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Plasma lipidome is dysregulated in Alzheimer’s
disease and is associated with disease risk genes
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Abstract
Lipidomics research could provide insights of pathobiological mechanisms in Alzheimer’s disease. This study explores

a battery of plasma lipids that can differentiate Alzheimer’s disease (AD) patients from healthy controls and determines

whether lipid profiles correlate with genetic risk for AD. AD plasma samples were collected from the Sydney Memory

and Ageing Study (MAS) Sydney, Australia (aged range 75–97 years; 51.2% male). Untargeted lipidomics analysis was

performed by liquid chromatography coupled–mass spectrometry (LC–MS/MS). We found that several lipid species

from nine lipid classes, particularly sphingomyelins (SMs), cholesterol esters (ChEs), phosphatidylcholines (PCs),

phosphatidylethanolamines (PIs), phosphatidylinositols (PIs), and triglycerides (TGs) are dysregulated in AD patients

and may help discriminate them from healthy controls. However, when the lipid species were grouped together into

lipid subgroups, only the DG group was significantly higher in AD. ChEs, SMs, and TGs resulted in good classification

accuracy using the Glmnet algorithm (elastic net penalization for the generalized linear model [glm]) with more than

80% AUC. In general, group lipids and the lipid subclasses LPC and PE had less classification accuracy compared to the

other subclasses. We also found significant increases in SMs, PIs, and the LPE/PE ratio in human U251 astroglioma cell

lines exposed to pathophysiological concentrations of oligomeric Aβ42. This suggests that oligomeric Aβ42 plays a

contributory, if not causal role, in mediating changes in lipid profiles in AD that can be detected in the periphery. In

addition, we evaluated the association of plasma lipid profiles with AD-related single nucleotide polymorphisms (SNPs)

and polygenic risk scores (PRS) of AD. We found that FERMT2 and MS4A6A showed a significantly differential

association with lipids in all lipid classes across disease and control groups. ABCA7 had a differential association with

more than half of the DG lipids (52.63%) and PI lipids (57.14%), respectively. Additionally, 43.4% of lipids in the SM class

were differentially associated with CLU. More than 30% of lipids in ChE, PE, and TG classes had differential associations

with separate genes (ChE-PICALM, SLC24A4, and SORL1; PE-CLU and CR1; TG-BINI) between AD and control group.

These data may provide renewed insights into the pathobiology of AD and the feasibility of identifying individuals

with greater AD risk.

Introduction
Alzheimer’s disease (AD) is the most common cause of

dementia, accounting for about 70% of total cases1. This

progressively neurodegenerative disease is characterized

by an insidious onset and is clinically defined by a pro-

gressive loss of memory and other cognitive deficits. AD

has become one of the major challenges for the public

health and economic system of the 21st century. There is

still no international consensus on the etiology of this

multifactorial disease, in which in addition to proteino-

pathies, oxidative stress, inflammation, metabolic dis-

order, and other factors play a part2–4.

The lack of effective treatments and the potential for

prevention highlight the importance of identifying early
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biomarkers for diagnosing AD. In addition, there is evi-

dence that pathological processes associated with AD can

also manifest in the peripheral system5, indicating the

possibility of identifying non-invasive blood biomarkers.

Lipids participate in important functions such as cell

membrane formation, cellular transport, and energy sto-

rage, and act as essential signaling molecules. Beyond

their structural roles, lipids have also been shown to act as

modulators of transmembrane proteins, such as ion

channels, whereby alteration of the composition or con-

formation of lipids surrounding ion channels can affect

their function6,7. Given the essential role of lipids in major

biological processes, blood lipids have emerged as pro-

mising biomarkers for AD8–10.

Although there have been many studies on the asso-

ciation between lipids and the pathobiology of AD, there

are few studies on the plasma lipidome in AD. In contrast

to classical biochemical approaches that focus on single

metabolites or reactions, lipidomics approaches simulta-

neously identify and quantify hundreds of lipids. Mea-

surement of large numbers of lipids enables network

analysis approaches and provides means to identify cri-

tical metabolic drivers in disease pathophysiology. Lipi-

domics provides powerful tools for mapping global

biochemical changes in disease and treatment.

In our current study, we examined differences in the

plasma lipidome between AD and ‘healthy’ age-matched

controls and compared the ability of different lipid pro-

files to discriminate between the two groups. We also

showed that human astroglioma cultures exposed to

pathological levels of amyloid-beta (Aβ)42 oligomers

shared similar cellular lipidomic profiles to those observed

in human plasma AD. We explored the effect of AD

polygenic risk scores and AD-related SNPs on plasma

lipid levels between AD and controls.

Method
Participants

Participants were a subsample from the population-

based longitudinal Sydney Memory and Ageing Study

(Sydney MAS)11, an ongoing study that began in 2005 and

focuses on cognitive decline in community-dwelling

elderly. Participants were aged 70–90 years, initially

without dementia, living in the community, and able to

complete their assessments in English. There have been

four Waves of data collection, two years apart. At each

Wave, participants underwent an MRI scan, comprehen-

sive neuropsychological assessment, medical examination,

and blood collection for biochemistry analyses and DNA

extraction. Written informed consent was obtained from

all participants. In this study, AD (diagnosed by NINCDS-

ADRDA criteria) and cognitively normal control samples

were collected at Waves 2 and 4. Ethics approval for this

study was obtained from UNSW Sydney Australia and the

South-Eastern Illawarra Area Health Service—Eastern

sector11. The investigators were blinded to sample allo-

cation during the study and outcome assessment.

Plasma lipid extraction

Plasma lipids were extracted as previously described12.

Briefly, 10 µL internal lipid standards (ISTDs) (Avanti

lipids, https://avantilipids.com/product/330707) were

added to 10 µL aliquot of each plasma sample. 100 µL of

1-butanol-Methanol (1:1 v/v) containing 5 mM ammo-

nium formate were used to dissolve the mixture. Samples

were vortexed for 10 s then sonicated for one hour.

Afterward, samples were centrifuged at 13,000 × g for

10 min. The supernatant was transferred into a fresh

Eppendorf tube. A further 100 µL of 1-butanol/methanol

(1:1 v/v) with 5 mM ammonium formate was added to the

white pellet to re-extract any remaining lipids. The

supernatant was dried in a speed vacuum centrifuge for

40–60 min. The lipids were reconstituted by adding

100 µL of 1-butanol/methanol (1:1 v/v) containing 5mM

ammonium formate to each tube. The contents were

transferred into a 300 µL glass Chromacol vial with a glass

insert prior to liquid chromatography/mass spectrometry

(LC–MS).

Liquid chromatography/mass spectrometry

Lipid analysis was performed by LC ESI-MS/MS using a

Thermo QExactive Plus Orbitrap mass spectrometer as

previously described12. Briefly, a Waters ACQUITY UPLC

CSHTM C18 1.7 μm, 2.1 × 100mm column was used for

liquid chromatography at a flow rate of 260 gl/min, using

the following gradient condition: 32% solvent B to 100%

over 25min, a return to 32% B and finally 32% B for 5min

prior to the next injection. Solvents A and B consisted of

acetonitrile: MilliQ water (6:4 v/v) and isopropanol:acet-

onitrile (9:I v/v) respectively, both containing 10mM

ammonium formate and 0.1% formic acid. The first 3min

of eluent, containing the eluted salts, was diverted to waste.

A product ion scan in positive and negative ion modes was

performed to analyze the individual lipid species. The

order of sampling was randomized prior to analysis. Cer-

amide (Cer), sphingomyelin (SM), phosphatidylcholines

(PC), phosphatidylethanolamines (PE), phosphatidylinosi-

tol (PI), lyso-phosphatidylcholines (LPC), cholesterol esters

(ChE), diacylglycerol (DG) and triacylglycerols (TG) were

detected. The abundance of lipids was acquired using

Lipidsearch software version 4.2 (Thermo Fisher Scientific,

Sydney, NSW AU) according to accurate lipid mass and

fragment matching12. The LC–MS data were exported into

Microsoft Excel and normalized by dividing the abundance
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of internal standards to be used for further statistical

analyses.

Cell lipidomics

Cell culture

U251 human astroglioma cell lines were purchased

from the ATCC. These cells were cultivated in Roswell

Park Memorial Institute (RPMI) 1640 Medium supple-

mented with 10% fetal bovine serum, 1% 1-glutamax, and

1% antibacterial/antifungal. The cells were recently tested

and found to be mycoplasma-free using the MycoAlert

Mycoplasma Detection Kit (Lonza). The cells were grown

at 37 °C in 95% humidified air and 5% CO2. The culture

medium was replaced every 2 days. U251 cells were see-

ded in a 12-well microtitre plate and given treatment

when cells were nearly at confluency (0.5 × 106 cells per

well). Groups for evaluation are as follows: 6 wells con-

taining naive U251 cells with no treatment (control) for

24 h, and 6 wells containing U251 cells treated for 24 h

with 5 µM oligomeric Aβ42 (see below for further details).

Preparation of recombinant Aβ42 peptide

Aβ42 peptide was purchased from Recombinant Peptide

Technologies (Athens, GA, USA). The peptide was

immediately stored in sealed glass vials at −80 °C in a

lyophilized form. Consistent homogenous preparations of

recombinant Aβ42 oligomers or fibrils for use in cell

culture stimulation experiments were obtained following

a previously published protocol13. To avoid condensation

upon opening, each vial was left at room temperature for

30min prior to resuspension. Using 1,1,1,3,3,3-hexa-

fluoro-2-propanol (HFIP; Sigma, Castle Hill, Australia),

the lyophilized peptide was initially dissolved to 1mM

and separated into 50 μl aliquots in sterile microcentrifuge

tubes. Aliquots were left for 3 h in a fume hood, which

allowed almost complete evaporation of HFIP. The

resulting peptide films were further dried under vacuum

using a Speed Vac (ThermoSavant, Patterson, CA, USA).

This procedure is important as HFIP evaporated Aβ will

form fibrils if exposed to moisture in the air, hence it is

paramount to store HFIP evaporated Aβ films in desic-

cant. These preparations were then stored at −20 °C until

required.

Production of recombinant Aβ42 oligomers

Each HFIP aliquot of the peptide film was thoroughly

resuspended to 5mM in anhydrous dimethyl sulfoxide

(DMSO; Sigma, Castle Hill, Australia) via pipette mixing,

followed by 10-min bath sonication (Model: FX8, Uni-

sonics, Sydney, Australia). Oligomers were formed by

adding ice-cold Dulbecco’s modified Eagle medium/Ham

F-12 without phenol red (Sigma, Castle Hill, Australia) to

a final concentration of 100 μM. Following a 30 s vortex,

the preparation was incubated at 4 °C for 6 weeks for the

formation of Aβ42 oligomers.

Cell lipidomics

Samples were collected using a cell scraper to 1 mL PBS

solvent. After centrifuging 5 min at 13,000 × g, cell pellets

were collected and reconstituted in 110 µL MilliQ water.

10 µL of cell solution was used for protein assay and the

rest was used for lipid extraction. Lipids extraction and

LC–MS methods were the same as plasma lipids, which

were described above. 10 lipid classes including Cer, SM,

PC, PE, PI, LPC, lyso-phosphatidylethanolamines (LPE),

ChE, DG, and TG were detected.

Quantification of oligomeric Aβ

Oligomeric Aβ was quantified as previously described14.

Briefly, plasma samples were thawed at 37 °C for 15min.

Afterwards, 10 μl of plasma, 4 μl of HAMA (human anti-

murine antibody, HAMA) blocker (Scantibodies Labora-

tory, Santee, CA, USA), were mixed. 10 μl of PBR-1 (1%

proprietary+ 1.25% dimethyl sulfoxide (DMSO)+

96.75% phosphate-buffered saline contains Tween 20

(PBST)+ 1% ultra-pure water) were further mixed into

the plasma mixture. The mixtures were incubated for 48

and 1 h, respectively. The plasma sample mixture and

serially diluted standards were added to separate wells of

the plate in a total volume of 100 μl. The plates were

incubated at RT for 1 h. The detection antibody was

added to the wells, and the plate was incubated for 1 h at

RT. Finally, 100 μl of 3,3′,5,5′-tetramethylbenzidine

(TMB) reagent was added as a substrate, and after 15 min,

the reaction was stopped with 50 μl of 1M H2SO4. Optical

density (OD) values were measured using the BMG

Fluostar Optima multimode plate reader (NY, USA), at a

wavelength of 450 nm. Prior studies using this method

detected the raw luminescence signal and used relative

luminescence units (RLU) to present the oligomeric Aβ

levels15.

Genotyping

DNA was extracted using standard procedures. Geno-

typing of the APOE ε2/3/4 polymorphism was performed

as described16. Genome-wide genotyping was undertaken

using the Affymetrix Genome-wide Human SNP Array

6.0 (California, USA) at the Ramaciotti Centre, UNSW

Australia17. The CRLMM package (v1.10.0) in R (v2.12.1)

was used to call genotypes. SNPs were excluded if the

genotyping call rate was <95%, had a minor allele fre-

quency <0.01 or if they failed a Hardy–Weinberg equili-

brium threshold of <1 × 10−6. After further QC checks,

there were 925 Sydney MAS participants with data for

734,550 SNPs. Imputation was undertaken to the 1000

Genome reference panel using the Michigan Imputation
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Server. SNPs with poor imputation quality were omitted

from any further analyses (R2
≤ 0.6).

Polygenic Risk Scores (PRS) and AD implicated SNPs

PRS were generated using the PRSice program18 from

summary statistics obtained from a previous Alzheimer’s

disease GWAS19. Linkage disequilibrium pruning was

performed using the clumping option (r2 > 0.25 and

physical distance threshold of 250 kb KB). We present the

association of lipids with the PRS calculated using the

SNPs with the AD GWAS p-value threshold ≤5 × 10−5.

Associations between 33 individual AD-related SNPs20

that passed QC checks (SNPs with MAF > 0.05 and

imputation quality >0.6) and lipids were also undertaken.

Details regarding the SNPs and their associated genes

utilized in the analyses are provided in Supplementary

Table 1.

Statistical methods

Comparison of lipids between AD and controls

Inverse normal transformed residuals for the individual

lipids and group lipids were obtained after regressing out

the effect of possible confounders: age, sex, BMI, diabetes

status, hypertension status, medication status for hyper-

tension and hyperlipidemia, APOE e4 carrier status,

education, and current smoking status. This transformed

data was used in all subsequent analyses. T-tests were

used to compare the mean value of lipids residuals

between AD and controls. We used a significance

threshold of 0.05 after False discovery rate (FDR) cor-

rection for all comparisons. Fold change (FC) was calcu-

lated as the ratio of the average lipids abundance in AD

and controls. T-tests were also applied to compare lipid

abundance between Aβ treated and untreated cells.

Between-group comparisons are done assuming unequal

variance between groups with an approximation for

degrees of freedom.

Classification of AD vs. Control using GLMnet

We used a machine-learning algorithm, glmnet (elastic

net penalization for the generalized linear model [glm]) to

classify AD versus control samples. A combination of two

penalty functions with two tuning parameters was utilized

to shrink the beta coefficients in the glm21. R (version

3.5.1)22 package caret23 for fitting the elastic net glm

model with default options was used to identify the

optimum values for the tuning parameters.

For classification analysis, the data were randomly split

into 70% training and 30% test samples maintaining the

proportion of cases and controls in the training and test

samples as in the full dataset. For the training data, the

algorithms were run with three cross-validations with five

repeats. To avoid bias due to a single random split of the

original data, we have repeated the analysis 10 times and

the results were summarized over the 10 iterations.

The glmnet classification accuracy was examined based

on several subgroups of the lipid species. The receiver

operating curve (ROC) and area under ROC (AUC) were

obtained using the R package pROC24. Average sensitivity

(proportion of AD cases predicted by the model in the test

data), specificity (proportion of controls predicted by the

model in the test data), and the AUC across 10 iterations

are reported.

Genetic variation and lipid profiles among AD vs. controls

Linear regression was used to examine the association

of AD risk variants and AD PRS with the lipids. The

inverse normal transformed lipid residuals were used as

the dependent variable and individual SNPs or PRS, case-

controls (CC) status (AD vs. controls), and the relevant

interaction term (CC × SNP or CC × PRS) were used as

independent variables. Differential association of the AD

risk variants and the PRS with lipids among cases and

controls were examined based on the significance of the

interaction term.

Results
Descriptive statistics

The sample comprised 82 plasma samples (40 AD

patients and 42 cognitively normal ‘healthy’ controls) from

the Sydney MAS cohort. The demographic information of

participants is displayed in Table 1. The AD patients were

significantly older than the controls with all aged more

than 75 years old. There were no gender differences

between the 2 groups (χ2= 1.233, p= 0.267). As expected,

cognitive scores on the Mini-Mental State Examination

(MMSE) were significantly lower in AD patients. Educa-

tion levels, which represent a protective factor for AD were

measured in years and showed no statistical difference

between the AD and control groups. AD and controls did

not differ in vascular risk factors, including frequency of

hypertension, diabetes, and current smoking status. Car-

riers of the APOE*4 allele, a strong genetic risk factor for

AD risk, were more common in AD patients than controls,

although this did not reach statistical significance (AD

37.5% vs. control 19%, χ2= 3.457, p= 0.063). The elevated

levels of oligomeric Aβ in the plasma distinguished the AD

and control groups and were associated with increased

MMSE, in patients with AD.

Comparison of lipids between AD and control patients

A total of 778 distinct lipid species from 9 lipid classes

were analyzed, including neutral lipids such as 14 cho-

lesteryl esters (ChE), 50 diglycerides (DG), 382 triglycer-

ides (TG); sphingolipids including 43 ceramides (Cer),

90 sphingomyelins (SM); and phospholipid subclasses

including 120 phosphatidylcholines (PC), 24 lyso-
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phosphatidylcholines(LPC), 38 phosphatidylethanola-

mines (PE), and 17 phosphatidylinositols (PI). The pro-

portion of lipids significantly different between AD and

controls according to each of the examined lipid classes

are shown in Fig. 1. Volcano plots were drawn according

to lipid fold changes of abundance comparing AD and

controls and FDR-corrected p values in for all individual

lipid species (see Fig. 2 and Supplementary Table 2).

Almost all ceramides were significantly different between

control and AD groups after adjustment for age, sex, and

vascular risk factors, even after multiple testing correc-

tions. Molecular profiles of the ceramidome showed that

dihydroxy Cer species comprising fatty acyls (18C) with 0

or 2 double bonds and all dihydroxy Cer with 19C were

significantly higher in AD. On the other hand, dihydroxy

Cer containing 16C or 18C with 1 double bond showed the

opposite results. Most monohydroxy and trihydroxy Cer

were significantly lower in AD subjects. Four AD positive

ceramides including Cer(d18:0_16:0), Cer(d19:1_24:0), Cer

(d18:0_23:0), and Cer(d18:2_25:0), and AD negatively

correlated ceramides: Cer(d18:1_23:0), Cer(t16:1_14:0),

Cer(m18:1_20:0), Cer(m18:0_22:0), and Cer(d19:1_22:0)

showed the largest fold changes (FC > 4). Sphingomyelin is

another type of sphingolipid. Most lipids in SM class

showed significantly lower levels in AD plasma. The lipids

with FC > 4 included SM(d35:4), SM(d34:1), SM(d31:1),

SM(d18:1_21:0), SM(t36:2), and SM(d40:4). In contrast,

SM(d41:1), SM(d41:4), and SM(d18:1_24:3) were largest

downregulated in AD.

In the AD cases, there was a higher abundance of PC

lipids compared to controls. They were comprised of very

short and short-chain fatty acyls except for PC containing

C15 without double bonds and C16 with 2 double bonds.

The largest fold changes were observed in PC(16:0_22:6),

PC(18:2_18:2), PC(18:0_20:4), PC(36:2), PC(16:1_22:5)

that showed upregulation in AD. PC (20:2_18:2) and PC

(38:7) showed lower plasma concentrations in AD. LPCs

with longer fatty acid chains tended to be lower in AD

patients. No LPC lipids differed significantly between

cognitively normal and AD groups. Most of PE lipids were

lower in AD-affected patients. Major PE lipids were

reduced in AD, including highly changed (FC > 4) PE

(16:0p_22:6), PE(18:0p_20:4), PE(16:0p_18:1), and PE

(18:0p_22:4). PE (18:0_18:1) was higher in plasma of

Alzheimer’s patients. PI showed an elevated abundance in

AD and the PI lipids, with PI (18:0_18:3) and PI

(18:1_20:4) the most significantly elevated in AD cases.

ChE (18:3), ChE (20:3), and ChE (22:3) showed the

largest fold changes. Consistent with the result of group

DGs, most DG lipids species were higher in AD patients,

including DG(16:0_18:3), DG(22:4e), DG(17:1_18:1), DG

(20:0_18:2), and DG(36:4e) with largest fold changes.

Most downregulated DGs include DG(18:1_20:4), DG

(16:0_18:1), and DG(18:0_18:1).

As well, around 30% of TG lipids were observed to be

higher in AD patients. The most upregulated TG lipids

include TG(18:1_17:1_18:3), TG(14:0_18:2_20:5), TG

(16:1_20:1_22:4), TG(60:10), and TG(18:1_18:1_22:5). On the

other hand, most of the long-chain polyunsaturated fatty

acid-containing TGs were reduced in AD compared to age-

matched controls. About 18% of plasma TG lipids are

decreased in AD patients, and TG(18:1_12:0_14:0), TG

(18:4_16:1_18:3), TG(16:0_20:4_22:6), TG(16:0_14:0_18:1),

and TG(16:0_16:0_16:0) showed the largest fold changes. We

Table 1 Characteristics of Alzheimer’s disease and control participants.

Healthy controls (n= 42) Alzheimer’s disease (n= 40) Difference

Age(years) 81.27(2.48) 86.72(5.03) t= 6.270, p < 0.01

Sex (males/females) 19/23 23/17 χ
2
= 1.233, p= 0.267

Oligomeric Aβ (OD value) 0.25(0.05) 0.40(0.10) t= 6.391, p < 0.01

Education (years) 11.30(3.59) 11.59(3.64) t= 0.363, p= 0.717

Body mass index 26.69(3.19) 25.45(3.72) t= 1.631, p= 0.107

Diabetes 7.10% 15% χ
2
= 1.294, p= 0.255

Hypertension 61.90% 77.50% χ
2
= 2.351, p= 0.125

Anti-hypertensive medication 60.00% 54.30% χ
2
= 0.249, p= 0.618

Anti-hyperlipidemia medication 64.30% 50.00% χ
2
= 1.709, p= 0.791

Current smoker 9.50% 5.00% χ
2
= 0.618, p= 0.432

APOE*4 carriers 19% 37.50% χ
2
= 3.457, p= 0.063

MMSE 28.21(1.58) 22.63(3.86) t= 8.557, p < 0.01

Continuous variables are expressed as means and standard deviations. Categorical variables are expressed as %.
APOE*4 apolipoprotein epsilon 4, MMSE Mini-mental state examination.

Liu et al. Translational Psychiatry          (2021) 11:344 Page 5 of 18



also identified suggestive group differences between almost

all species containing more than 2 double bonds. Nine lipid

groups calculated by summarizing all lipid species in the

same lipid class were compared between AD and controls

(Fig. 3 and Supplementary Table 3). Only the DG group was

significantly higher in AD (p= 0.009, mean of residuals:

Control: −0.276 ± 0.143, AD:0.290 ± 0.154). Other lipid

group’s lipids did not differ after adjusting for covariates.

Cell lipidomics

Results are plotted in Fig. 4. The concentration of oligo-

meric peptide used in this study is similar to that reported

from human CSF and human cell culture conditioned

medium25,26. Additionally, it also represents a concentration

closer to the levels found in brain25,26 offering a more phy-

siologic impression of the effect of Aβ oligomers on astrocyte

glial lipid profiles. SMs were significantly elevated in astro-

glioma cells treated with Aβ42 oligomers compared to non-

treated cells (p= 0.0015). No significant differences were

found in phospholipids except that the level of the PI group

was higher in the Aβ42 group (p= 0.041), which is consistent

with the result found in human AD plasma samples. Even

though PE and LPE were not significantly different between

treated and non-treated cells, the ratio of LPE/PE significantly

increased in Aβ42-treated astrogliomas (p value). TG was also

increased in the Aβ42 group (p= 0.005).

Classification of AD vs. Control using lipid profiles

Several models were used for the classification of AD

versus controls based on the plasma lipidome profile. The

glmnet package was used in all the analyses. The analyses

were repeated 10 times and results were summarized

Fig. 1 Proportion of lipids significantly different between AD and control in lipid classes. Overall pie chart presenting the number of lipids

measured in each lipid class. Separate pie charts describing the proportion of lipids with non-significant differences or significantly higher/lower in

AD versus controls for each lipid class. Cer ceramides, SM sphingomyelins, ChE cholesteryl esters, DG diglycerides, TG triglycerides, PC

phosphatidylcholines, LPC lyso-phosphatidylcholines, PE phosphatidylethanolamines, PI phosphatidylinositols.
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across the 10 iterations. The algorithms were run in turn

using the full list of individual lipids, all of the 9 subclasses

of lipids, and group lipids. The average sensitivity, speci-

ficity, and AUC of the test data are summarized in Table 2.

The ROC curves for the top 3 models, ChE, SM, and TG

are presented in Fig. 5 and resulted in good classification

accuracy with more than 80% AUC. In general, group

lipids and the lipid subclasses LPC and PE had less clas-

sification accuracy compared to the other subclasses.

SNPs and lipids with AD versus control

The associations of AD PRS and AD-related SNPs with

the lipidome were examined. The individual lipids that were

significantly different between AD and controls (n= 420)

were utilized to explore the association. No significant

association of AD PRS with lipids was observed after FDR

correction (Supplementary Table 4). However, the AD

PRS×CC interaction was nominally significant (p-value <

=0.05) for 57 lipid species (Table 3), which were mainly

Fig. 2 Volcano plots showing significant lipid species in the nine separate lipid groups. Each dot on the plot is a single lipid species. Horizontal

axis: fold change (in log2 scale); vertical axis: adjusted p-value (in log10 scale). Vertical dashed lines highlight log2 fold changes of −1 and +1, while a

horizontal dashed line represents a p-value of 0.05. Cer ceramides, SM sphingomyelins, ChE Cholesteryl esters, DG diglycerides, TG triglycerides, PC

phosphatidylcholines, LPC lyso- phosphatidylcholines, PE phosphatidylethanolamines, PI phosphatidylinositols.
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PCs, SMs, and TGs. Out of the 57 significant interactions,

only two PRS scores had marginal significant effects (p

value < 0.05). The same analysis was also repeated using 33

AD implicated individual SNPs recently identified in

another study20. All of these individual SNPs were found to

have different effects on a certain number of lipids between

AD and controls before adjustment for multiple testing.

Nominally significantly different associations of SNPs with

lipids between AD and controls are listed in Supplementary

Table 5.

We further explored the association of AD-associated

genes (n= 19) derived from the list of 33 SNPs with

lipids in each lipid class (Table 4). FERMT2 and

MS4A6A showed a significantly differential association

with lipids in all lipid classes across disease and control

groups. In addition, PC, SM, and TG lipids were dif-

ferentially associated with the largest number of AD-

related genes. The heatmap in Fig. 6 shows the pro-

portion of lipids in each lipid class having differential

associations with the AD-associated genes. ABCA7 had

a differential association with more than half of the DG

lipids (52.63%) and PI lipids (57.14%), respectively.

Additionally, 43.4% of lipids in the SM class were dif-

ferentially associated with CLU. More than 30% of lipids

in ChE, PE, and TG classes had differential associations

with separate genes (ChE-PICALM, SLC24A4, and

SORL1; PE-CLU and CR1; TG-BINI) between AD and

control group. Finally, we found 43 lipids that were

significantly associated with both the AD-related genes

and PRS (Table 5).

Discussion
In this study, significant differences in plasma lipids

between AD cases and controls were observed. In vitro

analyses demonstrated similar changes in astroglial cells

when treated with Aβ42. GLMnet algorithm was used to

distinguish AD from controls using different plasma lipid-

based models. SMs, ChEs, and TGs showed the greatest

accuracy in discriminant analysis with AUC of more than

80%. Finally, associations between AD case-control status

and genetic risk factors for AD were nominally significant

when examining lipid profiles.

Fig. 3 Residuals of group lipids in AD and control group. Cer ceramides, SM sphingomyelins, ChE cholesteryl esters, DG diglycerides, TG

triglycerides, PC phosphatidylcholines, LPC lyso-phosphatidylcholines, PE phosphatidylethanolamines, PI phosphatidylinositols. Dots in the plot

represent the residuals of group lipids in each participant. Residuals were obtained after regression out age, sex, BMI, diabetes status, hypertension

status, medication status for hypertension, and hyperlipidemia, APOE e4 carrier status, education, and current smoking status. T-tests were used to

compare the lipid differences between AD and controls. ns: no significance, *p < 0.05.
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Fig. 4 Normalized lipid group abundance in amyloid beta-treated astrocytes versus controls. Cer ceramides, SM sphingomyelins, ChE

Cholesteryl esters, DG diglycerides, TG triglycerides, PC phosphatidylcholines, LPC lyso-phosphatidylcholines, PE phosphatidylethanolamines, PI

phosphatidylinositols. T tests were used to compare lipids between two groups. ns: no significance, *p < 0.05, **p < 0.01.
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Identification of the roles of lipids associated with AD

Our study did not show a significant group ceramide

difference between AD and controls. However, we found

that most individual ceramides differed significantly

between these two groups. Molecular profiles of the cer-

amidome showed that dihydroxy Cer species, comprising

fatty acyls (18C) with 0 or 2 double bonds and all dihy-

droxy Cers with 19C, were significantly increased in AD.

On the other side, dihydroxy Cers containing 16C or 18C

with 1 double bond showed an opposite result. Most

monohydroxy and trihydroxy Cers decreased significantly

in AD subjects, which might suggest the opposite

pathobiology of different Cer subgroups. Ceramides are

essential for the maintenance of membrane structure

stabilization, cell-to-cell recognition, and secondary

messenger signaling27. Dysregulation of Cers has been

linked to cognitive decline and brain atrophy28. Higher

levels of serum ceramide were associated with increased

risk of AD compared to subjects with the lowest tertile of

serum ceramide levels in another study29. In addition,

even though the sum of SM lipids was not significantly

different between the two groups, we found that most

individual SM lipids were lower in AD plasma. Altered

sphingolipid metabolism has been associated with the

pathogenesis of several neurodegenerative diseases

including AD, and metabolic syndrome29–32. The

decrease in SM lipids has been shown to be strongly

correlated with parameters of insulin resistance, and lipid

metabolism, which are major risk factors for AD33. A

cross-sectional study (n= 26 NC, 26 AD) observed

reduced SM species in AD versus controls and long ali-

phatic chains (C22, C24) in particular 31, which is con-

sistent with our results.

We did not find any significant differences among group

PC lipids. However, the AD population tended to present

higher abundance in individual PC lipids comprising very

short and short-chain fatty acyls except for PC containing

C15 without double bonds and C16 with 2 double bonds.

Recent studies have demonstrated altered PC metabolism

in cognitively impaired elderly and AD patients9,34,35.

Similar to PC lipids, we did not observe significant

changes in group PE. About 24% of individual PEs were all

lower in AD patients, which is almost 2 fold of PEs that

were higher in AD. PE has been previously reported to be

significantly reduced in the brains of individuals with AD

and HD36. Since a multitude of neuropathological pro-

cesses can lead to a decrease in PC and PE, it is likely that

reduced levels of these phospholipids may be linked to the

observed neuronal loss. Increased activities of the Ken-

nedy pathway enzymes, phosphoethanolamine cytidylyl-

transferase, phosphocholine cytidylyltransferase, and PS

synthase have been previously reported to be elevated in

the diseased brain regions of patients with AD and PD34.

Contrary to the decreased trend of other phospholipids,

including PC and PE, we observed an opposite change in

PI in AD patients, with most of the individual PI lipids

higher in AD subjects. PI is another phospholipid that is

Table 2 GLMnet results of lipid models in the

classification of AD versus control.

Lipid models Sensitivity Specificity AUC

All_lipids 0.66 0.73 0.78

Cer 0.7 0.79 0.79

ChE 0.78 0.75 0.82

DG 0.72 0.69 0.76

LPC 0.49 0.62 0.58

PC 0.69 0.76 0.78

PE 0.58 0.5 0.57

PI 0.7 0.76 0.79

SM 0.71 0.78 0.83

TG 0.65 0.82 0.83

SM_TG 0.69 0.75 0.81

ChE_SM 0.7 0.81 0.79

ChE_TG 0.71 0.78 0.82

ChE_SM_TG 0.67 0.77 0.79

Cer ceramides, SM sphingomyelins, ChE cholesteryl esters, DG diglycerides, TG
triglycerides, PC phosphatidylcholines, LPC lyso-phosphatidylcholines, PE phos-
phatidylethanolamines, PI phosphatidylinositols, GLMnet elastic net penalization
for the generalized linear model.

Fig. 5 ROC of TG, ChE, and SM lipid models in the classification of

AD versus control by GLMnet. SM sphingomyelins, ChE cholesteryl

esters, TG triglycerides, GLMnet elastic net penalization for the

generalized linear model.
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Table 3 Nominally significantly differential association of the AD risk PRS with lipids between AD and controls control.

Lipid Beta.PRS Beta.PRS_CC SE.PRS SE.PRS_CC t.PRS t.PRS_CC Pval.PRS Pval.PRS_CC

Cer(d18:1_16:0) 0.197 −0.511 0.133 0.195 1.483 −2.624 0.142 0.011

Cer(t16:1_14:0) 0.268 −0.510 0.141 0.207 1.894 −2.461 0.062 0.016

ChE(22:5) −0.080 0.539 0.137 0.200 −0.583 2.690 0.562 0.009

PC(16:0_20:4) −0.107 0.495 0.144 0.211 −0.745 2.345 0.459 0.022

PC(16:0_20:5) 0.001 0.535 0.144 0.210 0.007 2.544 0.994 0.013

PC(16:0_22:6) 0.150 0.419 0.123 0.180 1.221 2.331 0.226 0.022

PC(16:2e_16:0) 0.089 −0.428 0.145 0.212 0.612 −2.018 0.543 0.047

PC(18:0_20:3) 0.131 0.433 0.135 0.198 0.973 2.187 0.334 0.032

PC(18:1_20:3) 0.025 0.441 0.143 0.209 0.174 2.108 0.863 0.038

PC(18:2_18:2) −0.005 0.415 0.138 0.202 −0.039 2.053 0.969 0.044

PC(34:0) 0.057 −0.510 0.142 0.208 0.404 −2.447 0.688 0.017

PC(37:2) 0.285 −0.488 0.147 0.215 1.942 −2.267 0.056 0.026

PE(16:0_20:3) −0.059 0.445 0.144 0.210 −0.413 2.117 0.681 0.038

PI(18:0_18:2) 0.026 −0.421 0.123 0.180 0.208 −2.346 0.836 0.022

PI(36:3) −0.163 0.603 0.148 0.217 −1.105 2.784 0.273 0.007

SM(d17:1_13:0) 0.353 −0.668 0.142 0.209 2.476 −3.200 0.016 0.002

SM(d17:1_18:3) 0.041 −0.405 0.134 0.196 0.303 −2.064 0.763 0.043

SM(d18:2_24:3) 0.240 −0.470 0.145 0.213 1.653 −2.207 0.103 0.030

SM(d32:4) 0.166 −0.585 0.134 0.197 1.233 −2.971 0.222 0.004

SM(d33:1) 0.095 −0.521 0.139 0.204 0.683 −2.551 0.497 0.013

SM(d34:2) 0.132 −0.416 0.141 0.206 0.933 −2.014 0.354 0.048

SM(d35:1) 0.204 −0.462 0.148 0.216 1.384 −2.134 0.171 0.036

SM(d36:3) 0.365 −0.568 0.146 0.213 2.506 −2.662 0.014 0.010

SM(d37:2) −0.012 −0.429 0.136 0.199 −0.090 −2.161 0.929 0.034

SM(d38:1) 0.006 −0.419 0.127 0.186 0.049 −2.250 0.961 0.027

SM(d38:2) 0.027 −0.458 0.137 0.200 0.197 −2.285 0.844 0.025

SM(d39:1) −0.031 −0.413 0.131 0.192 −0.240 −2.153 0.811 0.035

SM(d39:2) 0.108 −0.516 0.139 0.203 0.776 −2.539 0.440 0.013

SM(d40:1) 0.038 −0.453 0.135 0.198 0.283 −2.294 0.778 0.025

SM(d40:3) 0.118 −0.458 0.149 0.218 0.789 −2.098 0.433 0.039

SM(d41:4) −0.070 −0.397 0.135 0.198 −0.520 −2.003 0.605 0.049

SM(d42:1) 0.103 −0.435 0.138 0.202 0.746 −2.152 0.458 0.035

SM(d42:2) 0.028 −0.507 0.129 0.189 0.221 −2.688 0.826 0.009

SM(d42:3) 0.041 −0.494 0.140 0.205 0.296 −2.409 0.768 0.018

SM(d43:1) 0.106 −0.500 0.147 0.215 0.721 −2.328 0.473 0.023

SM(d43:2) 0.167 −0.606 0.140 0.204 1.200 −2.966 0.234 0.004

SM(d44:4) 0.019 −0.421 0.136 0.200 0.143 −2.107 0.887 0.038

SM(d44:5) 0.134 −0.575 0.131 0.192 1.028 −3.001 0.308 0.004

SM(d44:6) 0.054 −0.427 0.139 0.204 0.389 −2.092 0.699 0.040
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present in the membrane of almost all cell types and is

involved in mediating Ca2+ mobilization in response to

many hormones, neurotransmitters, and growth factors37.

Consistently, an animal study showed that lower levels of

plasma PC and higher plasma PI were correlated with

post-stroke cognitive impairment38.

We also found significant differences in ChEs between

AD and controls. ChE is produced in the plasma by the

conversion of fatty acids to cholesterol from PC by the

enzymatic activity of cholesterol acyl transferase

(LCAT)9,39. While free cholesterol can be taken up by

APOE containing liposomes (e.g. HDL) and is bound to

the outer particle surface, esterification enhances choles-

terol uptake within the interior of the lipoproteins and

enhances cholesterol transport through the bloodstream.

LCAT has a preference for highly unsaturated fatty acid

chain PC and can link the reduction in PC to dysregula-

tion of specific steps in cholesterol metabolism in AD40.

Another enzyme, acyl-coenzyme A can also esterify cho-

lesterol in other tissues. Inhibition of this enzyme has

been reported to reduce amyloid plaque load in the brain

of AD mice and improves cognitive outcomes41. Con-

sistent with our results showing a significant increase of

DGs in Alzheimer’s disease, previous studies have

demonstrated augmented levels of DGs in the frontal

cortex and plasma of AD patients42. DGs are important in

maintaining structural integrity and signal transduction42

The conversion of DGs to phosphatidic acid by DG kinase

has been reported to be decreased in the AD brain43. We

also found almost 2/3 plasma TG lipids in all significant

TG lipids were higher in AD subjects, even though the

abundance of group TGs were not different among dis-

ease groups. A longitudinal finding was reported in the

Honolulu-Asia Aging Study in which a 1SD increase in

TG levels during midlife significantly increased the risk of

dementia a quarter of a decade later44. The exploration of

the exact pathobiology of individual TG lipids is needed in

the future.

Relationship between plasma lipid profiles and the cell

lipidome exposed to oligomeric Aβ42 in vivo

Several studies have reported significant differences in

lipid profiles between plasma and postmortem brain tis-

sue45. The separation of the brain from the periphery is a

major challenge when examining the biological sig-

nificance of plasma lipids in Alzheimer’s disease since not

Table 3 continued

Lipid Beta.PRS Beta.PRS_CC SE.PRS SE.PRS_CC t.PRS t.PRS_CC Pval.PRS Pval.PRS_CC

SM(t18:0_24:2) 0.163 −0.509 0.143 0.209 1.145 −2.436 0.256 0.017

SM(t42:1) 0.240 −0.578 0.139 0.204 1.724 −2.832 0.089 0.006

TG(12:0_17:1_18:2) −0.122 0.473 0.144 0.211 −0.848 2.243 0.399 0.028

TG(12:0_18:2_18:2) −0.159 0.555 0.134 0.196 −1.191 2.832 0.237 0.006

TG(14:0_14:3_18:2) −0.136 0.470 0.143 0.209 −0.950 2.250 0.345 0.027

TG(14:0_18:3_18:3) −0.046 0.518 0.135 0.197 −0.345 2.623 0.731 0.011

TG(15:0_14:1_16:1) −0.048 0.463 0.129 0.189 −0.375 2.453 0.709 0.017

TG(15:0_16:0_20:5) −0.063 0.480 0.133 0.195 −0.474 2.464 0.637 0.016

TG(16:0_14:0_18:3) −0.142 0.468 0.138 0.202 −1.032 2.317 0.305 0.023

TG(16:0_14:1_16:1) −0.198 0.579 0.146 0.213 −1.360 2.711 0.178 0.008

TG(16:1_12:0_18:2) −0.046 0.421 0.142 0.208 −0.324 2.023 0.747 0.047

TG(16:1_20:5_20:5) 0.088 0.503 0.126 0.185 0.696 2.724 0.488 0.008

TG(18:3_14:1_18:2) −0.045 0.412 0.141 0.206 −0.319 1.999 0.751 0.049

TG(18:4_14:0_16:1) −0.155 0.616 0.143 0.209 −1.082 2.944 0.283 0.004

TG(18:4_16:0_20:4) −0.081 0.525 0.141 0.207 −0.571 2.533 0.570 0.013

TG(20:1_20:4_20:4) 0.304 −0.531 0.144 0.210 2.117 −2.524 0.038 0.014

TG(22:5_18:2_18:2) −0.078 0.454 0.147 0.215 −0.529 2.110 0.598 0.038

TG(33:4e) −0.160 0.651 0.137 0.201 −1.168 3.241 0.247 0.002

Marginal effect: Beta.PRS/SE.PRS/t.PRS/Pval. PRS: Beta coefficient/standard error/t statistics/p value of association between PRS scores and individual lipids.
Interaction effect: Beta.PRS_CC/SE.PRS_CC/t.PRS_CC/Pval.PRS_CC: Beta coefficient/standard error/t statistics/p value of differential association of PRS with lipids
between AD and controls control.
Cer ceramides, SM sphingomyelins, ChE cholesteryl esters, DG diglycerides, TG triglycerides, PC phosphatidylcholines, LPC lyso-phosphatidylcholines, PE
phosphatidylethanolamines, PI phosphatidylinositols.
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all lipids can be transported across the blood–brain bar-

rier. This separation may likely be compromised by age-

related changes in blood–brain barrier integrity, affecting

lipid and Aβ kinetics. To determine whether our observed

changes in the plasma lipidome were related to AD

pathology we also quantified the cellular lipidome in

human U251 astroglioma cell lines exposed to patho-

physiological concentrations of oligomeric Aβ42.

Astrocytes are important cells in the CNS and are

involved in various physiological aspects46. Neurons are

thought to be the main source of Aβ in the adult brain.

Moreover, the ability of neurons to generate cholesterol in

the adult brain is impaired during development. However,

astrocytes can produce cholesterol and transport it to

neurons with apolipoprotein E (apoE)47. ApoE is the

major genetic risk factor for sporadic AD. This has led to

the hypothesis that apoE regulates Aβ formation via

modulation of lipid raft functions48. Recently, astrocyte-

derived cholesterol has been shown to regulate Aβ for-

mation in vivo and influence processes involved in

inflammation and neurodegeneration49. In our study, we

quantified the sum of lipid classes when the astroglioma

cell line was exposed to subpathological amounts of oli-

gomeric Aβ42. We still found a similar trend of lipid

changes between plasma and cells treated with oligomeric

Aβ42. For example, SM, PI, and TG were significantly

higher oligomeric Aβ42-treated cells, and some SM, PI,

and TG species were upregulated in AD plasma. However,

no significant differences were observed between AD and

control in plasma and cells for other lipid groups. The

results in the cellular lipidome support findings that Aβ42
plays a contributory if not causal role in mediating

changes in plasma and cellular lipid profiles in AD.

The lipidome signature as a biomarker of AD

We also examined whether a battery of plasma lipids

can be used to discriminate AD patients from controls. All

individual lipids, 9 subgroup lipids, and group lipids were

used in the GLMnet algorithm. We observed that three

classification models, using either TG, ChE, and SM, had

significant power in discriminating AD from controls,

with >80% AUC. Additionally, individual lipids in TG,

ChE, and SM showed even higher AUC than group lipids.

Therefore, measurement of these group lipids using mass

spectrometry will provide renewed insight in the under-

lying mechanisms of AD and provide additional drug

targets. Taken together, our findings suggest that altera-

tions in both cholesterol and sphingolipid metabolism

may play an important role in the pathobiology of AD.

Table 4 Differential interaction of genes with lipids

between AD and control.

Genes Cer ChE DG PC PE PI SM TG

ABCA7 ✓ ✓ ✓ ✓ ✓

BIN1 ✓ ✓ ✓ ✓ ✓ ✓

CASS4 ✓ ✓ ✓ ✓

CD2AP ✓ ✓ ✓ ✓

CD33 ✓ ✓ ✓ ✓

CELF1 ✓ ✓ ✓ ✓ ✓

CLU ✓ ✓ ✓ ✓ ✓

CR1 ✓ ✓ ✓ ✓ ✓ ✓

EPHA1 ✓ ✓ ✓

FERMT2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

INPP5D ✓ ✓ ✓ ✓

MEF2C ✓

MS4A6A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NME8 ✓ ✓

PICALM ✓ ✓ ✓ ✓ ✓

PTK2B ✓ ✓ ✓ ✓ ✓

SLC24A4 ✓ ✓ ✓ ✓ ✓

SORL1 ✓ ✓ ✓ ✓ ✓

ZCWPW1 ✓ ✓ ✓ ✓ ✓ ✓

“✓”: ≥1 lipid in each lipid class were differentially associated with the named
gene between AD and controls.
Cer ceramides, SM sphingomyelins, ChE cholesteryl esters, DG diglycerides, TG
triglycerides, PC phosphatidylcholines, LPC lyso-phosphatidylcholines, PE phos-
phatidylethanolamines, PI phosphatidylinositols.

Fig. 6 Proportion of lipids significantly differentially associated

with AD-related genes. ABCA7 ATP binding cassette subfamily A

member 7, BIN1 bridging integrator 1, CASS4 Crk associated substrate 4,

CD2AP CD2 associated protein, CD33 sialic acid binding Ig-like lectin 3,

CUGBP elav-like family member 1, CLU clusterin, CR1 complement C3b/

C4b receptor 1, EPHA1 EPH receptor A1, FERMT2 FERM domain

containing kindlin 2, INPP5D inositol polyphosphate-5-phosphatase D,

MEF2C myocyte enhancer factor 2C, MS4A6A membrane spanning 4-

domains A6A, NME8 NME/NM23 family member 8, PICALM

phosphatidylinositol binding clathrin assembly protein, PTK2B protein

tyrosine kinase 2 beta, SLC24A4 solute carrier family 24 member 4,

SORL1 sortilin related receptor 1, ZCWPW1 zinc finger CW-type and

PWWP domain containing 1.
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Table 5 Overlap of lipids with significant association with SNPs and PRS scores.

Lipid Number of associated SNPs Most significant Pval.SNPs Gene (minimum Pvalue.SNPs) Pval.PRS_CC

Cer(d18:1_16:0) 3 0.009 CLU 0.011

ChE(22:5) 5 0.014 SORL1 0.009

PC(16:0_20:4) 1 0.045 CASS4 0.022

PC(16:0_20:5) 2 0.033 SORL1 0.013

PC(18:0_20:3) 1 0.027 MS4A6A 0.032

PC(18:1_20:3) 1 0.042 CELF1 0.022

PC(18:2_18:2) 1 0.007 FERMT2 0.044

PE(16:0_20:3) 1 0.005 CR1 0.038

PI(36:3) 1 0.002 INPP5D 0.007

SM(d17:1_13:0) 2 0.014 SORL1 0.002

SM(d17:1_18:3) 3 0.040 CLU 0.043

SM(d32:4) 3 0.008 MS4A6A 0.004

SM(d33:1) 5 0.021 CLU 0.013

SM(d34:2) 2 0.045 CLU 0.048

SM(d35:1) 1 0.012 MS4A6A 0.036

SM(d37:2) 4 0.014 CD2AP 0.034

SM(d38:1) 3 0.041 CLU 0.027

SM(d38:2) 3 0.022 CLU 0.025

SM(d39:1) 3 0.027 CLU 0.035

SM(d39:2) 3 0.027 CLU 0.013

SM(d40:1) 5 0.021 CLU 0.025

SM(d41:4) 1 0.028 MS4A6A 0.049

SM(d42:1) 2 0.013 MS4A6A 0.035

SM(d42:2) 5 0.012 MS4A6A 0.009

SM(d42:3) 3 0.044 ABCA7 0.018

SM(d43:1) 2 0.030 CD2AP 0.023

SM(d43:2) 1 0.032 CASS4 0.004

SM(d44:4) 3 0.016 CLU 0.038

SM(d44:5) 4 0.026 CLU 0.004

SM(t18:0_24:2) 3 0.022 MS4A6A 0.017

SM(t42:1) 5 0.023 MS4A6A 0.006

TG(12:0_17:1_18:2) 1 0.013 NME8 0.028

TG(14:0_14:3_18:2) 1 0.037 BIN1 0.027

TG(14:0_18:3_18:3) 3 0.003 NME8 0.011

TG(15:0_14:1_16:1) 1 0.032 NME8 0.017

TG(15:0_16:0_20:5) 2 0.048 BIN1 0.016

TG(16:0_14:0_18:3) 5 0.011 CLU 0.023

TG(16:0_14:1_16:1) 1 0.018 SORL1 0.008

TG(18:3_14:1_18:2) 2 0.035 ABCA7 0.049
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AD genetic risk, lipids, and AD

We examined the relationships between AD PRS and

the AD-associated lipids in our sample. Even though no

significant association was found after FDR correction,

we observed a number of lipid species that were nom-

inally differentially affected between AD and controls,

most of which were PC, SM, and TGs. Our data suggest

that these lipids might mediate the effect of several SNPs

linked to AD.

We also investigated individual AD-related SNPs and

lipid levels. Significant associations between AD-related

SNPs and individual lipids were only observed before FDR

correction. However, we found all SNPs having nominally

significant differential association with a certain number

of lipid species between AD and control group.

FERMT2 and MS4A6A genes showed a significantly

differential association with lipids in all lipid classes across

disease groups. FERMT2 is a member of the Fermitin

family of proteins, which are involved in cell–matrix

adhesion complexes. Shulman et al.50 validated the asso-

ciation of FERMT2 with AD risk after performing a gene

screen and in vivo studies in Drosophila melanogaster.

Their work showed altered expression of both FERMT2

and CELF1 homologs modulates tau neurotoxicity. It is

also upregulated in atherosclerotic plaques, which is a risk

factor for AD51. The correlation of FERMT2 with post-

stroke brain recovery52 and higher plasma PI in post-

stroke mice38 supports the relationship between FERMT2

and PI in our study, i.e. the PI class had the highest

proportion of lipids of differential association with

FERMT2 between AD and control. It has been hypothe-

sized that FERMT2 regulates APP internalization and

degradation53. For instance, FERMT2 silencing induces

increased amounts of full-length APP and by-products

and FERMT2 over-expression leads to a reduction of APP

and its related metabolites. Recently, a direct interaction

between FERMT2 and APP—through the F3 domain of

FERMT2 and the NxTY motif within APP’s intracellular

domain was reported54 and can influence axonal

growth55. Importantly, because amyloidogenic processing

of APP is dependent on lipid rafts, we postulate that the

effect of FERMT2 might be—at least in part—due to

alterations in lipid profiles which alter the accumulation

of full-length APP or its by-products within the growth

cone, impairing vesicle trafficking and/or cell adhesion.

MS4A6A is membrane-spanning 4-domains, subfamily

A, member 6A having been revealed to be associated with

cortical and hippocampal atrophy independent of glucose

metabolism and Aβ deposition56. The important asso-

ciation between MS4A6A and PI (57.14% had differential

association with MS4A6A) might indicate the involve-

ment of PI mediating MS4A6A’s effect on brain atrophy.

Another gene ABCA7 had an important effect on more

than 50% of lipids in the DG lipid class, but with little

influence on other lipid classes. DG metabolism and

cholesterol synthesis might be the key component linking

ABCA7 to Alzheimer’s onset. Increasing evidence has

demonstrated that ABCA7 deficiency exacerbates Aβ

pathology in vitro and in vivo models. In detail, ABCA7 is

involved in the microglial Aβ clearance pathway and

accelerated Aβ production57. ABCA7 may also mediate

the release of cellular cholesterol and phospholipids to

generate HDL. Human ABCA7 mediates the efflux of

both cellular cholesterol and phospholipids to apoA-I,

whereas mouse ABCA7 mediates only phospholipids but

not cholesterol efflux to apoA-I58. Both MS4A6A and

ABCA7 have been previously linked to the immune and

complement system59, lipid metabolism, and immune

system60, immune response and inflammation61, cytokine

signaling in immune system 62, cholesterol/lipid metabo-

lism, and immune and complement systems63.

CLU-encoded apoliprotein J associated with the clear-

ance of cellular debris and apoptosis, which was suggested

to be involved in Abeta-independent pathways as part of

the cascade leading to Alzheimer pathology64. In our

study, SM and PE were revealed to be associated with CLU

in the pathogenesis of AD. ChE lipids were differentially

associated with PICALM, SLC24A4, and SORL1 between

AD and control. PICALM has been associated with

reduced connectivity of the frontal gyrus with the hippo-

campus, as well as with the precuneus. The SLC24A4 gene

encodes the 24 solute carrier family member 4 protein,

which is a member of the K+-dependent Na+/Ca2+

exchanger protein family. These exchanger proteins are

Table 5 continued

Lipid Number of associated SNPs Most significant Pval.SNPs Gene (minimum Pvalue.SNPs) Pval.PRS_CC

TG(18:4_14:0_16:1) 1 0.045 ZCWPW1 0.004

TG(18:4_16:0_20:4) 3 0.011 CLU 0.013

TG(22:5_18:2_18:2) 4 0.017 NME8 0.038

TG(33:4e) 4 0.011 MS4A6A 0.002

Only lipids with significant differential associations with both PRS and SNPs were included in the table. The most significant p value of lipids association with SNPs of
the same gene was presented when the SNP had the most significant differential association with the lipid across AD and control.
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widely expressed in brain tissues, suggesting that SLC24A4

may play an important role in the nervous system. The

association of this gene with blood pressure in African

Americans suggests it may have relevance with AD

through vascular disease65. SORL1 belongs to the low-

density lipoprotein receptor family, binding ApoE and

lipoprotein lipase on membranes66. Decreased Sorl1 has

been identified as related to AD67. It is downregulated in

lymphoblasts and cortical pyramidal neurons of AD

patients. The mechanisms may include APP trafficking

and recycling68, Additionally, the association of SORL1

with risk of amnestic mild cognitive impairment (aMCI)

has been reported in the Han Chinese69. TG lipids were

correlated with BIN, which functions in clathrin-mediated

endocytosis and endocytic recycling, as does the AD risk

gene PICALM. DNA methylation of the BIN1 promoter

has been suggested as a possible epigenetic mechanism

influencing AD risk.

Several prior studies have been conducted to explore the

potential pathological roles of AD-related SNPs. A review of

GWAS-identified risk genes for AD found they were clus-

tered into three main molecular pathways: lipid metabolism,

immune function, and endosome vesicle cycling70. The

lipids that have shown marked differences between AD

versus controls which been directly and indirectly linked to

at least one of these mechanisms. The significant associa-

tions between lipid profiles and AD which were observed in

our study encouraged us to further explore the possible

mechanisms of lipids changes in AD patients.

Our results highlight that genetic pathway and SNPs

related to AD influence lipids that are associated with AD.

These results reinforce the importance of lipid metabolism

and dysregulation in AD. It also suggests inflammation,

ion channel modification, and Aβ pathways influence lipid

levels that are dysregulated in AD. While studies exam-

ining the exact mechanisms linking these SNPs with

reported lipid changes in AD patients are nascent in the

current literature, our results provide renewed insights on

potential lipid-related mechanisms in AD which may be

examined further in preclinical and clinical studies.

Limitations

Firstly, the sample size was around 40 each in the AD

and paired control group, which provides enough power

for analyzing 9 lipid classes. However, the strength of the

data is limited for examining a large number of individual

lipids. FDR correction was used to reduce the bias,

although a larger cohort is needed to replicate the findings.

Secondly, we did not subclassify AD to different stages.

In addition, we did not look at overlapping cerebral vas-

cular disease in AD patients because only 10 of 40 AD

subjects had MRI scanning. Therefore, future studies will

look at lipid differences between control, pure AD, and

mixed AD in the same stage.

Thirdly, our study is useful for exploring clinical bio-

markers of AD because plasma lipids are relatively easy to

extract. However, plasma lipids may also be affected by

damage to peripheral organs as well, which limits the

accuracy of any association between changes in plasma

lipid levels and brain pathology. The lipidomics of CSF or

post-mortem brain samples from AD patients will be

necessary to validate our findings in the future.

Conclusion
Our findings suggest that plasma lipids may differ-

entiate between AD and cognitively normal controls and

lipids models can be applied to discriminate the two

groups. In addition, AD-related SNPs may have a different

association with lipids between AD and controls and the

underlying mechanisms need to be explored further in the

future. In summary, our study provides evidence that

certain lipids may be involved in AD pathogenesis and are

associated with AD-related SNPs.
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