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Abstract. Several pieces of evidence support the view that exudation of 

plasma into the airway wall and into the airway lumen occurs in asthma. 

Vascular leakage of plasma results from inflammatory mediator-induced 

separation of endothelial cells in postcapillary venules belonging to the tra- 

cheobronchial circulation. Whereas proposed mediators of asthma induce 
reversible leakage, several antiasthma drugs exhibit antileakage effects in 

animals and humans. Potential consequences of plasma exudation are many. 

Mucosal/submucosal edema might contribute to airway hyperresponsive- 

ness. Plasma exudate in the airway lumen in asthma may contribute to 
sloughing of epithelium, impairment of mucociliary transport, narrowing of 

small airways, and mucus plug formation. Exuded plasma may cause airway 
inflammation and constriction because of its content of powerful mediators, 

and chemoattractant factors and plasma proteins may condition the inflam- 

matory cells abundant in asthmatic airways to release mediators in response 
to stimuli that otherwise would be innocuous to the cells. It is concluded that 

inflammatory stimulus-induced increase in macromolecular permeability of 
the tracheobronchial microvasculature and mucosa may be a significant 

pathogenetic mechanism in asthma and that the postcapillary venular endo- 

thelium and airway epithelium that regulate leakage of plasma are important 

effector cells in this disease. 
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Introduction 

Vascular leakage of plasma is a major sign of inflammation. This factor may 

deserve attention in asthma, a disease that has an important inflammatory 

component. However, the tracheobronchial venular endothelium, which regu- 

lates airway inflammatory plasma leakage, has not been considered an impor- 

tant effector cell of the lung. The occurrence of plasma leakage is nevertheless 
supported by findings of large amounts of plasma proteins in the sputum, mu- 

cus plugs, and in specific airway lavage fluid obtained from asthmatics [18, 38, 

52, 55, 61, 75, 123]. In addition, it has been observed in experimental animals 

that exposure of tracheobronchial mucosa to inflammatory mediators causes a 

rapid movement of large plasma solutes not only into the airway wall but also 

into the lumen [43, 111, 115]. The physical and inflammatory effects of the 

plasma exudate and its content of protein-derived mediators would have a 
primary role in airway defense. Plasma leakage in airways may be linked with 

many facets of the pathophysiology of airway diseases such as asthma and 
rhinitis [38, 105]. 

Vascular leakage of large molecules is an active process under physiologi- 

cal and pharmacologic control [24, 64, 78, 89, 102, 116, 134, 145, 153]. This 

leakage is generally referred to as increased vascular permeability. This review 

discusses mechanisms and potential consequences of increased tracheobron- 
chial microvascular permeability. 

Tracheobronchial Circulation 

Tracheal and bronchial arteries carrying systemic blood nourish the walls of the 

airways and their accompanying nerves and vessels. Species differences and 

variations within species exist for the origin and distribution of these arteries. 

Capillary and precapillary anastomosis between the bronchial and pulmonary 
circulation has been demonstrated and there are different views as to how far 

the bronchial arteries travel in peripheral airways, but terminal bronchioles and 

alveoli may be supplied by these vessels [9, 31, 81, 90, 109]. The bronchial 

circulation normally receives about 1% of the cardiac output [9] and a large 

fraction of bronchial blood flow may go to the airway mucosa/submucosa [103]. 

The bronchial veins from the first 2-3 generations of bronchi drain into the 

azygous veins and then into the right heart. The remaining bronchial blood 
drains into pulmonary capillaries and veins and enters the left heart [31, 90]. 

Capillary- Venular Plexuses 

Different workers have demonstrated the presence of an extensive microvascu- 

lature in the trachea and bronchi [72, 90, 100, 132] (Fig. 1). On either side of the 

bronchial muscle layer there is an abundance of capillary-venular plexuses 
coupled to a relatively sparse arterial supply. Both in the larger and the smaller 
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Airway turnen 

Fig. 1. To the left a profuse suhepithetial network ofmicrovessels [cf. 72, 90, 100, 132] is schemati- 
cally illustrated. To the right the concept of a leaky postcapillary venule and a leaky epithelium of 

the inflamed airway are depicted. Inflammatory cells (IC) in the airway wall and lumen may be 
primed by the presence of exuded plasma proteins and their products. 

bronchi the plexuses occupy the entire surface of the submucosal layer [72]. A 
rich continuous subepithelial network of microvessels would regulate clear- 
ance, and possibly distribution (from large to small airways), of inflammatory 
mediators and inhaled drugs [70, 72]. The profusion of the microvascular net- 
work of the airways may be illustrated by isolating the lung and perfusing it 
only through the pulmonary artery at normal pressures. The microvasculature 
of airways including the trachea will immediately be quite well perfused also, 
and this must have been accomplished by a retrograde microvascular flow 
along the airways [70]. 

The superficial bronchial microcirculation also has a role in the tempera- 
ture and moisture conditioning of inhaled air [10, 132]. This function may be of 
particular relevance to asthmatic subjects who may respond with plasma exu- 
dation to inhalation of cold and dry air [107, 109]. A role for plasma exudation 
in "dry-air-induced asthma" may be hypothesized for 2 main reasons: (1) in 
inflamed airways it is vessel fluid that humidifies incoming air whereas other 
sources are used under normal conditions [25, 45]; (2) effective protection 
against this nonpharmacologic provocation is provided by drugs such as cro- 
moglycate and glucocorticosteroids, which may have potent antileakage effects 
at airway endothelial-epithelial barriers [42, 107]. 

Hyperemia of Inflammation 

Alterations in bronchial blood flow will affect the delivery of plasma and white 
cells, the perfused surface area, and the microvascular hydrostatic pressure. 
The flow may be highl.y increased through tissue that is affected by inflamma- 
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tion [8] and the hydrostatic pressure increases in venules, from which exuda- 

tion takes place in local hyperemia [153]. The hydrostatic microvascular pres- 

sure is dependent not only on the arterial and venous pressures but also on the 

ratio of post- to premicrovascular resistance. Vasodilation usually increase this 

ratio [82] and thus promotes plasma exudation. 

It has long been recognized that once permeability is increased changes in 

blood flow may determine the degree of plasma exudation [64, 153]. However,  

pronounced synergistic effects as demonstrated in the skin between flow-in- 

creasing and permeability-increasing mediators [147] may not occur in airway 

mucosa/submucosa that has a high basal perfusion. 

The neural, hormonal, and pharmacologic regulation of tracheobronchial 

blood flow has many of the general characteristics of a systemic circulation [9, 

73,103,109, 112]. Many agents including histamine, bradykinin, acetylcholine, 

substance P, VIP, and prostaglandins have been demonstrated to increase tra- 

cheobronchial blood flow [9, 73, 107]. 

Inflammatory Leakage 

Venular Endothelial Effector Cells 

Under physiological conditions fluid equilibrium is maintained by a balance 

between the hydrostatic pressure in the capillary bed, which tends to drive fluid 

out of the vascular compartment, and a counteracting force of the osmotic 

pressure of plasma proteins. Inflammation brings about dramatic changes in the 
transmural colloid osmotic pressure gradient. After excluding a number of 

factors (changes in the blood, increased microvascular pressure, changes in the 

surrounding tissue, etc.), Julius Cohnheim [24], more than 100 years ago, con- 

cluded that the inflammatory extravasation of protein-rich fluid must be due to 
noxious stimuli acting directly on the microvascular wall to cause a molecular 

change resulting in increased permeability. Cohnheim reported that the inflam- 

matory exudate is concentrated and that this is due largely to its proteinaceous 

nature (differing from high-pressure edema fluid that is protein-poor) [24]. 
Somewhat reluctantly he could then make his reasoning fit with previous publi- 

cations by Julius Arnold, who had shown that injected dyes always passed 
through the vessel wall between endothelial cells [7, 24]. 

More recent ultrastructural, pathophysiological, and pharmacologic stud- 

ies of systemic microvascular beds have shown that inflammatory mediator- 

induced leakage of protein-rich plasma occurs in postcapillary venules (diame- 

ter 10-50 ~m) through large gaps (up to 1 tzm) between endothelial cells [23, 62, 
64, 78, 89, 116, 122, 134, 145, 153] (Fig. 2). In the delayed inflammatory re- 

sponse to mild thermal burns and some other types of injurious stimuli an 

inflammatory exudate may come both from capillaries and venules [27, 64, 87], 

but no mediator has yet been demonstrated to produce capillary leakage 
[64, 87]. 
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The target cells for inflammatory mediators have thus been identified as 

venular endothelial cells. Plasma escapes through the mediator-induced in- 

terendothelial gaps and filters through the endothelial basement membrane, 

which offers little hindrance to diffusion of plasma proteins [153]. The concen- 

tration ratios of different proteins may be similar in blood plasma and in inflam- 

matory exudate, indicating that there is a bulk flow of proteinaceous plasma out 

of leaky postcapillary venules [8, 12, 59]. 

Mechanisms of  Endothelial Cell Separation 

Contraction of venular endothelial cells has been a favored mechanism to ex- 

plain mediator-induced macromolecular leakage [78]. This possibility is sup- 
ported by the presence of actomyosin [13] and bundles of fibrils that could form 

an endothelial contractile machinery [64]. As in smooth muscle, endothelial 

contractility may be calcium-dependent. The contraction hypothesis is attrac- 

tive because, as a corollary, the pronounced ability of endothelial cells to close 
mediator-induced gaps could be explained as a relaxation of these cells. 

Another view on the mediator-induced deformation of endothelial cells has 

been discussed by Zweifach [152]. Inflammatory leaks may be produced by 

effects on elements interlocking endothelial cells. A weakening of these forces 
may change endothelial cell shape and cause increased permeability. The at- 

tachment of these cells to the basement membrane is reported to be particularly 
loose in collecting venules [152], which would facilitate deformation there. 

Also the surface material of the endothelial cells may be involved in macromo- 

lecular permeability [126]. At sites of inflammation there may also be changes 

in the configuration of the filamentous gel making up the basement membrane, 

and the ground substance may be transformed from a gel to a sol state (shown 

by rapid dispersion of an injected colloid, which otherwise forms a distinct bleb 
only) [153]. Zweifach [153] emphasized that in chronic diseases venules may be 

particularly sensitive due to defects in the collagenous and reticular fibers of 

the perivascular tissue that, together with the basement membrane, provide 

mechanical support for the vessel. Since plasma exudation in theory can be 

causally linked with several facets of asthma pathology, it would be of interest 
to examine whether such differences exist between normal and asthmatic air- 

way microvessels. Recent ultrastructural examination of biopsies by Laitinen 
and Laitinen [71] has demonstrated that subepithelial postcapillary venules 

have endothelial gaps in asthmatic but not in normal airways. 

Mediators 

New mediators are continually being discovered and characterized as factors of 
potential importance in asthma and other inflammatory diseases [5]. Irrespec- 

tive of the chemical class of the mediator and whether it is applied extra- or 

intravascularly, the histologic and ultrastructural characteristics of the induced 
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Fig. 2. The 3 fluorescent graphs (magnification ×34) (A, B, C) illustrate the cheek pouch microcir- 

culation in hamsters following iv injection of fluorescein-labeled dextran (FITC-dextran). The same 

area is shown before (A), 2 rain (B), and 5 min (C) after topical application of bradykinin. It is 

evident that the mediator-induced macromolecular leakage occurs only from postcapillary venules 

of a diameter of 10-30/.~m. (D) In the electron micrograph of a leaky venular site in this microcircu- 
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lation the venular lumen is seen filled with dark precipitate (FITC-dextran). FITC-dextran macro- 

molecules have been extravasated through a wide interendothelial gap and can be seen as dark 

spots among the collagen fibers to the right. (Erik Svensjr, Pharmacological Lab, Draco, Lund, 

Sweden, supplied the original prints. For details on experimental procedures, see [62. 136]). 
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acute macromolecular leakage appear identical [14, 64, 78, 1t6, 136]. However,  

different vascular beds may differ in their sensitivity to individual mediators. 

Not only are pulmonary microvessels quite resistant to histamine-type media- 

tors [63, 64, 79, 114] but also some systemic beds such as microvessels of rat 

intestinal mucosa may be resistant [64]. The tracheobronchial microvasculature 
has generally responded in a sensitive way to leakage-inducing mediators [e.g., 

109, 113]. 

Effects on Bronchial Tone and Vascular Permeability 

Many proposed mediators of asthma are capable of inducing both bronchocon- 

striction and vascular leakage but may also differ in these 2 effects. Mus- 

carinics are potent constrictors of airway smooth muscle but are without or 

almost without effects on microvascular permeability to macromolecules [112]. 
Histamine produces leakage in cat tracheal microvessels [41] although it may 

relax rather than contract cat large airways [3, 110]. Similarly, PAF-acether is a 

poor constrictor of guinea pig trachea but is effective in producing plasma 

exudate in this tissue [111, 115]. Due to their effect on vascular permeability, 

inflammatory mediators may in part produce bronchoconstriction through 

smooth muscle plasma-derived peptides. 

Effects of Allergen and Chemical Sensitizers 

The acute allergen-induced response in guinea pigs may be associated with 
airway edema [32]. Although edema could not be demonstrated, vascular leak- 

age of macromolecules into the airway wall and lumen was pronounced in an 

acute IgE-driven anaphylactic reaction in the tracheal mucosa of anaesthetized 
guinea pigs [111, 113]. Extensive deposits of fibrin that would be secondary to a 

vascular leak were the most striking characteristic of IgE-dependent late phase 

reactions in human skin, whereas cellular infiltration was not a consistent find- 

ing [128]. 

Chemical sensitizers such as plicatic acid and isocyanates (e.g., toluene- 
diisocyanate [TDI]) are important inducers of occupational asthma. Bronchial 

provocation with TDI causing both immediate and late phase responses is 

associated with significantly increased levels of albumin in bronchoalveolar 
lavage fluid [43]. TDI is also a potent inducer of very prolonged (>24 h) vascu- 

lar and epithelial macromolecular permeability in guinea pig trachea (ErjefO_lt 

and Persson, unpublished data). Airway bronchial lavage in patients with 

asthma due to exposure to Western red cedar (plicatic acid) showed a 10-fold 
higher albumin concentration in the lavage fluid than in normal subjects [75]. 

The lavage was performed 24-48 h after provocation, when symptoms had 

subsided. Preliminary observations with allergen and chemical sensitizers are 

thus compatible with the possibility that plasma exudate may contribute to late- 

phase and sustained airway reactions. 
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Time Course of Venular Leakage 

Leakage of macromolecules is evident within 10ths of seconds after application 

of a directly acting inflammatory agent on systemic microvascular beds (includ- 

ing the tracheobronchial circulation). A maximum effect of mediators such as 

histamine, bradykinin, tachykinins, and leukotrienes is usually established 

within 3-•0 rain [14, 84, 89, 111, 112, 116, 134, 136, 145, 151]. The response 

then declines quickly and normal low permeability is restored within a few 

minutes up to half an hour. During some time after the development of a 

response the affected tissue is partly refractory to further permeability effects 

[11, 20, 51, 137]. Tachyphylaxis or refractoriness is not absolute. Prolonged 
vascular leakiness may be due to sequential effects of different mediators or 

intermittent release of mediators that avoid tachyphylaxis. Since bradykinin 
did not exhibit tachyphylaxis in human skin responses [I 1, 51], it may partici- 

pate in delayed inflammatory reactions [11]. Menkin [85] demonstrated that a 

cell-free plasma exudate injected into rabbit skin produced prominent vascular 
leakage of macromolecules. Due to their distribution and activity, plasma- 

derived mediators may exert positive feedback effects on the venular wall and 

be responsible in part for maintaining high vascular permeability. The inflam- 
matory breakdown of blood and tissue proteins will not only produce mediators 

but also increase the number of molecules and, hence, increase interstitial 
osmotic pressure, thus promoting transudation [44]. 

Miles and co-workers [20, 29, 89] demonstrated interesting biphasic as well 

as sustained permeability responses to bacterial toxins injected into guinea pig 

skin. Hence many types of injury may cause an immediate phase of leakiness 
that often is short-lasting; after 1-2 h a late phase of increased microvascular 

permeability follows that is much more sustained [145]. We have recently 

observed that topical application of PAF-acether on guinea pig tracheal mucosa 
in vivo produced both an acute [11 I] and a late phase vascular leakiness 5 h 

after provocation [115], which has not as yet been seen with other mediators. 

Plasma Leakage and Leukocytes 

Sticking of white cells to endothelium and their subsequent migration across 

the vascular wall characterize most inflammatory processes. As with protein 

leakage the leukocyte-endothelium interactions occur in postcapillary venules 

and the diapedesis is through endothelial intercellular junctions [64, 80, 134]. 

However, inflammatory extravasation of leukocytes and macromolecular sol- 
utes is induced via different mechanisms and can occur separately: white cells 

apparently have a protein-tight seal during migration, and mediator-induced 

leakage of plasma can occur without any cellular escape [44, 50, 64, 153]. 

Tissue leukocytosis may be associated with delayed responses and a causal 
relationship between leukocytes and leakage has been suggested [142]. How- 

ever, neutropenia may not suppress the initial or the delayed permeability 

response [145, 148, 149], and mediators such as anaphylatoxins and PAF- 
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acether, which have been proposed to act through polymorphonuctear leuko- 
cytes, may have pronounced vascular leakage effects independent of leuko- 
cytes and platelets [14, 119]. Although participation of leukocytes is likely, 
their suggested pivotal role [142] in the development of a sustained microvascu- 
lar permeability in inflammation has not been proven. 

Supply of Mediators 

The mediators may come from many sources, the stationary and migrating 
inflammatory cells being the most widely explored. Airway epithelial ceils may 
produce arachidonate mediators [97] and vascular endothelial cells may also 
generate several of the inflammatory mediators, including PAF acether and 
arachidonate products [e.g., 19]. Neuropeptides have been proposed as media- 
tors of vascular permeability but substance P and other tachykinins may not be 
as effective as inflammatory agents in human airways as they are in the 
guinea pig [112]. Of particular relevance for the present discussion (i.e., the 
sequelae of microvascular leakage) must be the preformed and dormant protein 

mediators circulating in the bloodstream. 
Huber and Koessler [61] included in their review the information that the 

serum of 1 patient dying of asthma "was very toxic for animals, 0.05 c.c. 
causing death of a guinea pig." Circulating kinins [1] and esterase activity [16] 
may be elevated and kininogen decreased [16] in asthma. Ciliary dyskinetic 

factors have been detected in asthmatic serum [150] as have indices for activa- 
tion of complement [86]. Hence, the plasma of asthmatic subjects may be 

particularly noxious. 
The plasma proteins leaking through the venular gaps may be activated by 

negative surface charges, proteases, and other factors during their transvascu- 
lar passage and upon arrival in inflamed tissue [12, 48, 87, 88, 94, 120, 133,141, 
144]. Both in the airway wall and lumen proteins of the kinin, complement, 
clotting, and fibrinolysis systems may generate a variety of inflammatory, bron- 
choconstrictory, and chemoattractant mediators. Bradykinin, which is a pow- 
erful provocateur in asthma [56, 130], is but 1 of a plethora of plasma-derived 
mediators. Gerberick et al. [47] showed that rabbit alveolar macrophages were 
unable to release reactive oxygen intermediates unless they were conditioned 
by prolonged presence of plasma proteins. Exuded plasma may thus, by direct 
actions on a variety of target cells and by recruitment and conditioning of 
inflammatory cells, be an amplifying factor that escalates and sustains the 
inflammatory process in asthmatic airways [105]. 

Potential Effects of Exuded Plasma in the Airway Wall 

The result of plasma leakage is generally thought of as edema, and edema is 
accepted as a characteristic sign of asthmatic airways [38, 58, 65, 124]. This 
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view agrees with general descriptions of inflammation of mucosal membranes 

and is supported by histologic preparations that show "edema spaces" in air- 

ways obtained from patients dying of asthma [38, 58]. However, many workers 

who have done postmortem or biopsy examinations have not reported or been 

able to identify edema in asthmatic airways [4, 22, 30, 57, 60, 61, 85, 125, 139, 

146]. Changes such as enlarged bronchial glands and increased thickness of the 

epithelial basement membrane and smooth muscle layer have been well docu- 

mented [30, 39, 139], whereas edematous changes have not been easy to quan- 

tify. The relative lack of data on edema may be explained in part by movement 

of plasma exudate into the airway lumen. This possibility is supported by the 

abundant occurrence of plasma proteins in asthmatic airways [18, 38, 52, 55, 
61, 75, 123] and by observations in experimental animals. Inflammatory media- 

tors such as bradykinin, histamine, leukotrienes, tachykinins, PAF-acether, 

and allergen applied to the tracheal mucosa of anesthetized guinea pigs pro- 

duced acute extravasation of plasma and tracer macromolecules. Edema could 
not be identified but extravasated large solutes were recovered in tracheal 

luminal fluid within a few minutes after provocation [43, 111-113, 115]. 
In contrast to tracheobronchial venules, the pulmonary microvessels are 

resistant to histamine-type mediators [63, 64, 79, 114]. This aspect, together 

with abundant microvascular connections between the bronchopulmonary cir- 

culations, has stimulated a debate as to the relative importance of bronchial 

microvessels to fluid and protein exchange in pulmonary inflammation. In adult 

respiratory distress syndrome (ARDS) pulmonary edema and increased perme- 

ability to macromolecules in the pulmonary vessels and the alveolar wall are 
present [59], but bronchial venules may also leak plasma [117]. Wheezing is one 

of the symptoms of ARDS, and, as in bronchial asthma, survivors of ARDS 

may exhibit increased airway responsiveness to methacholine inhalation chal- 

lenges [I 31]. Hence, it cannot be excluded that bronchovascular plasma exuda- 

tion is one of the factors contributing to asthmalike symptoms in pulmonary 

inflammatory diseases. 
It has been calculated that small changes in mucosal thickness could have a 

profound influence on the tendency to airways closure as well as explain airway 

hyperresponsiveness to bronchoconstricting agents [65]. Slight edema of tis- 

sues between the bronchial muscle and the epithelium would thus only margin- 
ally reduce the baseline caliber of the airway lumen and be difficult to detect, 

but could cause abnormally large increases in resistance to airflow during bron- 

choconstriction. It has not yet been studied whether airway edema, similar to 

pulmonary edema [26, 66, 127], may lower the threshold for sensory receptor 

stimulation. 
In 1900, Fraenkel [46] suggested that extensive epithelial shedding is a 

distinguishing characteristic of asthmatic airways. This proposal has been re- 

peatedly substantiated [e.g., 37, 91] and Dunnill [37] has suggested that muco- 

sal edema and transepithelial passage of plasma exudate cause the shedding of 
epithelium. However, a significant volume of proteinaceous plasma can rapidly 

traverse the epithelial barrier without causing shedding [I 15]. Sustained inflam- 
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mation and effects of potent and toxic cellular mediators such as eosinophil- 
derived proteins [49] may be required for significant shedding to occur. As 
discussed above several additional consequences of plasma exudation in the 
airways relate to the presence of plasma protein-derived mediators in the exu- 
date that are capable of producing bronchoconstriction and inflammation. 

Intercellular Transepithelial Passage of Plasma 

Albumin is a normal constituent of tracheobronchial luminal liquid [17, 75, 104, 
111]. Stockley et al. [135] determined the relation between sputum/serum con- 
centration ratios and Stokes radius for 5 selected proteins in chronic bronchitis. 
During stable noninfected conditions there was a significant negative correla- 
tion between the ratio and the protein size consistent with a passive diffusion of 
these proteins [135]. During infection the ratio was increased more than 10-fold 
[21]. This finding tallies with observations in upper airways: Nasal washings 
obtained during viral rhinitis contain much elevated levels of serum proteins 
and kinin activity [6, 33, 95, 121]. Also in many noninfectious types of  actue 
inflammation the epithelial permeability to macromolecules may increase dra- 
matically. Large amounts of charged macromolecules such as albumin and 
uncharged fluorescein-labeled dextran (MW 150,000 daltons) traversed vascu- 
lar and epithelial barriers of guinea pig tracheas superfused with mediators or 
challenged with allergen [43, 111, 115]. This highly increased permeability to 
inflammatory stimuli reversed spontaneously and was significantly prevented 
by drugs [42, 43]. A pinocytotic transport mechanism would not suffice to bring 
about such a sudden transepithelial passage of a large volume of plasma [17, 
78]. Perhaps intercellular junctions of tracheobronchial epithelium can be 
opened for macromolecular passage as in alveolar epithelium in high-perme- 
ability pulmonary edema [28, 59, 99]. An ultrastructural study of inflamed 
guinea pig trachea has demonstrated that intraluminal horseradish peroxidase 
penetrates the wall between epithelial ceils [129]. 

A series of observations of nasal liquid composition in atopic subjects 
challenged with allergen agrees with the notion that inflammatory stimuli in- 
duce a rapid, transient bulk flow of plasma macromolecules (and activation of 
peptide mediators) extravascularly and across the nasal epithelial lining [12, 
120]. It is of great interest that antiasthma drugs, notably glucocorticoids and 
xanthines, reduce this plasma leakage [96, 108, 118]. 

Mediator-induced increase in the permeability of the epithelial barrier can 
obviously be as dramatic as that across the venular endothelial lining. Experi- 
ments indicate that the inflammatory plasma leakage does not require tissue 
destruction. Instead, epithelial permeability to large molecules may be consid- 
ered an active, reversible process that is under the control of mediators, hor- 
mones, and drugs. The subcellular~epithelial mechanisms involved in these 
permeability changes and details of intercellular pathways for leaking macro- 
molecules remain unexplored. 
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DTPA-Small Solute Permeability 

In recent years, airway mucosal or epithelial "permeability" has received 

widespread attention as a pathogenetic factor. What is usually measured in 

studies of this kind of "permeability," in particular in human subjects, is the 

rate of transfer of inhaled 99mTc-labeled diethylenetriamine penta-acetate 

(DTPA) into the blood. DTPA is a relatively small molecule (MW 492 daltons) 

and its passage across airway epithelial-endothelial barriers may be regulated 

by mechanisms entirely different from those involved in leakage of large 

plasma proteins. Hence neither vascular nor mucosal permeability to plasma 

macromolecules may be reflected in studies using DTPA. Furthermore, lung 

clearance of inhaled DTPA may largely be across alveolar barriers. Respiratory 

mucosal permeability determined with DTPA was not increased in asthma [40] 

and, when it was increased, as in smokers, this did not correspond to increased 

airway reactivity [69]. These observations may not be taken as evidence against 

a role for plasma exudation in asthmatic airways. 

Plasma Proteins in Asthmatic Airways 

Sputum and Bronchial Lavage 

Many characteristics of asthmatic airways can be studied by analyzing the 

composition and pharmacologic effects of sputum [35]. Although their origin 

was not determined, anaphylatoxins have been identified in asthmatic sputa 

[98]. Asthmatic sputa have been demonstrated to produce smooth muscle con- 

traction [36, 54] and inhibition of ciliary motility [150]. The factors responsible 

for these effects may well have come from the serum. They may be preformed 

mediators or mediators produced by activation of plasma proteins at exudation. 

Using chemical analyses Menders et al. [83] confirmed the presence of 

plasma proteins in asthmatic sputa. Ryley and Brogan [123] showed that the sol 

phase of asthmatic sputa contained large amounts of albumin and that glucocor- 

ticosteroid treatment reduced the plasma protein content along with improve- 

ment in lung function [123]. In addition, they studied bronchitic sputa and 

concluded: 

This would imply that the sputum of the asthmatic patient had more in common with an inflamma- 
tory exudate than that of the chronic bronchitic.., this hypothesis is supported by the finding of a 
greater proportion of serum albumin and a greater variety of plasma proteins in the asthmatic as 
compared with the bronchitic sputum [123l. 

In a more quantitative study Brogan et al. [18] confirmed these findings and 

showed that levels of plasma proteins, but not secretory proteins, were ele- 

vated in asthmatic sputa. A high degree of plasma exudate in the airway lumen 

may also differentiate asthma from emphysema [52] and cystic fibrosis [18]. 

Heilpern and Rebuck [55] not only demonstrated high levels of plasma proteins 
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in asthmatic sputa, but also showed that cromoglycate normalized these levels. 

Cromoglycate seems to share with several other antiasthma drugs antileakage 

effects directly on airway endothelial-epithelial barriers [42, 43]. 

Bronchoalveolar lavage is frequently performed in the clinical evaluation of 

lung diseases. It is used also in asthma but a relatively large contribution of 

alveolar liquids to the lavage fluid makes this technique less suitable for the 

identification of bronchial liquids. This point is illustrated in recent work by 

Lam et al. [75]. They found no difference in albumin levels between normals 

and asthmatics in large-volume bronchoalveolar lavage liquids. However,  us- 

ing a small volume lavage in a large bronchus they could demonstrate a 10-fold 

increase of albumin in asthmatic airways compared with controls [75]. 

Potential Consequences of Entry of Plasma into the Airway Lumen 

Although many pieces of information are consistent with the pathophysiologi- 
cal importance of plasma and plasma-derived mediators in airway lumen, this 

subject has not been extensively reviewed. Lord Florey, who was experimen- 

tally acquainted with the possibility that a considerable amount of fluid may 

"come directly from the vessels" into the inflamed airway lumen [45], men- 

tions only in passing, in his excellent chapter on inflammation of mucous mem- 

branes, that plasma exudate may seep through the mucosa [44]. In 1882 Julius 

Cohnheim [24] discussed how inflammation and plasma exudation might pro- 
duce different results in different tissues and emphasized that in cavitary or- 

gans there may be a passage of exudate across the mucosal barriers. Diseases 

with protein leakage into the gut have received attention due to the  ensuing 

large fall in blood levels of plasma proteins [67]. Plasma exudate may escape 

into the gut lumen through a deranged mucosa and through an apparently intact 
mucosa [67]. Plasma albumin loss due to bronchial diseases has been suggested 

to occur [15, 53]. For obvious reasons a luminal entry of plasma exudate would 

have rather more serious consequences for the lower airways than for the 
gastrointestinal tract. 

A rapid passage of exudate may increase the depth of the fluid layer in 
which the cilia beat, and hence cause marked inhibition of mucociliary trans- 

port [140]. Plasma exudate most likely participates in the formation of  mucus 

plugs: fibrin formation would make the mucus firm and obstructive [34, 61]; 

albumin may interact with mucin to form viscous complexes [76]; plasma pro- 

teins may impede normal hydration of mucin [2]. The plasma exudate may 
enter peripheral airways and compromise the surfactant activity, which in turn 

may lead to small airway narrowing [77]. 

Antiasthma Drugs 

It is intriguing that different antiasthma drugs may prevent the mediator-in- 

duced microvascular leakage. Drug-induced inhibition of vascular leakage can- 
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not be expected to show an immediate reversal of edema because the rate of 

resolution of interstitial fluid is dependent on lymphatic drainage, which is a 

relatively slow process. However, if obstructive bronchial tone is dependent on 

a continuous supply of activated plasma protein mediators from leaky mi- 

crovessels, an antileakage action might reverse the airway obstruction. It is of 
interest that protease inhibitors may prevent bronchoconstriction induced by 

various challenges in asthmatic subjects [105]. 

Glucocorticosteroids 

In 1940 Menkin [84] found that adrenal cortex extract inhibited inflammatory 
vascular leakage. Thirty-three years later Leme and Wilhelm [74] demonstrated 

in rats that corticosteron prevents mediator-induced increase in vascular per- 
meability and that this drug inhibits the enhanced venular responsiveness 

brought about by adrenalectomy. Current developments include attempts to 

identify proteins induced by glucocorticoids. Probably by binding with specific 

receptors followed by induction of anti-inflammatory proteins, glucocorticoste- 
roids inhibit or reduce vascular leakage. In guinea pig airways glucocorticoids 

such as budesonide may reduce leakage of plasma across both endothelial and 

epithelial barriers [42]. Glucocorticoids have been shown to reduce plasma 

exudation in inflammatory airway diseases. Ryley and Brogan [123] found a 

relationship between a lowering of the albumin concentration in sputa with 

steroid therapy and clinical improvement in an asthmatic subject. Based on 

serial measurements of neuraminic acid concentration (indicator of bronchial 
secretion) in asthmatic sputa, Keal [68] inferred that the effect of steroid ther- 

apy "lies in the reduction of transudate rather than in any change in the bron- 

chial mucosal gland secretion." Moretti et al. [92] studied patients with both 

reversible airways obstruction and bronchitis and showed that 2 weeks' treat- 

ment with methylprednisolone brought about a dramatic reduction in the spu- 

tum concentration of albumin. Stockley and associates [93, 143] examined the 

effects of about 1 week's therapy with prednisolone on sputum composition in 

patients with chronic obstructive bronchitis. The patients had no acute chest 

infections and had, therefore, relatively low levels of serum proteins in their 
sputa [135]. Still, after a few days of treatment a significant reduction was 

recorded in the ratio of sol-phase sputum concentration to serum concentration 

of albumin [143]. 

An antiexudative effect would also reduce the entry of plasma proteins that 

have protective functions in the airway. The values of c~rantitrypsin followed 

the same pattern as those of albumin with steroid treatment [143]. However, 
despite the reduced c~l-antitrypsin levels the inhibitory capacity of the sputum 

(evaluated on porcine pancreatic elastase) was increased, suggesting that the 

overall effect of glucocorticosteroids on the airway liquid proteinase-antipro- 

tease balance may be beneficial [93]. 
Findings in nasal washing experiments lend further support to the theory of 

an antiexudative action of glucocorticosteroids. Treatment for 2 days with 
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prednisolone significantly reduced clinical symptoms as well as amounts of 

albumin (kinins, TAME-esterase activity, and histamine) in washings per- 

formed during nasal late reaction following challenge with allergen in 13 allergic 

subjects [118]. This study also produced the interesting information that gener- 

ation of arachidonate products such as leukotrienes and prostaglandin D was 

not affected by the steroid treatment [I 18]. 

Attenuation of plasma exudation by glucocorticoids may contribute to the 

general efficacy of these drugs in asthma and to their potency in inhibiting late- 

phase asthmatic responses and reducing airway hyperresponsiveness. 

Xanthines and Cromoglycate 

Antiasthma xanthines may be subdivided into adenosine-blockers such as 

theophylline and adenosine-nonblockers such as enprofylline [106, 108]. These 

xanthines seem to share a number of potentially important pulmonary anti- 

inflammatory effects [see 106]. Included among the anti-inflammatory actions is 

a vascular and epithelial antileakage effect that has been demonstrated in 

guinea pig airways [42, 106, 112, 113]. It has also been shown that both enpro- 

fylline and theophylline prevent the development of pulmonary edema in 

guinea pigs inhaling histamine [106, 114]. Furthermore, antiasthmatic doses of 

theophylline reduced both symptoms and plasma exudation in human nasal 

mucosa provoked with different amounts of allergen [96, 108]. Cromoglycate 

also reduced macromolecular leakage across endothelial-epithelial barriers in 

guinea pigs. This action was not dependent on which mediator had induced the 

plasma leakage, nor was it due to a reduction of mucosal/submucosal blood 

flow [42, 107]. The animal data may explain observations in asthmatic subjects 

reported by Heilpern and Rebuck [55] 15 years ago. They [55] stated that their 
study 

• . . does not attempt to explain why sodium cromoglycate is also effective in non-allergic asthma. 
However, the evidence points to a previously unrecognized action of the drug, that of lowering 
albumin concentration in sputum to levels found in non-asthmatic patients. The significance of this 
finding awaits further study. 

The possibility that an anti-plasma-leakage action of cromoglycate is important 

and may compare favorably with other proposed mechanisms of action of the 

drug in asthma is discussed elsewhere [107]. 

Sympathomimetics 

It has been widely held that the anti-inflammatory effects of sympathomimetic 

drugs reflect vasoconstriction and diminished blood flow to inflamed tissues. In 

addition, it has now been demonstrated that these drugs have a vascular anti- 

permeability property. This is fl2-adrenoceptor mediated and more than out- 

weighs the slightly proinflammatory blood flow increasing effect produced by 

the/3z-receptor agonists [113, 114, 116]. About 10 years ago we demonstrated in 
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guinea pigs that the fl2-receptor agonist terbutaline given systemically or by the 
inhaled route effectively prevented the development of pulmonary edema in- 
duced by subsequent exposure to histamine [114]. This protection might have 
been via effects on bronchial microvessels, because later studies have demon- 
strated that terbutaline reduces plasma leakage from the tracheobronchial mi- 
crocirculation [113]. fl2-receptor mediated antipermeability effects on airway 
mucosa and microvessels {42, 113] in asthma remain to be examined. 

Mediator Antagonists 

A pharmacologic mediator antagonist is by definition effective with some speci- 
ficity only against 1 type of mediator. Thus, antihistamines, leukotriene antago- 
nists, PAF-acether antagonists, and tachykinin antagonists among others will 
specifically antagonize leakage produced by corresponding agonists. Since the 
leakage-regulating endothelial cells of postcapillary venules harbor specific re- 
ceptors for a large variety of inflammatory mediators, it cannot be expected 
that a single mediator antagonist alone could produce an acceptable antileakage 
response in inflammation. 
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