility complex (MHC) class II] is gradually lost and 
PC markers (such as Blimp-1, CD138, secreted Ig) are gradu-
ally upregulated (14). It is therefore difficult to define specific 
PC subsets based on the expression of these markers. Here, we 
define PCs as antibody secreting cells and we will only mention 
specific PC subsets if these have been clearly verified. Definitions 
used in this review are PBs, if proliferation has been verified; 
short-lived plasma cells, if a short lifespan of <7 days has been 
shown; or long-lived PC, if a long lifespan of >28 days has been 
demonstrated.

T-iNDePeNDeNT B CeLL ACTivATiON 
AND PC DiFFeReNTiATiON

The B cell lineage consists of several subsets and cells diverge 
early in development. Each of these naive cell subsets can give 
rise to PCs, but they each preferentially respond to specific types 

of antigen. Antigens can activate B cells in a T-independent or 
T-dependent manner. T-independent responses do not require 
cognate T  cell help. T-independent activation therefore leads 
to plasma cell differentiation in the absence of GCs. There 
are two types of T-independent antigens that can induce 
activation of B cells; TI-1 antigens can activate B cells through 
coengagement of Toll-like receptors (TLR), such as LPS or 
other bacterial polysaccharides, whereas TI-2 antigens lead to 
extensive crosslinking of the BCR, such as polymeric protein 
antigens or repeated structural motifs (15). In TI-2 responses, 
competition for antigen enhances the activation and expansion 
of high-affinity cells, while antigen affinity is less important in 
TI-1 responses (16).

Although TI-1 and TI-2 antigens have been considered to 
induce T  cell-independent responses, it is now clear that this 
distinction is not absolute: TI-2 and possibly TI-1 antigens 
can induce a transient GC (17), and the TI-2 serum antibody 
responses, in particular IgG, can still be T cell-dependent, even if 
the antigen cannot directly trigger T cells through MHC class II 
(18). It has therefore been proposed that the characteristics of the 
antigen is not the leading determinant of the response, but rather 
the B cell subset and the ancillary cell types involved determine 
the nature of the response (19).

In addition to the strength of the initial stimulus through the 
BCR and cognate and non-cognate T  cell interactions, B  cell 
activation is also modified by the presence of other potent stimuli. 
Pattern recognition receptors, such as TLRs, interact with damage-
associated molecular patterns or highly conserved microbial 
structures present in bacteria or virus. Included among these 
are both dsDNA (CpG enriched) and RNA. Many TLRs signal 
through MyD88, and MyD88-deficient mice have diminished anti-
body responses, both early and late after immunization (20–23). 
Simultaneous engagement of the BCR and TLRs has a synergistic 
effect on signaling and subsequent B cell activation (24).

Cytokines, such as type I interferon (IFN), IL-6, and BAFF, can 
activate B cells and enhance both T-independent and T-dependent 
activation (25–27). BAFF has three recognized receptors, and 
one of them, TACI, signals through MyD88 (28), the same adap-
tor used by TLR7 and TLR9. Antigen-presenting cells, such as 
dendritic cell (DC) and macrophages, induce CD40-independent 
PC differentiation through secretion of cytokines such as BAFF 
and APRIL (26).

Two processes that alter the antibody response are somatic 
hypermutation (SHM) and class switch recombination (CSR), 
both of which are mediated by the enzyme activation-induced 
cytidine deaminase (AID) (29). These processes can change 
antigen recognition by the BCR (SHM) or change the isotype that 
is expressed (CSR), and are usually associated with GC responses 
(discussed below). Although T-independent responses are usually 
associated with the IgM isotype, CSR can occur in certain infec-
tions and does not require cognate T–B interactions (30). CSR can 
be driven by MyD88 signaling or cytokines such as BAFF, APRIL, 
IFN-gamma, and IL-21 (20, 23, 31, 32).

B-1 Cells
B-1 cells represent a distinct population of B  cells that arises 
during fetal development (33, 34). They are mainly found in the 
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FigURe 1 | B cell subsets in T-independent plasma cell development. B-1 
cells in the peritoneal and pleural cavities can produce antibodies of the IgM 
and IgA isotype, either spontaneously (B-1a) or in response to T-independent 
antigens (B-1a and B-1b). Marginal zone B cells produce mostly IgM in 
response to T-independent antigens.

FigURe 2 | B cell subsets in T-dependent plasma cell (PC) development. 
Both marginal zone B cells and follicular (FO) B cells can contribute to the 
extrafollicular (EF) PC response, whereas the germinal center (GC) response 
and subsequent PC differentiation is predominantly driven by FO B cells.
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peritoneal and pleural cavities of mice and are rare in lymphoid 
organs and blood (Figure  1) (35). B-1 cells generally express 
germline-encoded, polyreactive IgM and IgA antibodies with 
limited V-gene segment usage, and are activated by T-independent 
antigens, such as LPS (TI-1) or multivalent antigens (TI-2) 
(36–38). In mice, B-1 cells can be further divided into B-1a 
and B-1b according to the expression of CD5 (CD5+ or 
CD5−, respectively). B-1a cells have been proposed as a major 
source of natural autoantibodies (37–40). These low-affinity 
polyreactive antibodies can be secreted spontaneously and 
are important in the clearance of apoptotic debris. They also 
contribute to protection against pathogens such as Streptococcus 
pneumoniae and influenza (41, 42). B-1b cells respond primarily 
to T-independent antigens (TI-1 and TI-2) and generate IgM 
memory cells, which contribute to protection against reinfec-
tion with Borrelia hermsii, S. pneumoniae, and Salmonella (19, 
41, 43–45).

B-1 cells are poor at forming GCs (46); however, class-switched, 
somatically mutated B-1 antibodies showing evidence of anti-
gen selection have been isolated from humans (47). Although 
elevated numbers of B-1 cells are present in some lupus-prone 
mouse strains (36, 48), there is not a clear association with SLE 
(49, 50).

Marginal Zone (MZ) B Cells
Marginal zone and follicular (FO) B  cells differentiate from 
transitional B  cells and both can participate in T-dependent 
and T-independent immune responses. MZ B  cells are located 
in the MZ of the spleen, where they can serve as a first line of 
defense to T-independent and blood-borne antigens, such as 
lipopolysaccharide from bacteria (51). They are characterized by 
high responsiveness to TLR activation, as well as a preactivated 
state with high expression of complement receptors and costimu-
latory molecules. Due to these characteristics, they are known 
for their ability to quickly differentiate into PCs in response 
to T-independent antigens (51–53). MZ B  cells do not require 
cognate T  cell help, as soluble factors such as cytokines and 
costimulation derived from DCs, neutrophils, iNKT  cells, and 
T cells, can also lead to their activation, CSR, and differentiation 
into PCs (28, 31, 54, 55).

FO B Cells
Follicular B  cells are migratory cells that move between 
lymph nodes, splenic follicles and the circulation until they 
interact with antigen. While MZ B cells are specialized in the 
response to T-independent antigen, they can also transport 
these antigens to the follicles and transfer such antigens to 
FO B cells (56, 57). However, compared to MZ B cells which 
become blasts within 24 h of mitogen activation, FO B cells 
do not show blast formation in response to mitogen, due to 
their requirement for cognate T  cell help, and therefore the 
contribution of FO B cells in T-independent responses is prob-
ably limited (51).

T-CeLL-DePeNDeNT ACTivATiON  
OF B CeLLS

Although there are models where T-independent responses 
can contribute to lupus in mice (58, 59), the majority of 
studies in lupus-prone mice and SLE patients suggest that 
T-dependent responses are the main driver of the disease. 
Therefore, we will focus on T cell-dependent responses for the 
remainder of this review. Here, we will first discuss the initial 
activation of B  cells in a T-dependent response, including 
the cell fate decisions into either the EF or the GC pathway, 
followed by a discussion of the PC differentiation pathways 
after they diverge.

T-dependent responses are thought to be dominated by FO 
B cells, although MZ B cells can migrate to the T–B border, acti-
vate T cells, and enter a GC (60–63). Although it is unclear how 
much they contribute to class-switched GC-derived antibody 
responses, MZ B  cells can certainly contribute to T-dependent 
EF responses (Figure 2) (64, 65). MZ B cells can also capture and 
deliver blood borne antigens to the follicles, thereby enhancing 
T-dependent FO responses (66). This indicates that although 
MZ B cells do not require cognate T cell interactions for their 
differentiation into PCs, they can still participate in T-dependent 
responses (Figure 2).
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Recirculating FO B cells are activated by antigen in periph-
eral tissues or in lymphoid tissue where they encounter soluble 
antigen or antigen arrayed on follicular dendritic cells (FDCs). 
Activated B  cells upregulate chemotactic factors (CCR7, EBI2) 
that favor their migration to the B–T border in the lymph nodes 
or spleen (67, 68). At the same time, CD4+ T cells are activated 
by DCs in the T cell zone, and these activated T cells will also 
migrate to the B–T  cell border. The differentiation of Th cells 
[Th1, Th2, Th17, T follicular helper cells (Tfh)] is determined by 
T cell–DC interactions and is driven by the engagement of pat-
tern recognition receptors by pathogens- or damage-associated 
molecules (69). At the T–B border, cognate interactions between 
antigen-specific B and T cells drives initial proliferation, and some 
B cells will undergo immunoglobulin CSR under the influence of 
T cell-derived cytokines (60, 70–73).

After activation, B  cells can diverge into EF PCs and GC 
B cells. While it is well known which transcription factors drive 
the differentiation into GC B cells versus EF PCs, whether there 
is direct competition between EF and GC differentiation has not 
been fully demonstrated. Since B cells can proliferate at the T–B 
border prior to making cell-fate decisions, it is possible that the 
distinction between cells with the same high affinity that enter an 
EF or a GC pathway is partly stochastic and that the same B cell 
clone can be found in both pathways (74, 75).

Under non-competitive conditions, low-, medium-, or high-
affinity B cells can all seed a GC, whereas the low-affinity cells are 
unable to generate an EF antibody response (76), due to failure to 
expand low-affinity EF PCs rather than a lack of initiation of PC 
differentiation (75). In contrast, under competitive conditions, 
low-affinity cells compete with high affinity cells and are unable 
to expand or enter a GC response (77). The advantage of high 
affinity B cells in each response can be at least partly explained 
by the degree of T cell help that is received, as high affinity B cells 
stimulated with antigen express higher amounts of MHC class II 
in the membrane, and are able to present more peptide to T cells, 
establishing a more effective immunological synapse (77), which 
can affect both EF and GC responses.

Although TLR activation during T-independent responses 
clearly increases the magnitude of the EF response, TLR ligation 
in T-dependent responses can enhance both the GC response 
and the EF response (22), in a B  cell-extrinsic or -intrinsic 
manner (78).

PC DiFFeReNTiATiON

PC Differentiation in eF Responses
As EF PCs can provide an initial wave of secreted antibodies 
during the first week of an infection, these cells are an important 
part of the initial antibody response against pathogens (11). 
During expansion at the T–B border, those cells destined to 
become EF PCs will upregulate Blimp-1, CD138, and CXCR4 
(79). Differentiation of EF PCs is driven by T–B interactions with 
a specific subset of Th cells that resembles Tfh cells but is located 
in EF areas. These Th cells are dependent on Bcl-6 and Stat3, and 
their interaction with B cells is mediated through CD40-CD40L 
and inducible T-cell costimulator (ICOS)–ICOSL interactions as 
well as cytokines, such as IL-21 (75, 79, 80). These interactions 

lead to heavy chain CSR as well as initiation of PC differentiation 
(Figure 4).

Under the influence of CXCR4, EF PCs migrate to the red 
pulp, where they can further proliferate and differentiate in EF 
foci. Proliferation is driven by BCR signaling, as cells with high 
affinity BCRs have increased proliferation and decreased apop-
tosis compared to cells with low affinity BCRs (75). Cofactors, 
such as CD19 and other molecules that enhance BCR signaling, 
can enhance EF proliferation. Lyn, an inhibitory molecule in the 
BCR signaling pathway, can diminish proliferation while in fact 
driving terminal PC differentiation (16). After the proliferative 
stage, PBs will differentiate further into PCs, characterized by 
higher expression of Blimp-1, further loss of MHC class II and 
costimulatory molecules. However, as discussed below, many 
EF PBs are short-lived and die prior to full differentiation into 
PCs (75). Some, however, complete their PC differentiation, after 
which they can survive in specialized niches in the spleen or bone 
marrow (BM) (12, 14).

Recent evidence suggests that several characteristics previ-
ously attributed to GC responses can also occur in EF responses. 
This includes the formation of memory B cells, CSR, SHM, and 
induction of long-lived PCs (discussed below). Whereas the 
previous understanding was that memory B cells are generated 
only in the GC, memory cells initially appear in blood before 
GC formation (81), and Bcl-6-deficient mice, which are unable 
to form GCs, generate memory cells (82). Most of these are non-
mutated and IgM  +  memory cells, suggesting an EF origin at 
least for some memory cells. Although CSR and a low degree 
of SHM occur during early B–T interactions at the T–B border, 
continued AID expression and affinity maturation in EF sites has 
been observed (83).

gC Responses
Germinal centers are areas of T-dependent B cell development 
in spleen, tonsils, lymph nodes, and Peyers’ patches. FDCs are 
important for normal splenic architecture and B  cell develop-
ment, as well as for maintaining the structure and function of the 
GC (84). Importantly, they capture antigen in immune complexes 
and retain the antigen in native form. Antigens are presented 
by FDCs on the cell surface (85). Several sequential events are 
involved in the formation of the GC. At the T–B border, B cell and 
T cell encounter with antigen stimulates formation of a GC (86), 
and migration from the T–B border into the follicle is mediated 
by CXCR5 (87). B cells receiving more T-help are more prone to 
differentiate into GC B cells (88, 89), and T cells differentiate into 
Tfh under the influence of B cell costimulatory molecules, includ-
ing OX40L and CD80, which are essential for the maturation of 
Tfh cells (90, 91). The transcription factor Bcl-6 is required for 
the development of both GC B cells and Tfh cells (92). Tfh cells 
are specialized T helper cells that are involved in the selection and 
survival of B cells in the GC. The canonical costimulatory signal 
involved in the B–T cell interaction in the GC is CD40–CD40L 
(93, 94), but other signals such as ICOS–ICOSL, and IL-21 pro-
duced by Tfh cells are also required (95, 96).

The structure of the GC, with a light zone and a dark zone, 
aligns with the processes of SHM, affinity maturation, and 
selection (Figure 5). B cells in the light zone are referred to as 
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centrocytes. They interact with FDCs through antigen and 
with Tfh cells through MHC–peptide interactions (97). Those 
B cells which make stronger interactions with Tfh cells, due to 
an increased T cell receptor peptide–MHC interaction, are posi-
tively selected and enter the dark zone where their proliferation 
is greater (98, 99). As more antigen is added, the population of 
B cells with BCRs that bind antigen sufficiently to induce positive 
selection increases (99). Positive selection in the light zone is 
important as it leads to GC B cells with the greatest affinity for 
antigen. Interactions between Tfh cells, antigen, and B  cells in 
the light zone determine the extent of proliferation in the dark 
zone (99). Fewer cells move from the light zone to the dark zone 
than from the dark zone to the light zone indicating that selection 
occurs in the light zone (99, 100).

The dark zone is the location where the most active proliferation 
of GC B cells takes place, as all GC B cells that are in G2 or M phase 
are in the dark zone; however, S phase cells are present in both 
the light zone and dark zone (100). Proliferation can occur under 
the influence of mTORC1 kinase, which activates the metabolic 
program that permits proliferation of B cells in the dark zone (98). 
After positive selection in the light zone and while undergoing 
proliferation in the dark zone, SHM occurs to effect a process called 
affinity maturation. During this process, point mutations occur 
in the BCR which affect its affinity for antigen. When the B cell 
returns to the light zone, the B cells that have undergone mutations 
to enhance affinity for the antigen are preferentially selected (101). 
A stronger interaction with Tfh cells in the light zone allows the 
B cell to undergo more rounds of proliferation in the dark zone. 
Therefore, each time the cell divides and more mutations are 
acquired, more affinity maturation can occur for B cells that were 
most positively selected for in the light zone (99).

Negative selection also occurs in the GC. B cells with weak 
affinity for antigens in the GC, or autoreactive B cells recognizing 
ubiquitously expressed self-antigens are eliminated (102, 103). 
Proposed mechanisms for the negative selection of these B cells 
are Fas-mediated apoptosis of cells that fail to bind antigen, fail-
ure to receive continuing T cell help, or the activity of T follicular 
regulatory cells (Tfr) (102). A recent study, however, suggests that 
negative selection primarily occurs in cells with an unproductive 
BCR as a consequence of SHM rather than in cells with lower 
affinity (104).

PC Differentiation in the gC
Both memory B  cells and PCs arise from the GC, and many 
studies have examined the factors that determine if a given B cell 
will become a memory B cell or a PC. High affinity GC B cells 
become PCs, while lower affinity GC B  cells become memory 
B cells (105–107). The initiation of PC differentiation in the light 
zone requires strong affinity for antigen; further differentiation in 
the dark zone requires help from Tfh cells (108). Light zone B cells 
become memory B cells early in the GC reaction, while PCs are 
formed later (105, 109). Preventing apoptosis in the GC allows 
for lower affinity B cells to become memory B cells but does not 
change the development of PCs, further suggesting that selection 
of B cells into the PC population is dependent on high affinity for 
antigen (106).

Certain cytokines favor the development of PCs. Among 
them, IL-21 is the most potent inducer of PC differentiation from 
memory and naive B cells (110, 111). This cytokine is produced 
by Tfh cells in the GC and activates the JAK1/3 STAT3 pathway. 
IL-21-deficient mice are unable to generate fully functional GCs. 
Without IL-21 or Tfh cells, PC formation is disrupted, affinity 
maturation does not occur, and the population of memory B cells 
is expanded (91, 96, 110).

Toll-like receptor ligands also enhance GC responses through 
both DCs and B cells (21, 78, 112). Whereas soluble TLR ligands 
can enhance GC responses through an effect on DCs, an antigen 
that can trigger both endosomal TLRs and BCRs can enhance 
the IgG antibody response in a B cell-intrinsic manner (21). This 
probably reflects the requirement for BCR-mediated uptake of 
ligands for endosomal TLRs in this process, and explains why 
some studies reported no effect of TLR signaling on GC responses 
induced with LPS (113, 114). B  cell-intrinsic MyD88 signaling 
specifically enhances the formation of GC B cells, affinity matura-
tion, and CSR in response to the TLR-9 ligand CpG coupled to 
the hapten NP, without affecting the number of PCs. In contrast, 
MyD88 signaling in DCs contributes to PC differentiation with-
out affecting affinity maturation (78).

Different transcription factors are involved in the differentiation 
of PCs and memory B  cells. Bach2 is reported to be important 
for selection of GC B cells into memory B cells; in the light zone, 
B  cells with lower affinity for antigen have higher expression of 
Bach2, probably due to a lower degree of T cell help in those cells 
(105, 115). In addition to Bach2, ABF-1 leads to memory B cell 
differentiation and prevents PC differentiation (116). The tran-
scription factors Blimp-1, XBP-1, and IRF4 are all involved in PC 
differentiation (117–119). Blimp-1 leads to decreased expression of 
genes involved in B cell signaling pathways including Pax5, which 
in turn leads to increased expression of Blimp-1 and XBP-1. This 
feed-forward mechanism is needed for PC differentiation (120, 
121). Whereas Blimp-1 is required for PC differentiation, XBP-1 is 
more specifically needed for the unfolded protein response that is 
required for the production of high amounts of immunoglobulin 
in PCs (122).

It has been recently reported that PC differentiation is initiated 
in light zone B cells after which they migrate to the dark zone 
to further differentiate (108). Together with simulation data, 
this suggests that PCs exit the GC through the dark zone (123). 
Similar to the EF response, GC-derived PCs are characterized 
by a proliferative PB stage. Proliferating PBs have been reported 
in the dark zone of the GC, as well as the T–B border directly 
adjacent to the GC (123, 124), and their proliferation decreases 
as they migrate further from the GC, and is completely lost as 
they reach the medulla of the lymph node or the splenic red pulp 
(124). This suggests that proliferation of GC-derived PBs occurs 
during their transit out of the GC, at distinct locations from EF 
PBs, which proliferate in EF foci mainly in the red pulp of the 
spleen or the medulla of the LN. Some GC-derived PCs migrate 
to the red pulp in the spleen or the medullary cords in the lymph 
nodes, and others migrate through the blood to the BM (14, 81). 
Their exit out of the secondary lymphoid organs occurs prior to 
completion of their differentiation, as circulating PBs that arise in 
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GC responses in humans show signs of recent proliferation such 
as expression of Ki67 (14, 125).

PC Survival
Two studies in the late 1990s showed the existence of long-lived PCs, 
disputing previous thinking that PCs were short-lived (126, 127).  
A more recent study showed that 10 years after vaccination, long-
lived PCs were still present in the BM, despite memory B  cell 
depletion (128). Another study shows the survival of these long 
lived PCs despite CD19 directed CAR T cell therapy (129). These 
PCs have become a challenge in treatment of SLE, as they are 
often not eliminated by traditional therapies (130, 131). Although 
most evidence suggests that selection of PCs into the long-lived 
PC pool is dependent on extrinsic factors (132, 133), there is some 
evidence that B cell-intrinsic factors are also involved (134, 135).  
Identification of intrinsic factors leading to long-lived PC 
survival could represent therapeutic targets for SLE and other 
autoimmune diseases.

Plasma cell survival depends on cytokines secreted by stromal 
cells and eosinophils in the BM (136, 137), but they can also 
survive in the spleen or other organs, particularly under inflam-
matory conditions. PCs can survive anywhere as long as sufficient 
survival factors are present (138), but niches have the capacity to 
support only a limited number of PCs (132). Two related factors 
important for survival of PCs are BAFF and APRIL, which act 
through binding to TACI and BCMA (139–141). Both cytokines 
are anti-apoptotic and increase PC survival (140). A study in 
autoimmune thrombocytopenia suggests that an increase in 
BAFF caused by B  cell depletion promotes differentiation of 
short-lived PCs into long lived PCs in the spleen (142, 143). Other 
molecules which can enhance survival of PCs are IL-6, VCAM-1, 
CXCR4, and CD28 (11, 136, 144).

CD93, a C1q receptor on B  cells, is needed for the survival 
of PCs in the BM and is expressed only by a subset of PCs in 
mice (145). Induction of CD93 expression may, therefore, be an 
example of a B cell-intrinsic factor that contributes to PC survival.

Despite the traditional paradigm mentioned above, there 
are descriptions of long-lived PCs in T-independent responses, 
T  cell-deficient, and GC-deficient mice, with survival up to at 
least 100 days (12, 132, 146, 147). In addition, PCs exit the GC as 
PBs, and require a survival niche for full differentiation. As many 
of them fail to find the appropriate niche, not all GC-derived PCs 
are long-lived (12). As far as we know now, transcription factors 
that drive PC differentiation in each response are similar, and it 
is not clear if all PCs have the potential to become long-lived or 
whether some are selected, preferentially in the GC, to become 
long-lived, and whether this is accompanied by altered expression 
of key survival molecules and transcription factors that drive this 
distinction.

TOLeRANCe

Tolerance in eF Responses
As autoimmunity has been traditionally thought to arise through 
the GC, tolerance checkpoints in EF responses have not been 
extensively studied. Whereas the fast rate of the EF response is 
needed for adequate responses against pathogens, it also limits 

the time window for tolerance checkpoints. Therefore, it is likely 
that autoreactive B  cells can be activated during EF responses, 
either through direct activation by self-antigen in an inflamma-
tory milieu, cross-reactivity with foreign antigen, or through 
TLR ligands or cytokines (148). However, even if autoreactive 
PCs are generated in EF responses, they are mostly short-lived 
limiting the inflammation and tissue damage that is induced by 
autoantibodies. Therefore, the transient nature of the EF response 
may itself be a tolerance mechanism.

In addition to the short-lived nature of the response, toler-
ance in EF responses can be maintained through the balance 
between IgM and other (more pathogenic) isotypes. As most EF 
PBs secrete IgM, even though some CSR can occur, the balance 
between IgG and IgM that is generated in EF responses may result 
in prevention of autoimmunity, through downregulating myeloid 
cell activation in a LAIR-1 dependent fashion and minimizing 
local inflammation (3, 5, 149). In addition, sialylation of IgG 
antibodies, which occurs in T-independent responses can also 
contribute to tolerance, as these antibodies have lower patho-
genicity, at least in the context of rheumatoid arthritis [(150),  
p. 296; (151), p. 429].

T cell help during initial activation might play a role in toler-
ance in EF foci, where class-switched EF responses can occur 
through cytokines secreted by bystander T cells or non-T cells. 
Since there is no requirement for cognate T  cell help, the 
T cell repertoire is unlikely to restrict autoreactivity in the EF 
response.

Tolerance in gC Responses
Although the mechanisms of central tolerance preclude many 
autoreactive B cells from entering GCs, self-reactive B cells 
developing in the BM can bypass tolerance mechanisms. This 
may occur if they are reactive to monovalent antigen, if their 
affinity for antigen is below a certain threshold, or if they 
are present in an inflammatory milieu (152, 153). Therefore, 
it is normal to have circulating autoreactive mature (naive) 
B cells (154).

Importantly, however, mechanisms of peripheral tolerance 
are also in place to further eliminate autoreactivity. Mature self-
reactive B cells can be thwarted from entering the follicle and be 
induced to become anergic (155). Still, some self-reactive B cells are 
able to enter the follicle. Evidence also suggests that autoreactive 
B cells that were initially excluded from the follicle can later be 
recruited into the GC, at which point these cells undergo SHM 
which may remove autoreactivity (156, 157), but can also lead 
to enhanced self-reactivity (153, 158). One important tolerance 
mechanism is the short lifespan of these B cells without mitogenic 
stimulation. Thus, only in an inflammatory milieu are these cells 
likely to access a GC response.

B cells that acquire autoreactivity in the GC must be elimi-
nated or prevented from becoming PCs. In the GC itself, several 
tolerance mechanisms have been described, including apoptosis 
and receptor editing. However, a recent study showed that auto-
reactive GC B cells are not strongly selected to undergo apoptosis, 
perhaps because so many autoreactive B cells are cross-reactive 
with an eliciting antigen (104, 159–163). It is conceivable that 
these tolerance mechanisms are initiated by lack of cognate T cell 
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FigURe 3 | Tolerance in mature cell subsets in healthy individuals. B-1 cells are not shown in this figure as their relative autoreactivity compared to the other subsets 
is not exactly known. Marginal zone (MZ) B cells are enriched for autoreactive B cell receptors (BCRs) (polyreactive or antinuclear) compared to follicular B cells. 
IgG + memory B cells have a lower frequency of autoreactivity compared to naive B cells, suggesting a tolerance checkpoint in the germinal center. The 
autoreactivity in IgM plasma cells (PCs) has not been directly reported, but the fact that IgM autoantibodies are commonly found in healthy individuals and have an 
anti-inflammatory role, suggests that some autoreactive IgM + PCs are present and more common than autoreactive IgG + PCs. The low frequency of autoreactive 
BCRs in IgG + PCs compared to IgG + memory B cells suggests an additional strong tolerance checkpoint that prevents the development of serum IgG 
autoantibodies.
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help. As described, T-cell help is needed for positive selection of 
B cells into PCs in the GC, and without this help, self-reactive PCs 
will not develop (100, 102, 152, 153). Thus, although self-reactive 
memory B cells can develop, the requirement for Tfh cells and 
FDCs that recognize or present the autoantigen makes it more 
difficult for non-cross-reactive autoreactive PCs to develop. 
T  cells recognizing foreign antigen may be able to stimulate 
autoreactive GC B cells, if the BCR crossreacts with the eliciting 
antigen or an antigen present in a multimolecular complex with 
the eliciting antigen.

As IgG + memory B cells in healthy individuals have a much 
higher frequency of self-reactivity than IgG  +  PCs (164), an 
additional tolerance checkpoint must exist that prevents the 
differentiation of autoreactive PCs in addition to a tolerance 
checkpoint in GC B cells (Figure 3). Interestingly, switched PCs 
maintain expression of MHC class II and the antigen presenta-
tion machinery required for cognate T cell interactions at least 
until they are no longer proliferating, suggesting that this stage 
of PC differentiation may represent a T  cell-dependent toler-
ance checkpoint (165). Although this has not been extensively 
studied, Th cells are required for the completion of GC-derived 
PC differentiation (103), and PCs can undergo cognate T cell 
interactions after their migration out of the GC at the T–B bor-
der (165). This suggests that a lack of T cell help may prevent the 
terminal differentiation of autoreactive PCs or that autoreac-
tive B cells committed to becoming PCs are more susceptible 
to apoptosis or receptor editing than B  cells committed to a 
memory pathway.

PC DiFFeReNTiATiON iN SLe

eF PC Differentiation in SLe
Because there are no definite markers that discriminate PCs 
based on their pathway of differentiation, it is hard to estab-
lish the pathway through which they were derived, especially 
in humans where access to lymphoid organs is limited. In 

addition, most studies discriminating EF responses from GC 
responses use acute immunization models, and it is not clear if 
all the paradigms that have been proposed for the distinction 
between EF and GC responses apply in the chronic immune 
activation present in autoimmune conditions. Although EF 
PC differentiation in autoimmunity has not been emphasized, 
recent studies indicate this pathway may have a specific role 
in autoimmunity (125, 166, 167). MRL/lpr mice exhibit EF PC 
generation, although they have increased formation of sponta-
neous GCs as well (166, 168, 169). In humans, recent research 
supports that a large proportion of the PCs in some SLE patients 
are clonally related to naive cells, suggesting an EF origin (125). 
Here, we propose mechanisms which can lead to enhanced EF 
responses in SLE (Figure 4).

Expansion of MZ B Cells
Marginal zone B cells are expanded in several lupus-prone mouse 
strains. In humans, the characterization of MZ B cells is much 
more complicated [reviewed in Ref. (13)], and it is unclear if SLE 
patients also have an expansion of this population. However, the 
high BAFF levels often present in SLE patients would support 
MZ expansion. Mice overexpressing BAFF develop an SLE-like 
phenotype that is characterized by a high titer of class-switched 
autoantibodies and PCs, in a T  cell-independent manner (59).  
A preference for autoreactive B cells to differentiate into MZ B cells 
compared to FO B cells has been described in mice (170–173), 
and MZ B cells can differentiate directly into IgG + PCs in EF 
responses (174, 175). Therefore, development of serum autoan-
tibodies in some lupus-prone mice has been attributed to MZ 
expansion and activation, although some studies have challenged 
this paradigm (176–180).

Enhanced TLR Signaling
Another mechanism by which EF PC responses in SLE may be 
altered is through enhanced TLR signaling. MyD88-deficient 
MRL/lpr mice develop lower autoantibody titers and are 
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FigURe 4 | The extrafollicular (EF) pathway for the generation of autoreactive plasma cells (PCs) in systemic lupus erythematosus. Shown here are the potential 
mechanisms that can contribute to enhanced extrafollicular PC responses. These include (1) expansion of marginal zone (MZ) B cells, which often exhibit 
autoreactive receptors; (2) increased Toll-like receptor (TLR) signaling, which can directly activate B cells (B cell-intrinsic) or can enhance Th responses through their 
effect on dendritic cells (B cell-extrinsic); (3) B cell hyperresponsiveness, which can affect the activation of follicular B cells; (4) increased class switch recombination 
which can lead to more pathogenic IgG autoantibodies; (5) somatic hypermutation which can lead to affinity maturation of autoreactive PCs; and (6) increased PC 
survival.
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protected from disease (181, 182), suggesting a role for TLRs in 
EF responses in MRL/lpr mice. Although TLR-7 or -9 deficiency 
each diminished the production of specific types of autoantibodies 
in MRL/lpr mice, only TLR-7 deficiency diminished lymphocyte 
activation, IgG production, and kidney disease (183, 184). This 
suggests that although each receptor can enhance EF responses, 
only TLR-7 induces the production of pathogenic antibodies, 
or permits the inflammatory response needed to cause disease.

Besides a B cell-intrinsic role of TLR signaling, B cell extrinsic 
TLR signaling can also enhance T–B interactions through the 
increased activation of DCs (185). Enhanced T–B interactions 
in this situation have the potential to enhance T-dependent PC 
differentiation in both EF and GC pathways. B  cells as well as 
myeloid cells from SLE patients have increased expression of 
TLRs, and SLE patients may have increased proinflammatory 
responses to TLR ligands (186), which can contribute to stronger 
T-independent and T-dependent EF responses.

B Cell Hyperresponsiveness
A well-known feature of SLE is B cell hyperresponsiveness, which  
causes increased signaling upon BCR ligation by antigen (187, 188).  
The increased signaling can derive from increased activity of 
signaling molecules in the BCR pathway (many of which are 

genetic risk factors for SLE; discussed below) (189), or through 
a synergy between BCR triggering and other signaling pathways, 
such as TLR, BAFF, and type I IFN, which can each lower the 
threshold for B cell activation through the BCR and contribute to 
the activation of B cells (59, 190, 191). Type I IFN is necessary for a 
complete response after BCR/TLR7 stimulation, and increments 
in type I IFN can overcome tolerance that normally occurs after 
repetitive stimulation of TLRs (192). The fact that high affinity 
B cells are more prone to expansion at the EF PB stage (75, 76) 
suggests that the increased BCR signaling that occurs in SLE may 
preferentially stimulate EF responses.

Increased CSR
Increased CSR in EF responses is another feature of SLE that may 
contribute to enhanced pathogenicity of EF PCs, in particular if 
the balance between protective IgM and pathogenic IgG is altered. 
Increased CSR has been described both in lupus-prone mouse 
models as well as SLE patients (193). In particular, a special subset 
of EF T cells in the MRL/lpr mice has been described to contribute 
to the expansion of class switched IgG + EF PCs. These EF T cells 
are dependent on Bcl-6, Stat3, and ICOS, and they mediate IgG 
CSR through CD40–CD40L interactions and IL-21 (167, 168).  
A similar subset of T cells has been described in EF responses in 
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FigURe 5 | The germinal center (GC) pathway for the generation of autoreactive plasma cells (PCs) in systemic lupus erythematosus. Shown here are the potential 
mechanisms that can contribute to enhanced PC differentiation during GC responses. These include (1) loss of follicular exclusion, which can lead to recruitment of 
autoreactive B cells into GC responses; (2) B cell hyperresponsiveness which can affect the activation of follicular B cells; (3) increased Toll-like receptor (TLR) 
signaling, which can affect initial activation of B cells as well as the GC response itself; (4) de novo autoreactivity, generated through somatic hypermutation (SHM) 
and leading to the generation of autoreactive GC B cells from non-autoreactive precursors; (5) aberrant selection and survival, which can diminish tolerance 
mechanisms; (6) increased T follicular helper (Tfh) activity, which can increase the extent of GC responses as well as PC differentiation; (7) cell fate decisions that 
increase PC differentiation; and (8) increased PC survival.
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non-autoimmune mice, although there they localized at the T–B 
border, and it is not clear if they migrate to EF foci as well (80). 
EF Th cells express CXCR4, as opposed to Tfh cells which express 
CXCR5 (or both) (194, 195). While the EF Th cell subset is present 
in MRL/lpr mice which have a dominant EF phenotype, mice with 
a more pronounced GC pathway, such as NZB/W, have a more 
mixed T cell phenotype (168). IgG CSR in MRL/lpr mice, as well as 
in graft versus host-mediated autoimmunity, is almost completely 
dependent on ICOS, as ICOS-deficiency leads to lower expression 
of CXCR4, as well as diminished secretion of IL-21 (167, 168). 
T-independent factors can also increase EF CSR in SLE. In AM14 
rheumatoid factor transgenic MRL/lpr mice, T cells are required 
for the spontaneous production of rheumatoid factor, but not when 
B cells are exposed to chromatin immune complexes which will 
trigger both the BCR and TLR (196).

Increased CSR has been described in circulating PBs of SLE 
patients, and at least some of these have low mutation rates, sug-
gestive of an EF origin (125). However, all EF-derived PBs need 
not have low mutation rates. Factors that increase CSR in EF PCs 
in mice, such as IL-21, are increased in SLE patients (197), and 
factors that mediate T-independent CSR, such as TLR signaling 
and the myeloid-derived cytokine BAFF, are also increased in 
SLE (198). It is therefore conceivable that SLE patients can exhibit 
increased CSR in EF responses.

Increased SHM
Besides the increased CSR in EF PCs in MRL/lpr mice, SHM has 
also been shown to occur in EF foci, probably under the influ-
ence of EF Th cells. However, SHM can also occur in response 

to chromatin immune complexes in a T-independent manner  
(166, 168, 196, 199). This SHM potentially leads to affinity matu-
ration (although probably to a lesser extent than in the GC) in 
autoreactive EF PCs, but no mechanism has been described for 
antigen selection and affinity maturation in EF responses.

gC Responses in SLe
Germinal center responses are well known to be increased in 
lupus-prone mice, and SLE patients have increased numbers of 
circulating pre-GC B  cells, switched memory B  cells and Tfh 
cells, suggestive of enhanced GC responses (169, 200, 201). Given 
that IgG anti-DNA autoantibodies which are considered to be 
pathogenic in SLE show evidence of SHM (202), the production 
of autoreactive PCs by SHM of nonautoreactive naive B  cells 
within the GC has been considered an important contributor to 
the development of SLE in both mice (203) and humans (204). 
The following mechanisms can contribute to GC-derived autore-
active PCs (Figure 5).

Loss of FO Exclusion
In normal conditions, autoreactive naive B cells undergo anergy 
that leads to FO exclusion and prevents their recruitment into GC 
responses. However, in SLE, these B cells are able to enter the GC, 
and continue their differentiation into PCs (155, 205).

B Cell Hyperresponsiveness
As discussed above, B  cell hyperresponsiveness can enhance 
EF responses and may also potentiate GC responses (206). 
Hyperresponsiveness could lead to increased positive selection 
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in the light zone and subsequent proliferation in the dark zone, 
thereby amplifying GC responses (207).

Increased TLR Responses
Toll-like receptors, which are involved in the EF pathway, also 
have a role in the GC response. Loss of MyD88 causes a loss of 
GC formation; interestingly, this alteration may be attributed to 
the function of TLR-7 and not TLR-9 (208, 209). Increased func-
tion of TLR-7 causes an increment in spontaneous GC formation 
and an autoimmunity phenotype (208). B cell-intrinsic MyD88 
signaling specifically enhances GC responses when antigen and 
TLR ligand are coupled; self-antigen that can trigger both TLRs 
and the BCR will presumably have the same ability. It was recently 
demonstrated that FDCs, which are crucial for the maintenance 
of GCs and FO architecture, express type I IFN through a TLR-7 
pathway upon internalizing complement-opsonized self-immune 
complexes through the complement receptor CD21 in the 564Igi 
RNP-specific lupus mouse model; this pathway is important for 
spontaneous GC formation and production of isotype-switched 
autoantibodies (210). 564Igi BM chimeras in which the recipient 
FDCs were TLR-7-deficient exhibited less autoimmunity. As 
many SLE antigens can activate TLRs (1, 190, 191), these repre-
sent potent pathways to amplify GC responses.

De Novo Autoreactivity
Although loss of FO exclusion can lead to recruitment of auto-
reactive naive cells into GC reactions, SHM of nonautoreactive 
B cells can lead to de novo autoreactivity in GC B cells (202, 211). 
Whether these cells are able to differentiate into PCs has not been 
reported, but most pathogenic antibodies in SLE show signs of 
SHM, and de novo autoreactivity explains a large fraction of the 
autoreactive IgG + memory cells in SLE patients (204, 212). These 
studies suggest that GC B  cells retain autoreactivity generated 
through SHM.

Aberrant Selection and Survival of GC B Cells
Another mechanism for the generation of autoreactive PCs in the 
GC is increased survival of GC B cells. It has been shown that 
SLE patients have increased levels of BAFF (213). While BAFF 
has a large role in the EF pathway of differentiation of PCs, it 
also expands the Tfh cell population and promotes formation of 
GC and survival of B cells. This could be a contributing factor 
in allowing the breach of B  cell tolerance seen in SLE patients  
(214, 215). As a result of increased BAFF, naive B  cells with 
moderate affinity that would normally undergo apoptosis, may 
be rescued and enter a GC response.

Increased Tfh Activity
Another mechanism that leads to the development of autoreac-
tive PCs in the GC is increased Tfh activity (216). One cytokine 
important for the development of autoreactive PCs is IL-21, a 
cytokine produced by Tfh cells (72). The number of Tfh cells as 
well as the level of IL-21 has been shown to be increased in lupus-
prone mice and SLE patients (217, 218). IL-21 increases IgG PC 
number (72, 217), and Tfh cells can alter selection and allow the 

differentiation of autoreactive B cells into autoreactive antibody 
secreting PCs (219). In lupus-prone mice, OX40L expression by 
B  cells contributes to the autoimmune phenotype, presumably 
through its effect on Tfh cells (90, 220).

Increased PC Differentiation
B cell hyperresponsiveness may also increase the generation of 
PCs in SLE by directing more B cells to undergo PC differentia-
tion. SLE patients often have increased numbers of circulating 
PBs; in one study this inversely correlates with the number of 
CD27  +  memory cells, suggesting a preferred differentiation 
pathway (221). Lupus-prone mice, including the ones that have 
a GC phenotype, have vast increases in their PC numbers, which 
exceeds the expansion of the memory compartment. This sug-
gests that there may be preferential output of PCs from the GC 
in SLE.

increased Survival of PCs
Another possible mechanism for increased autoantibody titers is 
increased survival of PCs (Figures 2 and 3), which might occur 
if excess survival factors are present. Increased expression of the 
cytokines BAFF, APRIL, and IL-6 is present in lupus-prone mice 
(222, 223), suggesting that these cytokines can support enhanced 
PC survival. Although in healthy mice a limited number of PCs 
can survive in BM and spleen, these organs in lupus-prone mice 
gain additional capacity and exhibit an increased number of PCs 
(224). Both lupus-prone mice and SLE patients often exhibit 
hypergammaglobulinemia (225, 226), which may also be caused 
by an increased capacity to support PC survival in SLE patients. 
As both EF and GC-derived PCs can either stay in the spleen 
or stay in the lymph nodes or migrate to the BM, these factors 
will probably affect both types of PCs. In addition, several lupus-
prone mouse strains have increased levels of CXCL12 in their 
inflamed kidneys, which may allow recruitment of PCs to this 
organ (226–228).

geNeTiC RiSK ALLeLeS

Whereas both EF and GC pathways can lead to autoantibody 
production, we propose that genetic factors may cause a 
dominance of either of these pathways in individual patients. 
Approximately one hundred risk loci have been associated 
with SLE, and genes within these loci have been broadly cast 
into categories involving DNA degradation and clearance of 
apoptotic/cellular debris, innate immunity, including TLR and 
IFN signaling, and adaptive immunity (229). Some overlap or 
fall outside these categories, and others are undefined. Most 
variants are in non-coding regions that may alter expression 
levels that can determine the magnitude of a response in a cell-
lineage and stage-specific manner. Several risk genes have been 
described to alter B  cell selection, activation, differentiation 
and/or survival in a B  cell-intrinsic fashion, including LYN, 
BLK, BANK1, PTPN22, TNFAIP3, TNIP1, CSK, and FCGR2B 
(189, 230). Although it is known that these risk alleles alter 
B cell signaling, their effect on PC differentiation has not been 
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TABLe 1 | The role of genes with risk alleles in EF and GC responses.

gene Function of gene Function of risk allele Potential role in eF Potential role in gC Reference

HLA class II genes Antigen presentation Presentation of self-specific T cell 
epitopes

May increase T-dependent  
EF responses

Expansion of Tfh, GC responses and  
PC differentiation

(103, 231, 232)

TNFS4 (OX40L) Costimulatory molecule on many  
cell types primarily interacting with  
OX40 on activated T cells promoting  
T cell functions, cytokine and Ab  
production, and PC generation

Most likely a response eQTL, as DNA 
heterozygous for the 5′ rs2205860 
SNP had enhanced binding to NF-κB; 
no significant differences in basal 
expression in EBV-transformed cells  
or primary cells

Required for T cell-dependent  
EF Ab response driven  
by MZ DCs

Supports Tfh maturation in mice  
(B cell-intrinsic) and in humans  
(expression on myeloid APCs)

(64, 90, 220, 
233, 234)

CD80 T cell costimulation through CD28,  
CTLA-4, PD-L1

Unknown Little effect on Ab production  
by short-lived plasmablasts  
(in CD80−/− mice)

Increased maturation of Tfh and  
generation of long-lived PC

(91)

LYN Src-family kinase that phosphorylates  
both activating and inhibitory receptors  
in B cells and myeloid cells. Its role in  
activating ITAMs is probably redundant  
with other Src family kinases, therefore  
its role in inhibitory receptors seems  
most crucial

Unknown SLE patients have  
decreased expression of Lyn  
in B cells

Lyn−/− mice have EF PC  
differentiation without GCs  
in some studies

Lyn−/− mice have spontaneous  
GCs in some studies

(187, 235, 236)

BLK Src-family kinase that phosphorylates  
both activating and inhibitory receptors  
in B cells

Decreased expression in B cells, 
increased B cell activation

Increased TI IgG antibody  
responses in Blk+/− mice,  
with no effect on IgM

Increased numbers of switched memory  
cells in risk carriers suggests more active  
GC responses, but TD antibody responses  
in Blk+/− or −/− mice not affected

(237–240)

BANK1 Signaling molecule involved in BCR-  
and CD40-mediated signaling in B cells,  
positively regulates Ca2+ release in B cells, 
negatively regulates CD40-mediated  
signaling

Differential expression of two splice 
variants, but functional consequences 
unknown

Normal antibody responses  
to TI antigen, but the IgM  
response in TD responses  
was increased, possibly due  
to increased survival of EF PCs

Normal IgG antibody responses to TD  
antigen suggesting that there is no major  
influence on switched TD responses,  
although there is a slight increase in  
spontaneous IgG2a in  
Bank1−/− mice

(241–243)

PTPN22 (Lyp) Protein tyrosine phosphatase that  
has inhibitory function in B and T cell  
signaling

Risk allele has increased inhibitory 
function, causing decreased B cell 
activation, proliferation and signaling 
leading to impaired central B cell 
tolerance as well as impaired T cell 
responses

Impaired central tolerance; unclear  
if PTPN22 affects EF responses;  
deficiency of PEP (mouse ortholog)  
in mice did not alter spontaneous  
IgM and IgG3 levels, suggesting 
no effect on extrafollicular antibody 
production

Lower frequency of memory cells in risk allele  
carriers suggests that it may inhibit GC  
responses consistent with increased GCs  
and serum IgG in PEP−/− mice

(206, 244–247)

TNFAIP3 (A20) Negative regulator of NF-κB signaling  
in response to TLR, TNF, and CD40  
signaling in B cells and other immune  
cells

Reduced expression in EBV 
transformed cells with one risk variant 
and reduced anti-inflammatory activity 
in transfected HEK cells with another 
risk variant

B cell-specific A20 deficiency in 
mice leads to alterations in the MZ 
compartment and consistently  
enhanced IgM production  
(spontaneous, as well as  
TD and TI immunizations),  
but no difference in IgG3

B cell specific A20 deficiency in mice leads  
to elevated numbers of GC B cells, and  
spontaneous IgG2 levels in old mice which  
deposited in kidneys; however, inconsistent  
effects on TD IgG production upon  
immunization in different studies

(248–253)

(Continued)
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gene Function of gene Function of risk allele Potential role in eF Potential role in gC Reference

TNIP1 Ubiquitin-binding protein with diverse  
targets; interaction with TNFAIP3  
negatively regulates NF-κB; also known  
to repress PPARs, which may increase  
B cell activity

Reduced expression in EBV-
transformed B cells from H1 and H2 
risk haplotypes; H1 contains coding 
SNP near a nuclear export sequence

Mutation of polyubiquitin binding  
site increased formation  
of EF PCs

Mutation of polyubiquitin-binding site  
induced spontaneous GC, increased TFH,  
CSR, and production of autoreactive Abs  
thru TLR-mediated NF-κB pathway

(254, 255)

CSK Tyrosine kinase protein that 
phosphorylates  
Src family kinases leading to their 
inactivation. Src family kinases can act on 
both activating and inhibitory receptors in 
B and T cells

Increased expression in B cells, 
increased B cell activation (Lyn 
phosphorylation, Ca2+ mobilization), 
expansion of transitional B cells

Unknown, but increased signaling  
may enhance PC differentiation

Csk is low in memory cells but its function  
in GC responses is not known

(256)

FCGR2B Inhibitory receptor for IgG on B cells  
and other immune cells

Impairment of receptor mobility, lipid 
rafts and inhibitory signaling

Enhanced antibody production 
upon TI immunization, although  
not observed in all studies

Enhanced GC responses in FCGR2B−/− 
mice. Spontaneous GC B cells have 
increased self-reactivity, but the checkpoint 
to PCs is still intact in FCGR2B−/− mice, so 
uncertain if autoreactive PCs in these mice 
are GC-derived

(150, 257–262)

IRF5 Production of type I IFN in response to 
TLR ligands, macrophage polarization, 
enhanced PC differentiation

Increased expression and activation 
in monocytes from SLE patients with 
the risk allele

IRF5−/− mice have decreased IgG1 
responses upon TI immunization 
and have decreased PC numbers 
in MRL/lpr mice, suggesting that 
increased expression of IRF5 may 
enhance EF responses

IRF5−/− mice have diminished GC-derived 
antibodies, suggesting the IRF5 risk allele 
may enhance GC PC differentiation

(263–267)

STAT4 Transcription factor critical for myeloid 
and lymphocyte functions; major 
responder to IL-12; role in IFN-α signaling

Increased expression in PBMCs 
correlated with SNPs rs3821236, 
rs3024866 (both in the same 
haplotype block) and rs7574865  
but not with other SNPs

STAT4−/− had no effect on 
antibody titers or pathology in EF 
model (MRL/lpr)

Regulates Tfh through Bcl-6 and T-bet 
in T cells; indirectly upregulates T-bet in 
B cells, which facilitates spontaneous GC; 
STAT4−/− reduced autoantibody production 
and glomerulonephritis in B6.TC model 
(Sle1,2,3 congenic)

(268–270)

BACH2 Transcriptional repressor that promotes 
CSR/SHM and is required for memory 
B cell differentiation

No expression differences associated 
with rs597325 in primary blood cell 
types

Deficiency increases IgM PC 
differentiation in vitro

Bach2 can enhance memory B cell 
differentiation while blocking plasma cell 
differentiation

(105, 271–273)

PRDM1 (Blimp-1) Transcription factor required for PC 
differentiation/transcription factor that 
alters DC function

Decreased expression of Blimp-1 in 
DCs leading to increased cytokine 
production (unknown function of risk 
allele in PCs)

Unknown Expansion of Tfh and increased GC 
responses in DC-Blimp-1-deficient mice

(274, 275)

IRF8 Transcription factor that inhibits PC 
differentiation together with PU.1 and 
distribution into FO or MZ compartments

Increased expression in EBV-
transformed cells

Increased IRF8 expression 
presumably would decrease  
PC differentiation

Increased function of IRF8 could lead to 
enhanced GC responses, through regulation 
of Bcl-6, AID, and MDM2

(276–278)

IKZF3 (Aiolos) Transcription factor involved in 
lymphocyte development and function; 
important in B cell maturation and 
activation

Unknown Deficiency impairs the MZ B cell 
compartment but not the generation 
of short-lived PCs following 
immunization

Deficiency induces spontaneous GCs and 
production of autoantibodies; deficiency 
prevents generation of high-affinity BM  
PCs following immunization

(279–281)

(Continued)
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extensively investigated, and most of our understanding of the 
role of these genes in EF and GC responses derives from mouse 
models. Other risk alleles are involved in B–T cell interactions, 
memory or PC differentiation, and IFN/TLR signaling. For 
many of these, the functional consequence of the risk allele has 
not been determined. However, it is reasonable to ask whether 
these risk alleles may alter EF or GC responses.

Table 1 shows risk alleles that can alter B cell responses and 
subsequently PC differentiation. These risk alleles can function 
in a B cell-intrinsic or -extrinsic manner. We propose that some 
risk alleles, such as TLR7, FAS, IRF5, TNFAIP3, and TNIP1, can 
modify both EF and GC responses.

Certain risk alleles, such as HLA class II genes, FCGR2B, 
STAT4, CD80, IRF8, and PRDM1, most likely drive GC 
responses, whereas other risk alleles, such as ETS1, LYN, BACH2,  
and BLK, may preferentially drive EF responses in SLE, although 
this pathway has not been extensively explored. Further 
understanding of the exact role of each risk allele in plasma cell 
differentiation pathways may enhance our insight into patient  
heterogeneity.

CONCLUSiON

In this review, we have described the PC differentiation path-
ways which can contribute to the development of autoantibody 
production in SLE. Whereas both EF and GC pathways may be 
active in the same patient, we propose that certain genetic risk 
alleles contribute to the dominance of one of these pathways. 
The dominant PC differentiation pathway, determined by the 
composite of risk alleles, may contribute to patient heterogeneity 
and to response to therapy. Although it is likely that different 
therapeutics alter each pathway to a different extent, there is 
to our knowledge not enough understanding of the molecular 
pathways in each response nor is there clear evidence which 
therapeutics target which pathway. These pathways are not as 
distinct as we thought, nor can the pathway taken by a PC be 
easily distinguished with current knowledge. A more thorough 
analysis of these pathways, their role in SLE, and the contribu-
tion of genetic risk alleles to each pathway may provide us with 
distinct targets to allow precision therapy.
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