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The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and tar-

geted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to re-

sourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of

cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, po-

tential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were per-

formed. A total of 380 cfRNAmolecules were up-regulated in all COVID-19 patients, of which seven could serve as potential

biomarkers (AUC>0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation
(S100A8, CD68, and CD63)–related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is

in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including

somemicroRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially
expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine

storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumula-

tion of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorgan-

isms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneouslymonitoring immune response

regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA land-

scape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.

[Supplemental material is available for this article.]

COVID-19 is currently threatening global health. As of November
2021, there are more than 253million COVID-19 patients and 5.1
million deaths reported, and case numbers are still rising in many
countries (WHO Coronavirus [COVID-19] Dashboard; https://

covid19.who.int/). There remains an urgent need for elucidating
the pathogenesis of COVID-19. Recent studies suggested that the
cytokine storm syndromes contribute to the high mortality rate
of COVID-19, and interleukin 6 (IL6)/interleukin 6 receptor
(IL6R) signaling plays a crucial role in the cytokine storm
(Scheller and Rose-John 2006; Guan et al. 2020). SARS-CoV-2 in-
fection activates the function of immune cells and releases IL6,
therefore causing an amplification cascade of cytokine release
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syndromes (CRSs) and finally resulting in the pathophysiology of
COVID-19 (Moore and June 2020). Down-regulatedmiR-451a as a
feature of the plasma cfRNA landscape reveals regulatory networks
of IL6/IL6R-associated cytokine storms in COVID-19 patients
(Yang et al. 2021).

Cell-free circulating RNAs (cfRNAs) consist of a variety of RNA
molecules, such as messenger RNAs (mRNAs) (Ng et al. 2002),
microRNAs (miRNAs) (Pritchard et al. 2012) and long noncoding
RNAs (lncRNAs) (Kumarswamy et al. 2014). cfRNAs present in var-
ious body fluids, such as blood, serum, and plasma, and are in-
volved in multiple physiological and pathological processes
(Pös et al. 2018). Although the mechanisms of how cfRNAs are
released to the bloodstream remain unclear, they can serve as
valuable biomarkers to indicate dynamic changes of different tis-
sues and enable the detection of specific genetic alterations
(Tzimagiorgis et al. 2011). Compared with cell and tissue samples,
plasma cfRNAs carry unique information from thehuman tissue or
pathologic area, including pathological states, disease biomarkers
(Larson et al. 2021), gene regulatory networks, and microbial co-
infections, which can provide resourceful solutions for pathogen-
esis. Due to their typical advantages of real-time and comprehen-
sive monitoring, cfRNAs have the potential to change the ways
of monitoring and predicting patients’ status.

Transfer RNAs (tRNAs) serve as the carrier of amino acids and
participate in protein synthesis. tRNAs can recognize codons on
mRNA by its anticodon. Within the coding sequence of mRNAs
of a certain organism, it is observed that some synonymous codons
are usedmore frequently than other synonymous codons, and this
phenomenon is called codon bias (Grantham et al. 1980). Genes
with high expression levels tend to use optimal codons to improve
translation accuracy and efficiency, showing high codon usage
preference (Hanson and Coller 2018). Moreover, codon bias can
also affect protein folding and differential regulation of protein ex-
pression (Mitra et al. 2016). For example, in humans, codons with
G or C at the third base position can stabilize mRNA (Hia et al.
2019). In contrast, SARS-CoV-2 preferred fewer G or C nucleotides
at the third position and this codon preference may disturb pro-
tein synthesis of the host cells (Hou 2020). The tRNA pool also
changes dynamically with a spatial-temporal expression pattern
(Torrent et al. 2018; Torres et al. 2019; Wei et al. 2019). For exam-
ple, during influenza A virus (FLUAV) infection, the expression
levels of codons preferred by FLUAV were increased, which may
promote the replication and translation of viral genes (Pavon-
Eternod et al. 2013).

Microbial co-infections (viruses, bacteria, and fungi) often oc-
cur in respiratory infections (Langford et al. 2020), and this also
happens in COVID-19 (Hughes et al. 2020; Massey et al. 2020;
Shen et al. 2020; Zhu et al. 2020b). Previous studies found that
common co-infective pathogens in COVID-19 patients include
Klebsiella pneumoniae (Massey et al. 2020; Zhu et al. 2020b),
Haemophilus influenzae (Zhu et al. 2020b), Pseudomonas aeruginosa
(Hughes et al. 2020), andMoraxella catarrhalis (Massey et al. 2020)
which raise the difficulty of diagnosis, treatment, and prognosis of
COVID-19 and even aggravate the symptoms (Shen et al. 2020;
Zhu et al. 2020b). The analysis of cfRNA is a noninvasive approach
formolecular diagnostics (Pös et al. 2018); currently no evidence of
microbial co-infections derived from cfRNA analysis has been re-
ported that impeded the integrated evaluation of disease status.

At present, advanced omics research has revealed different
perspectives of COVID-19 (Alonso and Diambra 2020; Hughes
et al. 2020; Massey et al. 2020; Shen et al. 2020; Zhu et al.
2020a). For instance, one study unveiled characteristic protein

and metabolite changes in the sera of severe COVID-19 patients
(Shen et al. 2020), and another revealed the unique immune re-
sponse pathways in COVID-19 patients compared to influenza pa-
tients through single-cell RNA sequencing of peripheral blood
mononuclear cells (Zhu et al. 2020a). However, the identification
of COVID-19 biomarkers and analysis of the disease process
from the perspective of cfRNA remain to be investigated. Here,
we performed PALM-seq to provide a plasma cfRNA landscape
and open up new perspectives for understanding COVID-19
pathogenesis.

Results

Characteristics of cfRNA landscape in COVID-19 patients

Serial plasma was collected from eight healthy donors and 37
COVID-19 patients (19 mild and 18 severe patients) and used for
cfRNAs sequencing by PALM-seq (Fig. 1A; Supplemental Table
S1; Yang et al. 2019). Based on the clinical symptoms, two distinct
subgroups of COVID-19 patients were enrolled, including themild
and severe groups. Patients with severe pneumonia who were ad-
mitted to the ICU and required mechanical ventilation were
enrolled in the severe group; patients with a mild clinical presen-
tation (mainly with fever, cough, malaise, and headache) were en-
rolled in the mild group. All available COVID-19 patients were
enrolled in this study, and healthy donors aged between 20∼60
were selected as controls. We first aligned the reads to the SARS-
CoV-2 genome to determine the presence of SARS-CoV-2 RNAs
in plasma samples. On average, <0.008% of the reads could be
mapped to SARS-CoV-2 (Supplemental Fig. S1A), and most of the
reads mapped to SARS-CoV-2 (31.8%) were derived from four
severe patients, which is consistent with recent studies reporting
that SARS-CoV-2 RNAwas rarely detected in plasma except certain
severe patients (Ling et al. 2020; Wölfel et al. 2020; Yang et al.
2021).

Next, all the reads were aligned to the human genome and
27,738 expressed genes were analyzed, including 71.2% protein-
coding genes, 6.1% miRNA genes, 1.3% lncRNA genes, and
21.4% other noncoding genes (Fig. 1B). By comparing the data
of COVID-19 patients and healthy donors, 380 up-regulated genes
were identified, including 231 genes up-regulated in both mild
and severe patients, 12 and 137 genes up-regulated in mild or
severe patients, respectively (Fig. 1C,D; Supplemental Table S2).
The hierarchical clustering results showed that these 380 up-regu-
lated genes and 117 down-regulated genes could distinguish
COVID-19 patients from healthy donors (Fig. 1C; Supplemental
Table S2). We also calculated the receiver operating characteristic
(ROC) curve of each up-regulated gene and found that seven of
them exhibited area under the curve (AUC)>0.85 (Bowers and
Zhou 2019), indicating that these genes could be served as poten-
tial biomarkers for prediction of disease. (Supplemental Table S3).
In addition, we performed logistic regression on the 380 up-regu-
lated genes and screened 57 genes (with 98.1% accuracy) as the op-
timal gene set for COVID-19 prediction (Supplemental Table S3).
Consistentwith ROC analysis, we found that all of these seven bio-
markers were included in this gene set. These results further illus-
trate that these biomarkers were significantly differentially
expressed between COVID-19 patients and healthy donors. Gene
Ontology (GO) function annotation revealed that the up-regulat-
ed 231 genes in both mild and severe patients were mainly en-
riched in anti-virus-related pathways (Fig. 1D,E), indicating that
anti-virus response was activated in bothmild and severe patients.
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Figure 1. The plasma cfRNA landscape reveals pathogenesis of COVID-19 patients. (A) Schematic diagram showing samples and analysis procedure of
this study. The cfRNAs were collected from eight healthy donors, 19 mild COVID-19 patients, and 18 severe COVID-19 patients. (B) Bar plot and pie plot
showing the composition of detected genes in all samples. Data are shown as mean+ SD (n =156). (C) Heat map showing fold changes of 380 up-reg-
ulated cfRNA genes and 117 down-regulated cfRNA genes in COVID-19 patients. Fold changes of the 380 up-regulated genes were relative to healthy
donors, and those of the 117 down-regulated genes were relative to COVID-19 patients. Blue and red represent log2-transformed fold changes < 0
and > 0, respectively. (D) Overlapping of up-regulated genes in mild and severe COVID-19 patients. (E) GO enrichment analyses of 231 up-regulated
cfRNA genes in COVID-19 patients and 137 cfRNA genes specific up-regulated in severe COVID-19 patients. (F ) Box plot showing expression levels
(TPMs) of NFKBIA and S100A8 in healthy donors, mild, and severe COVID-19 patients. (G) Box plot showing the neutrophil count in mild and severe
COVID-19 patients. Asterisks indicate statistically significant differences; (∗∗∗) P<0.001.
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Representative genes such as NFKB1A, IFITM3, and IFI27, were all
important regulators of anti-virus processes (Fig. 1F; Supplemental
Fig. S1B; Hayden et al. 2006; Tang et al. 2017; Kenney et al. 2019;
Spence et al. 2019). Previous studies have also found that IFI27was
up-regulated in patients with COVID-19 (Yang et al. 2021), which
is consistent with our results. The functions of the 137 genes that
were specifically up-regulated in severe patients were mainly en-
riched in neutrophil activation–related processes (Fig. 1D,E), po-
tentially indicating a strong inflammatory response in severe
patients, which is consistent with recent studies reporting that dis-
ease severity–specific neutrophil signatures in blood stratify
COVID-19 patients (Weiland et al. 1986; Aschenbrenner et al.
2021). These genes include well-known key genes for neutrophil
activation such as S100A8,CD68, andCD63 (Fig. 1F; Supplemental
Fig. S1B; Skubitz et al. 2000; Ryckman et al. 2003; Amanzada et al.
2013; Wang et al. 2018). A previous study found that S100A8,
CD68, andCD63 had low transcription start site coverage in severe
COVID-19 patients compared with mild patients, indicating that
these genes had higher expression levels in severe COVID-19 pa-
tients (Chen et al. 2021). Measurement of neutrophil count was
performed in COVID-19 patients, and as expected, it was signifi-
cantly higher in severe patients than in mild patients (Fig. 1G).

To study the transcriptional dynamics of cfRNAs during the
disease process, the whole clinical course from admission to dis-
charge was divided into three stages (early, middle, and late)
(also see Supplemental Table S1). Time-course analysis was per-
formed, and the results showed that 682 and 431 genes exhibited
four and three expression patterns in severe and mild patients, re-
spectively (Supplemental Fig. S1C,D). Cluster 1 and 2 genes of
severe (S-1 and S-2) and mild patients (M-1 and M-2) exhibited
similar patterns whose expression levels were increased at themid-
dle stage and then decreased at the late stage. GO enrichment anal-
yses revealed that these genes were mainly related to neutrophil
degranulation (Supplemental Fig. S1E), further supporting the
clinical finding that inflammation responses were reduced at the
late stage (Jaovisidha et al. 1999). Cluster 4 genes in severe patients
(S-4) were gradually down-regulated from early to late stage, and
their functions were enriched in mRNA splice-related pathways
(Supplemental Fig. S1E), suggesting that the virus infection may
cause changes in RNA splice, affecting the processing and matura-
tion of host mRNA (Dubois et al. 2014; Chauhan et al. 2019).
Cluster 3 genes in mild patients (M-3) were enriched in the type
I interferon signaling pathway (Supplemental Fig. S1E), indicating
that the inflammatory response was gradually reduced.

Noncoding regulatory RNAs may aggravate IL6-

and IL6R-induced cytokine storm in COVID-19 patients

The IL6/IL6R signaling cascade plays an important role in the ele-
vated inflammatory responses (cytokine storm) of COVID-19 pa-
tients (Scheller and Rose-John 2006; Guan et al. 2020). Given that
inflammatory responses were hyperactivated in COVID-19 patients
(Fig. 1; Supplemental Fig. S1),wenext investigated the potential reg-
ulatorymechanism. First,we examined themRNA levels of IL6/IL6R
and found no significant differences between COVID-19 patients
and healthy donors (Fig. 2A). In contrast, increased plasma IL6 pro-
tein concentrations were observed in most COVID-19 patients
(78%, 14 of 18) (Fig. 2A), in agreement with a previous study
(Shen et al. 2020). These results raised the possibility that IL6/
IL6R function might be enhanced at the translational level.

Noncoding RNAs (ncRNAs) play important roles in apoptosis,
proliferation, cancer, and immune response (Zhang et al. 2012;

Kopp and Mendell 2018). In animals, miRNAs can bind to the 3′

UTR of mRNAs and inhibit their translation (Wang et al. 2013).
To investigate their roles during SARS-CoV-2 infection, we exam-
ined their expression levels and found that, compared with
healthy donors, the global miRNA expression was down-regulated
in COVID-19 patients, including 41 miRNAs that were down-reg-
ulated in both mild and severe COVID-19 patients (Supplemental
Fig. S2A,B). To understand their potential functions, we predicted
their target genes and found that several of themdirectly target IL6
and/or IL6R (Fig. 2B), both of which encode key drivers of the cy-
tokine storm induced in COVID-19 (Scheller and Rose-John 2006;
Iliopoulos et al. 2009; Guan et al. 2020;Moore and June 2020). Pre-
vious studies have experimentally validated that hsa-let-7a-5p and
hsa-let-7g-5p could target IL6 mRNA and inhibit its translation
(Iliopoulos et al. 2009; Huang et al. 2017). Consistent with this,
we found that the expression levels of hsa-let-7a-5p and hsa-let-
7g-5p, and also the entire let-7 family, were down-regulated in
bothmild and severe COVID-19 patients (Fig. 2C,D; Supplemental
Fig. S2C). Moreover, hsa-let-7a-5p can also target IL6R (Sui et al.
2019), indicating that the let-7 family can inhibit the translation
of both IL6 and IL6R (Fig. 2E). In addition to let-7 familymembers,
we also found that hsa-miR-451a, hsa-miR-23a-3p, and hsa-miR-
23b-3p were down-regulated in COVID-19 patients (Supplemental
Fig. S2D), which has been shown to target IL6R (Fig. 2B; Supple-
mental Fig. S2E) and reduce its expression level (Aghaee-Bakhtiari
et al. 2015; Liu et al. 2016). Previous studies have also found that
hsa-miR-451a was down-regulated in patients with COVID-19
(Yang et al. 2021), which reconfirmed our results. Taken together,
these results suggested that the down-regulation of these miRNAs
may lead to excessive accumulation of the protein products of
their target genes, thereby enhancing the cytokine storm caused
by the IL6/IL6R cascade under SARS-CoV-2 infection (Fig. 2A,B).

Long noncoding RNAs can function as miRNA sponges by
competing with their targets to bind miRNAs, which negatively
regulate miRNA functions (Wang et al. 2013). In our data, we de-
tected 4324 annotated lncRNA genes, including 1665 (38.5%)
transcribed from the intergenic region and 2659 (61.5%) tran-
scribed from the genic region (from both the same direction and
the reverse direction overlapped with the annotated genes)
(Supplemental Table S4). Among them, 1486 (34.4%) were fully
covered by reads. We found lncRNA GJA9-MYCBP was up-regulat-
ed in severe COVID-19 patients (Fig. 2F), which carries a binding
site of let-7 family members (Fig. 2E,G). Therefore, GJA9-MYCBP
could bind to let-7 family members in COVID-19 patients (Fig.
2G) and increase the protein levels of IL6 and IL6R, and thereby
promote the cytokine storm caused by IL6/IL6R.

tRNA pool perturbation toward SARS-CoV-2 biased codons

in COVID-19 patients

In addition to translational efficiency, protein synthesis is also de-
termined by tRNA pools which are dynamically regulated under
different physiological conditions (Torrent et al. 2018; Torres
et al. 2019; Wei et al. 2019), especially in RNA virus infections
(Pavon-Eternod et al. 2013;Nunes et al. 2020). tRNA abundance af-
fects the translational speed of both host and viral proteins, as the
translation of viral proteins requires the host tRNAs (Pavon-
Eternod et al. 2013; Lyons et al. 2018; Chen et al. 2020a). Here,
380 up-regulated genes have been identified in COVID-19 patients
(Fig. 1C,D). We then investigated their compositions and found
that, unexpectedly, ∼36% (138 of 380) were tRNA genes
(Fig. 3A), representing 34% (138 of 404) of expressed tRNA genes

Plasma cfRNA landscape of COVID-19 patients

Genome Research 231
www.genome.org

 Cold Spring Harbor Laboratory Press on September 18, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


(Fig. 3B). In contrast, only 1% of protein-coding genes (181 of
15,319) were up-regulated (Fig. 3B). This observation indicated
that the global tRNA profiles were significantly altered in
COVID-19 patients compared with healthy donors. We then com-
pared the tRNA profiles between mild and severe COVID-19 pa-

tients and found that, among the 138 up-regulated tRNA genes,
∼95% (131 of 138) were up-regulated in both mild and severe
COVID-19 patients (Supplemental Fig. S3A). The ROC curve fur-
ther showed an AUC of 0.87 (Supplemental Fig. S3B), suggesting
these 138 up-regulated tRNAs could differentiate COVID-19
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Figure 2. Noncoding regulatory RNA responses of COVID-19 patients to SARS-CoV-2 infection. (A) The mRNA expression levels (TPMs) of IL6 (left) and
IL6R (middle), and the protein levels of IL6 (right) in COVID-19 patients’ plasma. The red line indicates the normal range of IL6 (0–7 pg/mL). (B) Predicted
(left, dashed lines) and experimentally validated (right, solid lines) miRNA-target interactions. (C) Box plot showing the expression levels of hsa-let-7a-5p
and hsa-let-7g-5p. (D) Bar plot showing the summation of the entire let-7 family expression levels. (E) Base-pairing interaction between let-7 family and IL6/
IL6R (top) or GJA9-MYCBP (bottom). Target sites and seed sequences are highlighted in red. (F ) Box plot showing the expression levels of GJA9-MYCBP. (G)
Putative regulatory network of GJA9-MYCBP and let-7 family. Asterisks indicate statistically significant differences; (∗∗∗) P<0.001, (n.s.) not significant.
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Figure 3. Aberrant tRNA pools and codon abundance in COVID-19 patients. (A) Pie plot showing the composition of the 380 up-regulated genes in
COVID-19 patients comparedwith healthy donors. (B) Bar plot showing the proportion of up-regulated genes and codons in COVID-19 patients compared
with healthy donors. (C) Scatterplot showing up-regulated (red) and down-regulated (blue) tRNA genes of COVID-19 patients relative to healthy donors.
(D) Scatterplot showing up-regulated and down-regulated codons of COVID-19 patients relative to healthy donors. (E) PCA plot of codon abundance in all
samples. The abundance of 47 detected codons shown inDwas used to draw this plot. (F ) Relative codon usage frequency of 19 up-regulated codons in up-
regulated genes (left) and the SARS-CoV-2 genome (right). The codon usage frequency of the 19 up-regulated codons in other expressed genes (left) and
human genome (right) was set to 1. (G) Nucleotide composition of 14 up-regulated codons which were more frequently used in the SARS-CoV-2 genome
compared to the human genome. (H) Nucleotide composition of 11 up-regulated codons which were more frequently used in the up-regulated genes
compared to the other expressed genes.
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patients from healthy donors. In addition, we also observed a high
correlation (r=0.90, P-value→0) of all expressed tRNA genes be-
tween mild and severe COVID-19 patients (Fig. 3C).

tRNAswithdistinct anticodonsparticipate inprotein synthesis
by carrying amino acids (Lyons et al. 2018); therefore, changes in
tRNA expressions can lead to changes in anticodon abundance.
To better understand its potential effects on protein synthesis, we
merged the expression levels of tRNAs with the same anticodon
and converted the anticodon sequences to the corresponding co-
don sequences. A total of 47 codonswere identified and their global
expression profiles exhibited a higher correlation (r=0.95, P-value
→0) between mild and severe COVID-19 patients (Fig. 3D).
Among them, 26 codons were up-regulated in COVID-19 patients,
accounting for 55% of detected codons (Fig. 3B; Supplemental
Fig. S3C). This result further supported that, comparedwith healthy
donors, both the tRNA abundance and the corresponding codon
abundance were significantly changed in COVID-19 patients. As a
result, principal component analysis (PCA) using expression levels
of all detected codons clearly separated COVID-19 patients from
healthy donors with no obvious differences between mild and
severe patients (Fig. 3E), which was in agreement with the correla-
tion analysis (Fig. 3D). Therefore, we focused on the 26 up-regulated
codons and further investigated their functions.

Codon abundance is affected by the codonusage frequencyof
highly expressed proteins (Goñi et al. 2012; Diambra 2017). Under
SARS-CoV-2 infection, there are two types of highly expressed pro-
teins: one is viral proteins, and the other is up-regulated host pro-
teins, both of which may lead to the up-regulation of the 26
codons in COVID-19 patients. Thus, we calculated the fold change
of codon usage frequency in the SARS-CoV-2 genome relative to
the human genome and also, that in up-regulated genes relative
to other expressed genes in COVID-19 patients, respectively (Fig.
3F). Of the 26 up-regulated codons, 19 were related to differences
in codon usage frequency, including 14 codons (6 +8) that were
more frequently used in the SARS-CoV-2 genome compared to
the human genome, and 11 codons (6 +5) that were more fre-
quently used in the up-regulated genes compared to the other ex-
pressed genes in COVID-19 patients (Fig. 3F). Although six codons
were more frequently used in both conditions, the fold changes of
SARS-CoV-2 genome were significantly higher than those of up-
regulated genes (Fig. 3F). It is reported that, when the virus repli-
cates in the host cell, a large number of the host tRNAs are up-reg-
ulated to increase the abundance of virus-preferred codons (Chen
et al. 2020a). A similar phenomenon also happened here: the up-
regulation of the 14 codons with higher codon usage frequency in
the SARS-CoV-2 genome may facilitate its replication.

The increased expression of SARS-CoV-2-preferred AT3 codons

may reduce the stability of the host mRNAs

Previous studies have found that codon usage bias also affects
mRNA stability (Hia et al. 2019). Codons can be divided into two
groups based on the third base: AT3 (A or T) or GC3 (G or C),
and the bias of the third base is characterized by GC3 content. In
human, the codons with poor-GC3 content will reduce mRNA
stability (Hia et al. 2019). We found that the third bases of the 14
codons with higher usage frequency in SARS-CoV-2 were all A/T
(Fig. 3F,G). In contrast, the 11 codonswithhigher usage frequently
in the up-regulated genes ended with five G/C and six A/T (Fig. 3F,
H). These results indicated that SARS-CoV-2 replication used the
codons with poor-GC3 content, whereas the up-regulated genes
in COVID-19 patients had no obvious preference for the third

base of the codon. Previous studies have showed that the SARS-
CoV-2 genome has a low GC content, and the codons ending in
A or T were preferentially used (Kandeel et al. 2020). In agreement
with this, we found that, compared with the human genome, the
SARS-CoV-2 genome used the codons with poor-GC3 more fre-
quently (Supplemental Fig. S3D). These results suggested that the
increased expression of the AT3 codons in COVID-19 patients
could reduce the stability of the hostmRNAs and affect the synthe-
sis of host proteins. Through time-course analysis, we found that
the 14 codons related to SARS-CoV-2 had the highest abundance
in the early stage of treatment, and their abundance gradually de-
creased as the treatment progressed (Supplemental Fig. S3E), indi-
cating that, similar to the immune-responsive genes, the tRNA
pool also returned to a normal state during therapy.

To investigate whether these GC3-poor codons were specifi-
cally up-regulated during SARS-CoV-2 infection, we compared
the differences in codon usage and abundance under infection be-
tween SARS-CoV-2 and influenza A virus. FLUAV is also an RNAvi-
rus whose genome has a low GC content and prefers AT3 codons
(Wong et al. 2010; Ahn and Son 2012; Pavon-Eternod et al.
2013), and a previous study indicated that, in human cells under
FLUAV infection, 10 codons were up-regulated (Pavon-Eternod
et al. 2013).We found that, among the 14 codonswith bothhigher
expression levels in COVID-19 patients and higher usage frequen-
cy in SARS-CoV-2 genome, six were also up-regulated in FLUAV in-
fection, and their codon usage frequencies were also higher than
the human genome (Supplemental Fig. S3F). Meanwhile, for the
remaining eight codons whose abundance was not up-regulated
in influenza A virus infection, seven of them were used more fre-
quently in the SARS-CoV-2 genome (Supplemental Fig. S3F).
These results indicated that, although the influenza A virus ge-
nome also had a preference for GC3-poor codons, eight codons
were still specifically up-regulated during SARS-CoV-2 infection.

Microbial profiles of COVID-19 patients revealed by plasma

cfRNAs

Some pathogenic microorganisms, like human mastadenovirus C
(Saban-Ruiz and Ly-Pen 2020; Mehta et al. 2021), Haemophilus
influenzae (Lansbury et al. 2020; Zhong et al. 2021), Candida glab-
rata (Arastehfar et al. 2020; Huang et al. 2020b; Posteraro et al.
2020), Klebsiella pneumoniae (Huang et al. 2020b; Lansbury et al.
2020; Arcari et al. 2021), and Pseudomonas aeruginosa (Huang
et al. 2020b; Lansbury et al. 2020; Garcia-Vidal et al. 2021), have
been detected in COVID-19 patients by sequencing and bacterial
culture. According to the analysis of the cfRNA landscape, there
were still 20% of reads that failed to map to the human genome
(Supplemental Fig. S1A). We collected the unmapped reads and
calculated the microorganism abundance in each sample using
Kraken2 (Wood et al. 2019).We found that previously reported hu-
man mastadenovirus C (Saban-Ruiz and Ly-Pen 2020; Mehta et al.
2021), Klebsiella pneumoniae (Huang et al. 2020b; Lansbury et
al. 2020; Arcari et al. 2021), and Candida glabrata (Arastehfar
et al. 2020; Huang et al. 2020b; Posteraro et al. 2020) have higher
abundance in COVID-19 patients compared with healthy donors
(Fig. 4A). To further validate this result, we performed transcript as-
sembly and visualized the assembled genes in the Integrative Ge-
nomics Viewer (IGV) (Fig. 4B–D; Robinson et al. 2011). In
addition, the presence of the pathogenic microorganisms was
also confirmed by clinical cultures and ultra-deep metatranscrip-
tomic sequencing of matched respiratory specimens, including
sputum or nasal secretions, based on our previous research (Zhong
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et al. 2021). Compared with healthy donors, the read coverage and
the number of assembled genes were significantly increased, indi-
cating that the microorganisms identified were bona fide rather
than noise. One recent study found that there may be latent infec-
tions including Toxoplasma gondii infection in COVID-19 patients
(Roe 2021). Consistent with the study, we also identified Toxoplas-
ma gondii (Fig. 4A,E). These codetectedmicroorganisms, especially
pathogenic bacteria under SARS-CoV-2 infection, can aggravate
the lung injury in COVID-19 patients, and microbial profiles of
COVID-19 patients revealed by plasma cfRNAs open a novel angle
in the identification of microorganisms and evaluation of disease
status.

Discussion

The rapidly spreading SARS-CoV-2 virus has had a great impact on
human lives. At present, the mechanism of COVID-19 pathogen-
esis from the point of cfRNAs remains unclear. Here, we collected
and sequenced plasma cfRNAs from both COVID-19 patients and
healthy donors and obtained the cfRNA profiles of various RNA
molecules. Among them, we identified 380 cfRNA molecules
with increased expression levels in COVID-19 patients, and their
expression levels were able to separate COVID-19 patients from
healthy donors, including seven genes that could serve as poten-
tial COVID-19 biomarkers with AUC>0.85. We observed en-
hanced antiviral (NFKB1A, IFITM3, and IFI27) and inflammatory
responses in COVID-19 patients, especially neutrophil activa-
tion–related processes in severe patients, which was consistent
with clinical data and previous studies (Huang et al. 2020a;
Thierry and Roch 2020). Nevertheless, IFI27was also able to distin-
guish influenza and noninfluenza flu-like illnesses (Tang et al.
2017) and was up-regulated during influenza virus, respiratory
syncytial virus (Ioannidis et al. 2012), and human rhinovirus
(Zhai et al. 2015) infections according to transcriptional analysis.
IFITM3 can inhibit virus-triggered induction of type I interferon
and was up-regulated to prevent influenza infection (Jiang et al.
2018). The specificity of some potential biomarkers in differentiat-
ing between SARS-CoV-2 infection and other respiratory viruses re-
mains unstudied. Together with the time-course analysis, these
results indicated that inflammatory responses were elevated in
COVID-19 patients.

IL6/IL6R-mediated cytokine storm is a major feature of
COVID-19 patients (Huang et al. 2020a). The protein level of IL6
was increased, whereas its mRNA level was not altered, indicating
that up-regulation occurred at the translational level. Consistently,
we indeed observed a global down-regulation of miRNA genes in
bothmild and severe COVID-19 patients. Further analysis revealed
that the down-regulation of let-7 family members hsa-miR-451a,
hsa-miR-23a-3p, and hsa-miR-23b-3p, which can directly target
IL6/IL6R mRNAs (Iliopoulos et al. 2009; Aghaee-Bakhtiari et al.
2015; Liu et al. 2016; Huang et al. 2017; Sui et al. 2019), may pro-
mote the expression of IL6/IL6R in COVID-19 patients at the pro-
tein level. Meanwhile, an up-regulated lncRNA,GJA9-MyCBP, may
function as amiRNA sponge to competewith IL6R/IL6 for the let-7
family. Therefore, the derepression of IL6/IL6R translationmediat-
ed by these noncoding RNAs may thereby enhance the cytokine
storm in COVID-19 patients.

tRNAs are required for protein synthesis, and codon abun-
dance determines translational efficiency and mRNA stabilities
(Hia et al. 2019). The SARS-CoV-2 genome has a usage preference
for AT3 codons, whereas the human genome prefers GC3 codons.
We found that the tRNApoolwas significantly changed, leading to

the accumulation of SARS-CoV-2-biased codons and may thus fa-
cilitate SARS-CoV-2 replication. Meanwhile, this can also reduce
the stability and translational efficiency of host mRNAs (Hia
et al. 2019) and affect the synthesis of host proteins (Dilucca
et al. 2020). In the future, the reduction of the expression levels
of SARS-CoV-2-preferred tRNAs in host cells may be able to inhibit
its replication due to insufficient tRNAs for its protein synthesis.
On the other hand, codon deoptimization, a new technology
that can attenuate the virus virulence by introducing the least-pre-
ferred codons (Nogales et al. 2014; Li et al. 2018), could be used as a
novel strategy for SARS-CoV-2 vaccine development. Therefore,
codon preference can also be considered in the design of future
vaccines and drugs, which will help the development and design
of vaccines to protect against COVID-19 (Ko et al. 2005; Lopes
et al. 2017; Latanova et al. 2018).

COVID-19 patients had co-infected microorganisms, includ-
ing Klebsiella pneumoniae (Huang et al. 2020b; Lansbury et al.
2020). In our data, we identified several reported and novel code-
tected microorganisms in COVID-19 patients. These codetected
microorganisms, especially pathogenic bacteria under SARS-CoV-
2 infection, may aggravate the lung injury and lead to an exacer-
bated inflammatory response, according to previous studies.
Meanwhile, distinct signatures of microbial profiles among
COVID-19 patients can be related to disease severity, according
to our previous findings (Zhong et al. 2021). These results indicate
that pathogenic microbial information can be revealed from the
plasma of COVID-19 patients, providing additional information
for COVID-19 therapy and monitoring, such as antibiotics selec-
tion and COVID-19 tracking (Lai et al. 2020).

As with the majority of studies, the design of the current
study is subject to limitations. First, the sample size enrolled in
this study is insufficient; people from other racial groups infected
with different pathogens should be enrolled to confirm the find-
ings in the future. Second, the relationship between cfRNA profile
and clinical drug use was uncertain, which may influence disease
process surveillance. Third, although the current study provides
useful biomarkers discovered in the cohort of COVID-19 patients,
the specificity of some potential biomarkers in differentiating be-
tween SARS-CoV-2 infection and other respiratory viruses is still
lacking. Follow-up studies need to be conducted to explore the im-
pact of treatment on cfRNA profile and the cfRNA characterization
among different viral infections.

As a noninvasive approach, plasma cfRNA provides a good re-
source forCOVID-19 research (Fig. 5), including potential biomark-
ers of disease severity (Fig. 5A), coding/noncoding gene regulatory
mechanisms (Fig. 5B,C), and microbial community composition
(Fig. 5D). Currently, multiple RNA sequencing methods have
been applied to cfRNA analysis, including PALM-seq, Phospho-
RNA-seq (Giraldez et al. 2019), small RNA-seq (Murillo et al.
2019), etc. Each platform has its unique advantages and disadvan-
tages. Here, we adopt PALM-seq, which has been compared with
multiple public data produced by SMARTer Seq, ScriptSeq, and
small RNA-seq in our previous report (Yang et al. 2019). Compared
with the traditional RNA library construction that requires a lot of
blood, it is difficult to prepare large-scale cfRNA libraries with the
high cost for large-scale cfRNA library preparation and low map-
ping rate. In contrast, the PALM-seq database constructionmethod
employs terminalmodification and adds a 3′ polyadenylic acid and
5′ linker; thus, mRNA and noncoding RNAs (including long non-
coding RNA, microRNA, tRNA, piRNA, and other RNAs) can be ob-
tained in one library. These RNAs can be sequenced at a relatively
low depth. In addition, PALM-seq enables the sequencing of the
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Figure4. Microbial detection in COVID-19 patients. (A) Box plot showing the expression levels (RPMs) of humanmastadenovirus C, Klebsiella pneumoniae,
Candida glabrata, and Toxoplasma gondii in healthy donors and COVID-19 patients. Each point represents the mean value of the RPM of a patient/healthy
volunteer at all time points. (B–E) The IGV view showing cfRNA reads mapped to human mastadenovirus C genome (B), Klebsiella pneumoniae genome (C),
Candida glabrata genome (D), and Toxoplasma gondii genome (E) in healthy donors and COVID-19 patients. (COV) All COVID-19 patients (including mild
and severe COVID-19 patients), (control) all healthy donors. Asterisks indicate statistically significant differences; (∗∗∗) P<0.001.
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entire transcriptome in low-concentration RNA samples. This
method allows us to perform more comprehensive cfRNA large-
scale population research and clinical applications. Taken together,
we reported the dynamic and unique cfRNA landscape of COVID-
19 patients, which expands our knowledge of SARS-CoV-2 patho-
genesis from a new perspective. This study also provides novel po-
tential targets for the design of drugs or vaccines.

Methods

Patients and data collection

A total of 37 COVID-19 patients and eight age-matched healthy
subjects were recruited from four Guangdong local hospitals
from January 27 to February 26, 2020. Whole blood was collected
using BD Vacutainer spray-coated K2EDTA tubes in the morning.

A B C D

Figure 5. Plasma cfRNA landscape provides resourceful solutions for COVID-19 research. (A) Activated anti-virus responses in both mild and severe pa-
tients may attenuate lung infection in COVID-19 patients. (B) Enhanced cytokine storm mediated by differentially expressed miRNAs and lncRNAs may
aggravate lung injury in COVID-19 patients. (C) tRNA pool perturbation may facilitate SARS-CoV-2 infection which could be considered as a novel target
for SARS-CoV-2 vaccine development. (D) Pathogenic microorganisms can be codetected in COVID-19 patients.
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No participants were fasting and the time interval between the pa-
tient’s blood collection and treatment was at least 6 h. In addition,
we collected clinical data including blood routine, blood biochem-
istry, blood coagulation function, interleukin 6, and days postad-
mission (Supplemental Table S1). After completing routine blood
tests in the clinical laboratory, the leftover surplus blood from par-
ticipants who signed informed consents was used for subsequent
cfRNA study. Those samples with sufficient volume (≥1 mL/sam-
ple) were retained and transferred to a Biosafety Level 2 (BSL-2) lab-
oratory at ambient temperature. Plasma separation was performed
within 3 h after blood collection by using the two-step separation
procedure (Chiu et al. 2001): 1600g for 10 min at 4°C and 16,000g
for 10 min at 4°C. Opaque or turbid plasma at the first or second
centrifugation step was excluded to prevent the rupture of cellular
DNA. Then, RNAwas extracted immediately using the HiPure Liq-
uid RNA Mini kit (Magen) at this BSL-2 laboratory. A NanoDrop
One instrumentwas used to check RNA concentration andquality.
Parallel treatment and analysis of plasma from healthy donors
were used for quality control and comparative analysis. The ex-
tracted RNA was stored at −80°C until used. The RNA library was
constructed using the PALM-seq (Yang et al. 2019) protocol which
can capture plasma mRNA, lncRNA, and small RNA with high
complexity. The steps are as follows: (1) 3′ polyadenylation was
added by Escherichia coli poly(A) Polymerase (PAP); (2) 5′ adaptor
was ligated by T4 RNA Ligase 1; (3) rRNAs or other RNAs of no in-
terest were consumed and processed by RNase H and DNase I; (4)
RNA with 3′ polyadenylation and 5′ adaptor was reverse-tran-
scribed by oligo(dT) with 3′ adaptor and amplified by PCR. We
quantified the concentration of cfRNA library products using a
Qubit 3.0 fluorimeter (Supplemental Table S1). After quality con-
trol, the high-quality library products were sequenced on the
DNBSEQ platform (BGI) in single-end 100 bp.

CfRNA data analysis

The fastp (version 0.20.1) (Chen et al. 2018) tool was used to check
the base quality, connection condition, GC content, sequence
length, and repeat sequence, and to remove poly(A) tails, sequenc-
ing adapters, and short reads (<17 bp) with parameters “qualified_
quality_phred=5, n_base_limit = 15, unqualified_percent_limit =
50”. After removingpoly(A) tails, sequencing adapters, low-quality
bases and human ribosomal RNA, clean sequencing reads were
mapped to the human reference genome (GRCh38.p12) and the
SARS-CoV-2 genome (GCF_009858895.2) using HISAT2 (version
2.0.4) (Kim et al. 2015) with parameters “-k 1 -q ‐‐novel-splicesite-
outfile ‐‐no-unal ‐‐dta ‐‐un-gz ‐‐rna-strandness F”. Then, the ex-
pression levels of each gene were calculated by the transcripts
per kilobase of exon model per million mapped reads (TPM) using
StringTie (Pertea et al. 2016) with parameters “-t -C -e -B -A ‐‐fr”
based on the result of HISAT2.

Differential gene expression analysis

A 1.5-fold variance in expression levels and a P-value <0.05 were
used as cutoffs to define differentially expressed genes. The P-value
was calculated using R (R Core Team 2021) software (DESeq2)
(Love et al. 2014).

Hierarchical clustering analysis

Hierarchical clustering (HC) was performed with up-regulated and
down-regulated genes in severe and/or mild COVID-19 patients,
compared with healthy donors. The distance used was Euclidian,
and the cluster method was Ward’s method (ward.D2).

Gene Ontology analysis

Gene Ontology analysis was performed using the R (R Core Team
2021) software (clusterProfiler) (Yu et al. 2012). The annotation
Dbi R package org.Hs.eg.db was used to convert gene symbol to
gene id. A P-value <0.05 was taken to indicate statistical
significance.

Time-course analysis

In total, gene expression data from 16 severe and 14 mild patients
were used for the time-course analysis (Supplemental Table S1).
First, we identified 682 and 431 genes differentially expressed be-
tween three stages in severe and mild patients, respectively.
Then, we used the R (R Core Team 2021) package (mfuzz)
(Futschik and Carlisle 2005) to perform time-course analysis
with the fuzzification parameter calculated by the function
mfuzz::mestimate.

miRNA target gene prediction

The R (R Core Team2021) package (miRNAtap) was used to predict
the target genes of 41 down-regulation miRNAs based on the an-
notation package of human genes org.Hs.eg.db. We used the
getPredictedTargets function to predict the mRNA targeted by
the miRNA; the parameters are species = “hsa” and method=
“geom”. Experimentally verified miRNAs and mRNAs regulatory
information were obtained from the miRTarBase database
(Huang et al. 2020c) (http://miRTarBase.cuhk.edu.cn/).

Codon abundance analysis

The anticodon sequences of tRNAs were first converted to the cor-
responding codon sequence, and the expression levels of tRNAs
with the same codon were merged. The P-value was calculated us-
ing R (R Core Team 2021) software (DESeq2) (Love et al. 2014). A
twofold variance in expression levels and a P-value <0.05 were
used as cutoffs to define differentially expressed codons.

Nucleotide composition analysis

The nucleotide composition of the codons was calculated by
WebLogo 3 (http://weblogo.threeplusone.com/create.cgi) (Crooks
et al. 2004).

Codon usage frequency analysis

The codon usage frequency of human, SARS-CoV-2, and FLUAV
was calculated by the number of each codon in the coding se-
quence divided by the total codon number.

Receiver operating characteristic analysis

The ROC curve of 380 up-regulated genes and 138 up-regulated
tRNAs in COVID-19 patients was calculated using R (R Core
Team 2021) software (ROCR). The performance function was
used to calculate the area under the curve (AUC), and the parame-
ter is measure = “auc”. First, the sample was divided into two
groups. One group was the COVID-19 (COV) group, including
severe and mild patients, and the other group was a control group
composed of healthy donors. Then, the R package ROCR was used
to calculate the AUCvalues for each up-regulated gene and 138 up-
regulated tRNAs in COVID-19 patients. The AUC score of a gene or
138 up-regulated tRNAs showed the probability of whether the
gene or tRNAs will distinguish the two defined sets of data. The
higher the AUC, the better the effectiveness of distinguishing
the two sets of data. Finally, we used 0.85 as the threshold to screen

Wang et al.

238 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 18, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276175.121/-/DC1
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
http://genome.cshlp.org/
http://www.cshlpress.com


out geneswith AUC>0.85, and these geneswere the predicted bio-
markers for COVID-19.

Logistic regression analysis

The SelectFromModel class and LogisticRegression class in the
sklearnmodulewere used for feature selection. The cross_val_score
function was used for cross-validation. The samples were divided
into two groups. One group is the COVID-19 (COV) group, includ-
ing severe andmild patients, and the other group is a control group
composed of healthy donors.

Identification of codetected microorganisms

PALM-seq (Yang et al. 2019) reads that failed tomap to the human
genome were collected and mapped to the microbial database us-
ing Kraken2 (version 2.0.8-beta) (Wood et al. 2019) with parame-
ters “‐‐threads 4 ‐‐gzip-compressed”. The abundance of each
microorganism was calculated by reads per million mapped reads
(RPM). The P-value was calculated using the Wilcoxon test, and
the P-value <0.05 was taken to indicate statistical significance.
The fold changes of the microorganism abundance in mild and
severe patients compared with healthy donors were calculated
respectively. A twofold variance in abundance and a P-value
<0.05 were used as cutoffs to define differentially expressed
microorganisms.

Gene assembly of codetected microorganisms

The reads that failed to map to the human genome were collected
and then mapped to the human mastadenovirus C genome
(GCA_006433735.1), Klebsiella pneumoniae genome (GCF_0002
40185.1), Candida glabrata genome (GCF_000002545.3), and
Toxoplasma gondii genome (GCF_000006565.2) usingHISAT2 (ver-
sion 2.0.4) (Kim et al. 2015) with parameters “-k -p -x ‐‐no-spliced-
alignment -q ‐‐no -unal ‐‐dta”. Transcript assembly was performed
using StringTie (Pertea et al. 2016) with parameters “-p ‐‐rf -m -t”,
and then the assembly results of different samples were combined
and assembled according to control and disease using Cuffcom-
pare with parameters “-r -R -s -i”.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the CNGB Sequence Archive (CNSA; https://db
.cngb.org/cnsa/) (Guo et al. 2020) of the China National
GeneBank DataBase (CNGBdb) (Chen et al. 2020b) under acces-
sion number CNP0001306.
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