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Abstract

The self consistent classical plasma equilibrium with diffusion is
studied in a toroidal geometry having a sheared magnetic field. Near each
rational surface it is found that the pressure gradient is zero unless the
Fourier component of 1/82, which resonates with that surface, vanishes.
Despite the resonances, the overall plasma confinement is, in practice, only

slightly modified by the rational surfaces.
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I. Introduction

Magnetic surfaces in which the rotation transform, », is a rational
number have long been known to be associated with singularities in the plaema
equilibrium. An especially clear digcussion of this problem has been given by

! oOn surfaces with irrational X, the magnetic field lines ergodically

H. Grad.
cover thé entire surface and the pressure 1s constant on the surface. On
rational surfaces, the magnetic <{ield lines close on themselves. The
condition for plasma equilibrimm with closed Ffleld 1lines is ¢that the
integral f df/B be constant on a pressure surface. 1In systema in which »
depends on radius, the preasure surfaces defined by the irratiomal surfaces do
not havef de/8 constant on rational surfaces except for special cases such as
toroidal symmetry. .

In this paper we will examine the problem of self-consistent plasma
equilibrim in a toroidal system with shear. We find that the plasma
equilibrium is controlled by the Fourier transform of 1/B2 in the appropriate

th

toroidal ané polcidal angles ¢ and 8. Let § be proportional to the n

m

toroidal harmonic and the mth poloidal harmonic of 1/‘132, then near a rational

.

gurface .r(\pR) = n/m

§
nm ap
{3, &« ——=—0 = cos {n¢ - mf)
RS TR -
2
lsntnl dr
Fe=n ——53§
¢y ~ 'dJR)
- « ®n 4P sin (ng - m9)
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with (ji’ the pressure driven part of the parallel current, P the pregsure, T
P
the total flux of particles crossing a sur<©ace, T'I. the parallel resistivity,

and & - ¢, (¢} the variation of the electrostatic potential in the surface.

The smoothness of the particle flux implies 4P/dy « |6nm|2 (p - ¢R)2 near a
rational surface. TUnless IGnmI vanishes, which is equivalent tof d2/B being
constent on the rational surface, dP/dy = (4 - ¢R)2. Asguming Iﬁnml + 0 we
then find (jl)P  (p - \pR) » that is, it vanishes at ¢y = ¢ while the
potential variation remains finite. Since (j“)P vanishes everywhere as the
plasma pressure goes to zero, any vacuum fleld configuration with magnetic
surfaces and shear gives a plasma equilibrium at low encugh plasma pregsure.

Cther papers which are related to the work reported here are by XKruskal
and Kulsrud,z Hamada,3 Qreene and Johnson,4 and Grad.5

In Section II of the paper the appropriate coordinate system will be
established, in Section III the equation for the parallel plasma current is
derived and solved, in Secticn IV the consequences of Ohm's law are explered,

and the conclusions are given in Seetion V.

IT. Magnetic Coordinates

Solenoidal vectors such as the magnetic field can always be written in

the so-called Clebsch representation
Babpx¥ 5, (1)

with a field line defined ¥ constant ¢ and eo. Since we are asgsuming a

scaler pressure with
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§P=-;-§x§, (2}

the Clebsch coordinate § can be chosen ag a function of P alone. The systems
we are congidering have topologically torcidal pressure surfaces so the
function (P} can be choosen with 2ny equal to the magnetic flux inside a
pressure surface (i.e., t‘:he toroidal flux). This choice of  makes Bo angle-
like.

In addition to the Clebsch or contravariant representation, a magnetic

field with a scaler pressure can be written in the covariant furm6

=%+ gly (3

with Y. 6,, x as coordinates. An important Trtole is played by the

arbitrariness in the y, § ¥+ B representation of B . since § is defined,

01

this arbitrariness occurs only in 6., ¢ and 8. It is easy to show that if

Bo, x- and B represent B then Eo' ;(, and 5—3 give a representation if, and only
if,

. - - Axe

B = 8 * Bal¥)y x = x* x W B =B = g - (4)

The functions 6, and y are arbitrary functions of .
*

Although many fundamental properties of the plasma eguationg are easily
illustrated using 6, and y as cocordinates, they do obscure the toroidal and
the poloidal periodicities of the torus. MAngular coordinates % and ¢ linearly
related to 9._-, and y make this periodicity manifest. Suppoee we circuit the

torus once toroidally and come back to the same physical point In general x



f

=5

and 9, will not return to thelr original values y(o) and eo(°)' Rathgr after
a toroidal circuit

x = x(o) + 2vg , So = Bo(o) - 2nr . (5)

Both x(o}, 60(0), and y, 8, are representations of the field at the same

physical location so g and ¢ must be functions of ¢ alone. In one poloidal

circuit
x = x(o) + 211 , 60 = So(o) + 270 . (6}

Again I and ¢ must be functions of ¢ alone. The function g will be shown to
equal the number one. The periodicities can be simply given by defining the

peleidal angle & and the toroidal angle ¢ so that
8 =08 « x b, x = 9%+ IO . %3]

The coordinates of the paper will be ¢, 8, ¢ .
To show o 15 unity, remember that 27y equals the mangetic flux inside a

pressure gurface or
2ng = [ B . d§t . 9)
The element of surface area in Y, 8, ¢ cooridinates ia

af =T 40 ay . (10)
t % . (ﬂﬁe)

Using Bgs. (1) and {(7), g = oﬁvxsa v ﬁ¢x§$ ; which implies
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v=[ocday. (n

In ¢, 6, ¢ coordinates the contravariant form of the magnetic field is then

B=Fyx o+ repr¥p x Fy (12)

while the covariant form is

{13)

+

z = ! = dg a
2= gp)¥s + 10pTe + 8, Ty, 8, Br ot g0
The total toroidal current inside a flux surface is

114}

Nla
H
.

T g ==.c_
IJ 'ds'r 4an

Jfﬁ az =_°_f§._$)“_§L__de=
. $o o (Tuxbo)

The total poloidal current outside a flux surface can gimilarly be shown to
be cg{yr/2 .
III. The Current Density

The covariant repreaentation of § , Eg. (13), gives a simple expression

for the current density
}=2 6 =5 tdedy —g—: - (e 38 . (15)

The crosa product of this expression with the contravariant representation

of §, Eq. {12), gives an eguation for B

a— <.
e e e
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3?:-‘:-'{):§= §¢-(Wx§a)(~a§+)§%1%- (16)

L
47 Y

The inverge of the {, 0, ¢ Jacobian can be found by dottina together the
covariant, Bg. (13), and contravariant, Eq. (12}, representat.ons of B
B2

Yo + ¥y x Vo) = P (1M

The equation for B is then
9 ap
3—+15—g=——(g+111—- (18}

The parallel component of 5 can be found by dotting the covariant expression

for B , Eq. (13}, into § , Eq. (15), to obtain

3
am 1 1 a8
_ci_———(l_—

g+ xr1I 3¢ g

o)'w
olm
5
.

(19}
Ler uws now solve the zguations for p and jn/B. The function B need not be

periodic in 9 and ¢, however, jn/B must be. One finds a homogeneous solution

for 8.

BH = UH[WU’¢ -9 (20)

with py an arbitrary function of ¢. To this soclution the inhomogenecus

solution to Bg. (18) must be added. To find the inhomogeneous solution let

1 1 -
ST ) Som ©O8 (n¢ ~ m@ + 2 )] (213
B n,m

wm

o
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with the prime on the sun implying that the term n = o, m = o 18 eliminated.

That is, we assume the field strength in each magnetic purface is known and

that it can be appropriately expanded in a Fourier series, Then one finds
e=uﬁw)(w-e)+ﬂ(g+xng—:¢+s, (22)

BZ
o

with 8,, which we will presently show is the B84 of Eq. (T3}, equal to

-4 dP T g+t ¥I -
T I8 stn (ng - ma 4 ) . (23)
Bo n,m

The equations are simpler if the force-free current part of 8 is singled out

by defining
4 dP
b=, t—= =1 124}
H BZ dy
a
then
B = pu(w) {(xp - 6) + ﬁ% %% {(ge + I0) + 8, - (25)
B
o

The parallel current is given by Egq. (19)

3 .
4n 1 4r dP nl + mg _
FE R T e B S a T m = 8o co8 (ng - ma o+ ) . (26)

The first term on the right side of this eguation repregents the force-free
current and the second term the Pfirsch-Schliiter current., The poloidal and

toroidal ~urrents can be evaluated using BEgs. (15) and (25).
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4ax 4y dP
ax _ (e 7
ap " (Bz d¢,’ I 27
o]
dg _ _ _ _ (4zdP . (28) @
av ¥ ‘Bz a9
[«]

Consequently B of Bx. (25) can be rewritten as

=_9 ,_48 29
A 3 ap 7t Be (29}

which identifies the R, of Eg. (23) with that of Eg. (13).
It is of interest to note that in force-free magnetic fields that the
plasma is minimum average B stable if Bo increagses away from the magnetic by

the v** criterion of Johnson and G'reene.7
IV. Consequences of Ohm's law
The Dhm's Law of magnetohydrodynamics.,

£+

vxB=n.3, (30)

0l

allows us to evaluate a plasma diffusion coefficient. The electric field £ is

the sum of a potential, - ¥ %, and a solenoidal, E, part

E=-Fo+c. (31

The perpendicular part of t can be written in terms of a velocity q
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=-1C0=
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alas
(=13
x
oy
"
<

(32)

The velocity ﬁ represents an overall pinching of the field and the plasma.

The Ohm's law can be rewritten as

¥

-§¢*e’|+

al-
P
1
c+
x
oy
]
EY]
.
g

The parallel component of this equation gives

En jI
—*1—=lg+11>l§—-nu B—) -

This eqguation with the expression for j./B, Eq. (26), implies

n,c +

=
" An bly) B

332

= (g + x1} dP “ nl + m .
°-¢'0(¢1)—nnc'—g—2—-—~ § ——g—zﬁm:un ng ~md + A )

d¥ n,m {n - 1m)
o

with ¢, an arbitrary function of ¢.

To understand the velocity U we will consider Faraday's Law
<>
E == cﬁ x E

=$x(3x§)-c§le.

Evaluating § x 3 using the contravariant expression for 8 , Fq.

(12),

(33)

(34)

(35}

(36)

(37)

one
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finds
(X, ) “u°2
a:ot + E . $IP = - (__4? wI {38)
W_x,t) ne
It +u-§wp=(4” u g {39)

with dwp/dlp = One can easily show Zmpp is the poloidal flux within an

additive function of time. One can define the plasma loop voltare V(y,t) by

3 1 + 3

ve2 (1 .8 a 40
ayp (217 I € *) (40)
in the usual approximations of a tokamak V= 211RE¢. Evaluating Eg. {40) uging

Eq. (35) for e" , one finds

<2 v
. YEoTg Fa Iin, : (an
H
This equation plus Ejs. (38) apd (39) imply
dx(y,e) _ g 3V , (42)
at 2n Ay

In steadystate one must clearly have the loop voltage a constant, vo. One

then has

hy c I
v = - —— 7
iy 21 g+ 2 o 43}

and the total flux of particles due to i with p{¢) the density is




3 ~12~

<+ -

r = pu e+ ds

! v
=-2TI‘C'L]2:V . (44)

g2 ©

This is the classial pinch effect.

The particle diffusive flux can be evaluvated using Chm's law, Bg. (33}).
This equation can e solved for the perpendicular part of ¥ - § and

hence {¥ - 8)+¥y. One finds, using Bq. {36},

5
3o - _ B 28 2V %
R R VA TR T Z W
n c2 . 2
___0 dp ¢ I + mg,2 . _ _ 2 dr |7y
> d\l:x(__n-‘rm) Gmuos(mp m6+xnm} nc a > -
Bo n,m B
(45)
The total diffusive particle flux crossirg a magnetic surface is
v
+ +
rn=f olv - u) -———~—“’—~——dad¢
$¢ . (6@&6)
=g ramlp [ (T -8 o ¥y, (46)
B
The expression for the total diffusive flux can be rewritten as
ar ,
= - (D + _ 7
I‘D ( \ Di) av (47)

e

with
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2
2 c (g + xI) “ nI +mg,2 (2
= 8
DII 2n n, 34 ngm (n —m ) Gnm (48)
©
Dl =7 c2 f jg <d2 , d585 = “‘*EEL——— abd¢ . (49)
1 B ¥ v ‘V’¢0(€¢IX$B)

that is, d§¢ is the area element of a flux surface.

Let us assume the plasma is in a steady state. Then particle

conservatinn implies

$onb =aq {50)

with 8 the source of particles per unit volume. The total flux of particles

r= Tp + l"IJ cbeys

ar ., ;. __daedy
d.
4 Foe (Fyxve)
= S(y) (51)
with S(y) d¢ the number of particles added between two differentially
geparated flux surfaces., Clearly T must be a smocthly varying function of y,.

V. Conclusions

In steadystate the total flux of particles across a magnetic surface is

T = - D(y) % 1, (52}
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given by Eags. (48) and (49) and I‘p given by Eq. (44). The

with D{y) = D" + D.L
sinqular at each

parallel current driven differention coefficientc c‘ is
rational surface. 'That is, near a rational surface

(53)

6!1“\2

D «
] 2
(p ~ ‘vnm’

with ¢ = the value of § when n = ym. The total particle flux T(y) must be
slowly varying in ¢ so we find near a rational surface

de 2,.2

ay = {y \pnm) /Snm . {54)
Consequently, unless {8 ¢ 0 at y=y dp/dy vanishes at rational
surfaces. The Pfirsch~Schliter or pressure driven part of parall l current

near a rational surface [see Eg. (26)] is

s
m___ 3P s (ng ~ m8)

(3,) =
Up TV b

s (h~y ). (55)

Consequently the Pfirsch-Schluter part of jR vanishes at each rational surface

rather than being singular and the pressure driven part of j . goes to zero

evarywhere as the plamma pressure goes to zero. The electrostatic potential,

interectingly, retains a finite variation on rational magnetic surfaces even

though dr/d¢ is zero on these purfaces.
The singularity of D{(y} at each rational surface is not as important as

it might Ffirst appeui:. Conaider a reqion of the plasma with no sources

o vt e TR Sm—. 1 4
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so dl/dy = 0 « Nz2fine a amoothing function Aly) such that A(Y} goes to zero

for |yl small but finite and which has a unit integral over y.

Taern let
Pty = [ My - by) B o,)dy, 156)
ap da
Fria / ap, Ply,) dy,
dp
=+ fA—= 4
f ‘J)1 ‘1'1
Ay = )
=-T BTy, b, - (57
Defining
Aty = ¥,)
1 1
- z | dy, , (58)
Bew) D(\p1) 1
one has
r=-'n(w)%%. (59)

No matter how narrow the region over which A is Adifferent from zero, as long
as the region is finite, the function D () is finite everywhere. This
follows from the fact that the Fourier transform of a smooth function vanishes
exponentially for high n or m; hence high order rational surfaces have a
exponentially small effect on the integral leading to D .

An interesting application of the expression for DI is to derive the

well-known Pfirsch-Schliiter diffusion coefficient for a stellarator. This is

dvrived by assuming the field strength has the obvious form

ﬁ
b
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.1 1 - 2¢ cos8 - 2§ cos {N$ = 28)] . (60)
2 2
B B
o
The only terms in &, are 6,y = 2e¢ and §y, = 25. We aesume the placma hae

negqligible net toroidal current, I = 0, and the toroidal field dominates so
W

g = RB,. The diffusion coefficient one is used to seeiug DI is Du divided by

the area of the magnestic surface (27r)(27R) and also divided by dy/dr = rB,

*
sinee the usual Dn muluiplies dP/dr rather than dp/dy . Eq. (48] implies

witk £ = r/R

L L T auv L (6%)

The resonance n = 0, m = 1, with 601 = 2¢ gives a contribution

n,c
2 Ny
Do1 =3 37 ¢ t62)

[s]

A
w

the Pfirsch-Schiluter coefficient. The rescnance at n =N, m = £ ,

GNE = 2§ gives
2
* n,c
Dy, = 2—2 g (-i)2 (— 42, (631
" B X~ N/

Customary stellarator designs have &~g but N/f>>+ so the Pfirsch-Schliter

coefficlent gives an accurate approximation,n'm >> D*NE'
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