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ABSTRACT

Many hepatocellular carcinoma (HCC) patients suffer from late stages when 

diagnosed, leading to dismal prospects for cure. Improving the diagnosis and treatment 

of HCC remains a challenge. In this work, NMR-based metabolomic techniques 

were used to investigate the metabolic alterations of HCC patients from different 

pathological backgrounds. Metabolic improvement of clinical surgical treatments or 

transcatheter arterial chemoembolization (TACE) for recurrent or metastatic HCC 

was also evaluated. HCC was characterized by enhanced lipid metabolism and high 

consumption in response to liver injury. Expectedly, higher consumption of glucose 

and lactate production in TACE group confirmed that recurrent or metastatic HCC 
is more active in citric acid cycle and oxidative phosphorylation. However, TACE 

or surgical treatments did not immediately improve the metabolic profiles of HCC 
patients. Combining multivariate statistical analyses with univariate t-test, a series of 

characteristic metabolites were identified and served as biomarkers for discrimination 
of HCC patients in different pathological backgrounds. The relative metabolic pathway 

analyses help to get insight into the underlying biochemical mechanism and extend 

clinical relevance. Furthermore, algorithm of support vector classification was used 
to identify HCC and control subjects, and diagnostic sensitivity and specificity reached 
to 100% and 81.08% respectively by receiver operating characteristic analysis. It is 

concluded that NMR-based metabolomic analysis of plasma can provide a powerful 

approach to discover diagnostic and therapeutic biomarkers, and subsequently 

contribute to clinical disease management.

INTRODUCTION

Human hepatocellular carcinoma (HCC), with 

the third highest mortality, is one of the most common 

malignant tumors in the world. Most deaths from liver 

diseases are attributed to HCC [1]. Even though more 

than half of the cases come from China, a dramatically 

increasing incidence of HCC in the world has recently 

been reported in developed countries such as France, 

Japan, the UK, and the USA [2]. As an aggressive tumor, 

HCC is largely occurring on individuals with a previous 

liver disease. Although it can be clinically detectable by 

tissue-based histopathological evaluation and/or blood-

based biochemical assays, notably by expression of 

alpha-fetoprotein (AFP) in the blood of advanced cases. 

However, these standard approaches may be unqualified 
and suffer from a lack of both sensitivity and specificity 
for early diagnosis [3]. Many patients have had advanced 

HCC stages when diagnosed and the prospects for cure are 

dismal. Consequently, there is an urgent need to seek new 

biomarkers for accurate diagnosis of HCC.

Recently, metabolomics has been proved to be a 

highly successful approach that is capable of detecting 

metabolic changes under different pathophysiological status 

[4]. By measuring changes in metabolite concentrations in 

the biological tissues or biofluids, the mutagenicity and 
progression of a disease can be determined and monitored 

[5, 6]. Metabolomics based on nuclear magnetic resonance 

               Research Paper



Oncotarget47333www.impactjournals.com/oncotarget

(NMR) spectroscopy or mass spectroscopy could be 

used to identify biomarkers for specific pathological or 
physiological status. Metabolomic analysis of human tissues 

and biofluids has been increasingly used to unveil metabolic 
alterations associated with different cancer types, such as 

breast [7], kidney [8], lung [9], prostate [10], and colorectal 

cancers [11]. In the case of liver diseases, a number of 

studies have been focusing on the metabolic profiling of 
tissues or biofluids. Shariff et al. and Wu et al. respectively 

reported that a set of urinary metabolites (creatinine, 

carnitine, creatine, and acetone, etc) can be used to identify 

metabolic changes associated with HCC [12, 13] in 

Nigerian and Chinese populations. Apolito and colleagues 

performed tissue-based liquid chromatography-mass 

spectrometry to discriminate primary HCC from hepatic 

colorectal metastases via the changes of basic amino acids 

(arginine, citrulline, ornithine) [14]. Differential metabolites 

including alanine, leucine, and glucose have been identified 
to define hepatic tumorigenesis [15, 16]. Moreover, 
metabolic abnormalities have also been demonstrated by 

serum and plasma studies associated with the severity of 

liver disease. Fages et al. found sixteen metabolites in serum 

were significantly associated with HCC risk of a European 
prospective cohort [17]. Other studies show significant 
differences between compensated and decompensated 

cirrhosis, and between alcoholic cirrhosis and viral hepatitis 

[18–20]. The influence of hepatitis infection and potential 
liver damage were simultaneously assessed [21, 22]. To 

date, several NMR or mass spectrometry-based serum 

metabolomic studies have been conducted to study HCC 

[17, 19, 20, 23]. And discriminatory metabolic alterations 

in HCC patients could draw a basic conclusion that 

altered mitochondrial respiration and glycolytic pathways 

lead to altered metabolic profiles in tumor cells [24, 25], 
but the identified metabolites are not concordant across 
these studies. Hence, these identified metabolites need 

to be further validated, not only that, global metabolic 

evaluation need to be simultaneously explored and studied 

to see alterations in the clinical treatment response or in the 

prognoses associated with recurrence or metastasis of HCC.

In this work, we present plasma metabolic profiling 
via 1H NMR spectra of HCC patients from the different 

pathological backgrounds in comparison with healthy 

humans. Our aims are: (i) to depict the plasma metabolic 

characteristics of HCC patients for validation purpose; 

and (ii) to investigate potential metabolic alterations of 

postsurgical treatment and prognoses.

RESULTS AND DISCUSSION

Discrimination of metabolic profiles between 
control and HCC patients

A total of 168 spectra of plasma samples were 

acquired from different groups, including healthy controls 

(n = 60), HCC only subjects (n = 24), transcatheter arterial 

chemoembolization (TACE) for recurrence or metastasis 

of HCC subjects (n = 18), and surgery related HCC 

subjects (n = 33 for pre- and post-operative, respectively). 

The average NMR spectra of plasma samples from 

different pathological backgrounds are shown in Figure 1, 

and the resonance assignments are summarized in Table 

S1 in Supplemental Information. Plasma contains all 

of the low molecular weight metabolites including 

glucose, amino acids, organic acids, and metabolic 

intermediates and end-products. Some high molecular 

weight metabolites such as lipoproteins, fatty acids and 

phospholipids were also observed. NMR spectra of 

plasma under similar physiological conditions are highly 

reproducible, thus making them helpful for the diagnosis 

of diseased states.

Figure 1: Average 1H NMR spectra of plasma samples from different pathological backgrounds. (A) Healthy control; (B) 

TACE for recurrence or metastasis of HCC; (C) HCC only subject; (D) post-operative HCC subject. Keys for the assignments are shown 

in Table 2 and Table S1.
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Inspection of the 1H NMR spectra reveals some 

obvious metabolic changes in HCC patients (with- or 

without- treatments) compared to healthy controls. For 

example, significantly decreased LDL, VLDL, and 
lipid concentrations and increased acetate and lactate 

concentrations are observed, which is consistent with 

previous reports of both rat model and human HCC 

patients [19, 26]. Such observation is possibly due to 

enhanced lipid metabolism in response to liver injury 

caused by HCC. The increased levels of alanine, lactate, 

and pyruvate in intermediates of glycolysis and TCA 

cycle suggest high consumption of glucose by HCC 

in response to the stimulated aerobic glycolysis or the 

Warburg effect with conversion through pyruvate to 

alanine and lactate [27, 28]. Notably, higher consumption 

of glucose and lactate production in TACE group than 

any other groups implied that recurrence or metastasis 

HCC is more active in conversion of glucose to lactic 

acid during mitochondrial citric acid cycle and oxidative 

phosphorylation. Besides, the levels of several free amino 

acids such as isoleucine, leucine, tyrosine, and valine have 

been shown to vary with different HCC groups. However, 

the more precise and detailed information need to be 

confirmed by multivariate analysis.

Characteristic metabolites for HCC patients

Principal component analysis (PCA) was performed 

on the plasma 1H NMR data from different pair-wise 

groups to reveal trends and show clusters among the 

subjects. The PCA scores plots revealed an obvious 

separation between control (n = 60) and HCC patients 

(n = 24, without surgery or treatment) (Figure S1A), which 

implied abnormal metabolic pattern from HCC patients. 

Orthogonal projection to latent structure with discriminant 

analysis (OPLS-DA) was subsequently utilized to 
identify differential metabolites responsible for metabolic 

differences (Figure 2A). The reliability of OPLS-DA 
models could be evaluated by Q2 value and significant 
level of P value. Usually larger Q2 value described 

better reliability. To determine statistical significance for 
these selected metabolites, relative concentrations were 

compared by Student’s t-test analysis. As a result, seven 

selected metabolites were considered not significant and 
excluded in the final list of characteristic metabolites 
(Table 1). Lower levels of glucose, glycerophosphocholine, 
LDL, lipid, sphingosine, and VLDL, together with higher 
levels of lactate, and certain amino acids such as alanine, 

lysine, and valine were observed in HCC group than 

that of control, revealing high consumption of glucose 

in HCC subjects. Our results share some characteristic 

metabolites with some similar studies [17, 19, 25], 

including acetate, ethanol, glucose, etc. Meanwhile, some 

novel characteristic metabolites in the present work, such 

as alanine, hypoxanthine, sphingosine, etc., were also 

identified. It is suggestive that some kinds of population-
related metabolic alteration are associated with HCC state, 

but a series of biological behaviors caused by high glucose 

consumption have become a common feature. 

HCC patients’ metabolic responses to TACE and 

surgical treatments

To further investigate metabolic improvement 

of clinical treatment and prognoses associated with 

recurrence or metastasis of HCC, those patients who 

underwent TACE and surgical treatment were compared 

with control, respectively. As an intervention tool, 

treatment of TACE is often used in recurrent or metastatic 

liver cancer. Clearly, the TACE and control groups were 

separated into two classes along the first component on 
the PCA scores plots (Figure S1A in the Supplemental 

Information). The individual differences of TACE group 

seemed to be more significant than those of control group, 
suggesting different HCC states associated with recurrence 

or metastasis. However, the metabolic differences were 

still obvious (Figure 2B), implying unrecovered biological 

states of the TACE subjects. With regard to characteristic 

metabolites, higher levels of lactate, phenylalanine, and 

hypoxanthine and lower levels of glucose in TACE group 

gave the primary contribution to metabolic variations. 

Also, some other metabolites, including elevated levels 

of 3-hydoxybutyrate, acetone, pyruvate, succinate, 

isobutyrate, and the majority of amino acids  and decreased 

levels of ethanol, lipid, LDL and VLDL, demonstrated in 
the plasma of TACE group (Figure 2B).

According to Table 1, fifteen of the selected 
metabolites were sifted as characteristic metabolites 

for TACE subjects. Notably, an abnormally high lactate 

concentration (approximately 4-fold higher than control) 

was observed. Actually clinical reports from the medical 

staff show these subjects most suffer from advanced 

tumor stages. Therefore, their pathological states could 

be confirmed by enhanced glucose consumption and 
lactate production [29]. The amount of characteristic 

metabolites of TACE group was less than that of HCC 

group. Unfortunately, we failed to establish a reliable 

OPLS-DA model (Figure 2C) between HCC and TACE 
groups since this model exhibited a quite low Q2 value 

and no significant differences (P = 1). Possibly due to 

no statistically significant differences as shown in the 
PCA scores plots (Figure S1A). So it is suggestive that 

metabolic differences between control and TACE groups 

are more significant than that between HCC and TACE, 
along with more common metabolic features but little 

differences. However, when we compare the effects of 

different treatments, we observed a big difference.

The surgical treatment did not significantly improve 
the metabolic profiles of HCC patients (Figure S1B and 
Figure 3A). According to the OPLS-DA model, many 
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discriminatory metabolites were identified from post-
operative group (Figure 3A). Even after the confirmation 
via t-test (Table 1), there are still 27 metabolites left as 

characteristic metabolites. Such result indicated that 

plasma metabolome still demonstrated increased glucose 

processing through glycolysis to pyruvate and other 

intermediates in TCA cycle, as well as lipid biosynthesis 

and glutaminolysis at post-surgery [30]. The similar result 

was also get from comparison of pre- and post-operative 

subjects, where mixed differentiation demonstrated no 

essential difference (Figure S1C and Figure 3B). Although 

lactate and phenylalanine are identified, further t-test 

eliminates the latter (Table 1). It is puzzling because the 

surgery is supposed to relieve the activity of cancer cells. 

A possible cause is the time point of blood sampling, 

since the majority of post-operative blood samples were 

collected in 24 h after surgery. It is obvious that only one 

day is deficient to suppress tumor activity.
Analysis of TACE and post-operative subjects was 

also undertaken to investigate treatment-induced metabolic 

alteration (Figure S1D and Figure 3C). Significant 
differentiation was achieved. A series of discriminating 

metabolites were identified (right panel of Figure 3C) 
and some of them were confirmed by t-test screening 

(Table 1). Notably, increased production of lactate and 

pyruvate were observed in both TACE and post-surgery 

plasma comparing with control, possibly due to declining 

pyruvate into the citric acid cycle in mitochondria [27]. 

Actually, different levels of glucose consumption reflect 
the activity of tumor, suggesting that recurrence or 

metastasis of HCC shows a stronger vitality.

Metabolic pathways analysis

A MATLAB-based tool was used to draw the map of 
relative biochemical pathways [31], and the custom sub-

networks for HCC were created by using main substrate-

product pairs as defined by KEGG online database. In 
the HCC-related metabolic network (Figure 4), eleven 

biochemical pathways, including energy metabolism like 

glycolysis, biosynthesis of amino acids, metabolisms 

of amino acids, pyruvate, glycerolipid, sphingolipid, 

purine and butanoate, and TCA cycle, were involved in 

pathological changes of HCC patients. 

Figure 2: Scores and loading plots for determination of plasma metabolites responsible for the metabolic variations in 

different pair-wise pathological subjects via OPLS-DA analyses. (A) Control versus HCC groups (R2X = 52.2%, R2Y = 0.836, 

Q2 = 0.798, P < 0.0001); (B) control versus TACE groups (R2X = 58.5%, R2Y = 0.880, Q2 = 0.849, P < 0.0001); (C) HCC versus TACE 

groups (R2X = 48.1%, R2Y = 0.381, Q2 = -0.041, P = 1).
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Furthermore, by extracting the common characteristic 

metabolites from HCC only, TACE, and surgery groups, 

the involved metabolic pathways composed the insensitive 

response to clinical treatments (Figure 5). In general, there 

are 12 common characteristic metabolites (lipid is not 

shown here) and 11 corresponding pathways are involved, 

which indicate insensitivity after TACE or surgical 

treatment. Increased levels of 3-hydroxybutyrate involved 

Table 1: The relative concentrations of the characteristic metabolites in the plasma of HCC patients 

from different pathological backgrounds

Metabolite Abbr. Control HCC TACE Pre-surgery Post-surgery
low-density lipoprotein LDL 13.91 ± 3.21* 9.51 ± 1.93a 9.82 ± 2.40a 9.74 ± 2.77 10.26 ± 2.22a

very low-density lipoprotein VLDL 9.94 ± 4.04 6.58 ± 1.90a 6.45 ± 2.17a 6.64 ± 2.85 6.40 ± 2.22a

Isoleucine Ile 1.03 ± 0.13 1.20 ± 0.38a 1.14 ± 0.17 1.19 ± 0.20 1.20 ± 0.14 

Leucine Leu 1.15 ± 0.16 1.44 ± 0.62a 1.36 ± 0.22 1.29 ± 0.29 1.24 ± 0.19c

Isobutyrate IB 0.05 ± 0.02 0.08 ± 0.05a 0.08 ± 0.02 0.06 ± 0.04 0.06 ± 0.03a, b

Ethanol Eth 0.42 ± 0.23 0.27 ± 0.09a 0.23 ± 0.08a 0.66 ± 0.39 0.60 ± 0.31a, b

3-Hydroxybutyrate 3-HB 0.99 ± 0.16 1.76 ± 0.61a 1.72 ± 0.50a 1.57 ± 0.65 1.57 ± 0.86 a

Lactate Lac 7.90 ± 1.57 25.19 ± 10.38a 30.82 ± 10.36a 10.32 ± 1.77 11.60 ± 3.09a, b, c

Alanine Ala 1.13 ± 0.20 1.73 ± 0.60a 1.63 ± 0.36a 1.21 ± 0.39 1.12 ± 0.28a

Acetate Ace 0.16 ± 0.05 0.25 ± 0.04 0.24 ± 0.05 0.25 ± 0.08 0.24 ± 0.08a

Lipid Lipid 5.64 ± 1.64 3.93 ± 0.73a 3.96 ± 0.90a 4.21 ± 1.13 4.50 ± 1.01a

Glutamate Glu 2.93 ± 0.45 3.67 ± 0.40 3.29 ± 0.47 4.01 ± 0.87 3.74 ± 0.65a

Acetone Act 0.22 ± 0.09 0.29 ± 0.14a 0.33 ± 0.19a 0.27 ± 0.15 0.26 ± 0.20a

Acetoacetate AA 0.10 ± 0.02 0.13 ± 0.03 0.12 ± 0.03 0.14 ± 0.06 0.13 ± 0.06a, b

Pyruvate Py 0.09 ± 0.03 0.43 ± 0.32a 0.33 ± 0.16a 0.19 ± 0.12 0.17 ± 0.08a, b

Succinate Suc 0.05 ± 0.02 0.14 ± 0.06a 0.14 ± 0.05a 0.11 ± 0.10 0.11 ± 0.09a

Guanidinosuccinate GS 0.63 ± 0.12 0.68 ± 0.19a 0.67 ± 0.17 0.98 ± 0.47 1.05 ± 0.53a, b

N,N-Dimethylglycine DMG 0.06 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 0.11 ± 0.07 0.12 ± 0.08a, b

Creatine Cr 0.53 ± 0.13 0.75 ± 0.15 0.70 ± 0.15 0.78 ± 0.19 0.77 ± 0.14c

Malonate M 0.05 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 0.13 ± 0.10 0.16 ± 0.14a, b, c

Ethanolamine EA 0.12 ± 0.06 0.19 ± 0.05 0.21 ± 0.05 0.19 ± 0.13 0.21 ± 0.16a, b

Phosphocholine PC 0.67 ± 0.19 0.54 ± 0.14 0.52 ± 0.14 0.55 ± 0.16 0.51 ± 0.14a

β-Glucose β-Glc 16.35 ± 3.58 9.57 ± 6.06a 7.29 ± 4.30 17.81 ± 3.36 17.10 ± 2.38a, b

Trimethylamine N-oxide TMAO 0.62 ± 0.15 0.56 ± 0.20 0.48 ± 0.18 0.91 ± 0.24 0.92 ± 0.23a

Methanol Mol 0.39 ± 0.34 0.19 ± 0.05a 0.21 ± 0.10a 0.31 ± 0.15 0.25 ± 0.12a

α-Glucose α-Glc 11.30 ± 2.48 6.49 ± 3.90a 4.96 ± 2.70 12.23 ± 2.21 11.61 ± 1.40a, b

Glycerol G 2.63 ± 1.00 2.41 ± 0.56a 2.22 ± 0.30a 2.85 ± 0.73 2.74 ± 0.38a

Sphingosine Sph 0.09 ± 0.06 0.21 ± 0.02a 0.08 ± 0.04a 0.59 ± 0.06 0.18 ± 0.08a, b

cis-Aconitate Aco 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00a 0.03 ± 0.02 0.04 ± 0.01a, b

Tyrosine Tyr 0.14 ± 0.04 0.18 ± 0.06a 0.21 ± 0.07a 0.16 ± 0.09 0.19 ± 0.08a

1-Methylhistidine 1-MH 0.11 ± 0.05 0.13 ± 0.03a 0.14 ± 0.04 0.09 ± 0.09 0.10 ± 0.07 

Phenylalanine Phe 0.13 ± 0.05 0.33 ± 0.11a 0.36 ± 0.12a 0.19 ± 0.17 0.25 ± 0.14 a

Hypoxanthine HX 0.01 ± 0.00 0.09 ± 0.07a 0.11 ± 0.06a 0.05 ± 0.02 0.04 ± 0.02a, b

Formate For 0.04 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.09 ± 0.05 0.10 ± 0.05a, b

*The relative concentrations of metabolites are presented as mean ± SD of the integration value of the characteristic resonance 

of each metabolite.

Characteristic metabolite with P < 0.05 versus: a control group, b TACE, and c preoperative subjects. 
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in butanoate metabolism, indicate upregulation of the 

synthesis of ketone bodies. This results in the accumulation 

of acetyl-CoA and sequentially alters the TCA cycle, and 

purine, pyruvate metabolisms [32, 33]. Elevated alanine, 

phenylalanine, and tyrosine levels in HCC and TACE 

groups indicate that abnormal biosynthesis of amino acid 

metabolism still occurs even after clinical treatments. 

Others found these aromatic amino acids to be elevated in 

HCC patients with liver failure [19, 34], and their increases 

were attributed to high levels of biosynthesis precursors 

[35, 36]. Therefore, TACE or surgical treatment may fail to 

inhibit perturbation involved in tyrosine and phenylalanine 

metabolisms. In addition, lactate, which is also involved in 

pyruvate metabolism, is elevated in all HCC groups with 

different degrees (Figure 5). This finding represents a major 
difference in the interconversion of lactate and pyruvate. 

According to these features, pyruvate metabolism of these 

patients may have been disrupted in some way, but the 

treatments did not improve the disorders. This metabolic 

network suggested that these biochemical pathways should 

be targeted for the therapeutic purpose of HCC patients in 

clinical management.

Classification of HCC patients by plasma-
derived characteristic metabolites

The characteristic metabolites were fed back to 

explore the ability in classifying HCC and control subjects 

combining with support vector machines (SVM) via 
LIBSVM package. We randomly extracted 50% samples 
from each group as training sets and remainders were used 

as validation sets. The receiver operating characteristic 

(ROC) curve of support vector classification (SVC)-based 
prediction is shown in Figure 6, along with the overall 

performances including area under the curve (AUC) and 

the corresponding diagnostic sensitivity and specificity.
The AUC for a perfect case will be 1.000. No control 

sample was misclassified, making the sensitivity reach 
100% while specificity is only 81.08%. Besides, these 
results showed that SVC algorithm based on characteristic 
metabolites data sets performed robustly and again HCC 

patients have different metabolic profiles accountable for their 
biological properties. Moreover, the potential and extend of 

transforming characteristic metabolites to disease biomarkers 

still need to be tested in future clinical applications.

Figure 3: Score and loading plots for determination of metabolites responsible for plasma from groups of control, 

surgery, and TACE via OPLS-DA analyses. (A) Control versus post-operative group (R2X = 48.2%, R2Y = 0.841, Q2 = 0.792, 

P < 0.0001); (B) pre- versus post-operative group (R2X = 29.3%, R2Y = 0.298, Q2 = –0.150, P = 1); (C) TACE versus post-operative group 

(R2X = 45.7%, R2Y = 0.837, Q2 = 0.713, P < 0.0001).
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Figure 4: Schematic diagram of human HCC metabolic pathways. The metabolites in yellow backgrounds are the characteristic 

metabolites of HCC patients without surgery or TACE. The corresponding metabolic pathways are demonstrated in the dark blue ellipse 

and the names are identified by red box.

Figure 5: Schematic diagram of human HCC metabolic pathways that are not significant response to TACE or surgical 
treatments. Relative levels of characteristic compounds within these pathways are also shown. 1, 2, 3, and 4 stand for plasma samples taken 

from control, HCC only, TACE, and surgery groups, respectively. The metabolites in yellow backgrounds are the common characteristic 

metabolites in HCC-related plasma samples, and the corresponding metabolic pathways are demonstrated in the green box or circle.
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MATERIALS AND METHODS

Ethics statement and clinical subjects

This study was approved by the Ethics committee 

of Xiamen University. The human plasma samples were 

used in accordance with the guidelines of Zhongshan 

Hospital Xiamen University. We recruited 57 patients 

with HCC (33 patients underwent surgical treatment), 18 

patients underwent TACE (for recurrence or metastasis of 

HCC), and 60 healthy control subjects at the department 

of hepatobiliary surgery from April 2012 to May 2014. 

Following informed consent obtained from each subject, 

patients needed to fulfill the following inclusion criteria: 
(1) biopsy-proven HCC; (2) no infection by the human 

immunodeficiency hepatitis C viruses. HCC patients 
were diagnosed according to histological evidence or 

the combination of imaging techniques that showed this 

morphologic aspect plus an AFP level of 400 ng/mL or 
more. And the clinical information such as age, gender, 

and some important biochemical indexes for HCC patients 

and healthy subjects was presented in Table 2. The blood 

AFP, bilirubin and three enzyme levels correlating to liver 

function were measured on all subjects. The AFP levels 

were significantly higher in HCC than in control. Besides, 
associated HBV antibody was also noted in HCC patients.

Plasma sample collection and preparation

Venous blood samples were preprandially collected 
in the morning during routine clinical blood work 

using heparin tubes or citrate-rinsed tubes. During this 

procedure, blood samples from HCC patients underwent 

surgical treatment were collected before and after 

surgical treatment, respectively. Plasma was separated 

by centrifugation at 1,000 g at 4ºC for 10 min and then 

immediately stored at –80 ºC until further analyses. Before 

NMR analyses, the plasma samples were thawed at room 

temperature, and 400 μL of aliquots were mixed with 

200 μL of D
2
O-prepared phosphate-buffered saline (PBS, 

pH = 7.4) and centrifuged at 10,000 g for 10 min at 4ºC. 

Subsequently, 550 μL of the supernatant was transferred to 

a 5 mm NMR tube, and NMR acquisition was immediately 

performed.

1H NMR spectroscopy

The 1H NMR measurements of plasma samples were 

performed using a 500 MHz Varian NMR spectrometer 
equipped with a triple resonance probe, operating at a 1H 

frequency of 499.74 MHz. The experimental temperature 

was set to 293 K and the 90° pulse length was calibrated 

individually for each sample. Standard 1D 1H spectra 

were acquired with a Carr-Purcell-Meiboom-Gill (CPMG) 

Figure 6: Classification of healthy controls and HCC patients based on plasma-derived characteristic metabolites. The 

ROC curve of SVC classifier, as well as the sensitivity, specificity, AUC, and diagnostic reference line are shown.



Oncotarget47340www.impactjournals.com/oncotarget

spin-echo pulse sequence with relaxation time of 2 s and 

acquisition time of 1 s. A total of 128 scans with a spectral 

width of 10,000 Hz were collected into 64 K data points 

for all NMR experiments. 

Data preprocessing and pattern recognition

All free induction decays (FIDs) were multiplied 

by a 1.0 Hz exponential line broadening factor prior to 

Fourier Transformation. The collected NMR spectra were 

manually phased and baseline corrected using the software 

MestReNova (version: 8.1.2, Mestrelab Research S.L., 
Spain) and referenced to the CH

3
 resonance of lactate at 

δ1.33. The peaks of metabolites observed in the plasma 1H 

NMR spectra were assigned with reference to published 

data [36, 37] and confirmed by HMDB database [38]. 
The regions of δ2.47–2.74, δ4.40–5.30, and δ5.70–5.90 

were excluded to remove the effects of citrate, urea and 

variation in residual water. Subsequently, the spectra were 

divided into regions of 0.002 ppm and integrated in the 

region of 0.50–9.00 ppm. To account for variations in 

sample concentration, the spectra were normalized to the 

total sum of the spectrum before multivariate statistical 

analysis. 

Protocols for statistical analysis have been described 

previously in full by Li et al. [39]. Briefly, PCA and OPLS-
DA were carried out using SIMCA-P + v14.0 (Umetrics, 

Sweden). Data used in PCA were mean-centered scaled 

while in OPLS-DA were Pareto scaled. The optimal number 
of orthogonal components for building OPLS-DA models 
was selected using a 15-fold cross validation procedure. 

The goodness of fit and prediction parameters of OPLS-DA 
models, R2 and Q2 were calculated, and the corresponding 

probability (P-value) of significant difference between 
the pair-wise groups were obtained by CV-ANOVA. 

Visualization of results was based on score plots of the 
first two components, and a correlation coefficient of 
|r| > 0.45 was used as the cut-off value for determination 

of characteristic metabolites with significance level of 
P < 0.05 according to Student’s t-test analysis. 

Finally, the associative characteristic metabolites 

were fed back to identify HCC and control subjects by 

combining with SVM via LIBSVM package (Machine 
Learning and Data Mining Group) [40]. Since only about 
a dozen of metabolites were involved, SVM algorithm 
proposed by Vapnik was suitable for such small-sample 
problems [41]. The task of LIBSVM was SVC algorithm. 
Such algorithm aims to construct optimal hyper-plane in a 

higher dimensional space that maximal margin two classes 

according to the input data sets. The type is C_SVC with 
kernel function of the radial basis function. Automatic 

optimization parameters together with leave-one-out 

cross-validation were utilized to predict unknown samples 

and evaluate the reliability of SVC models.

CONCLUSIONS

In this study, NMR-based metabolomic techniques 

were used to identify the characteristic metabolic profiles 
of plasma from HCC patients in different pathological 

backgrounds. High consumption of glucose was revealed 

in HCC patients along with large amount of intermediates 

and end-products from aerobic glycolysis. Most of the 

characteristic metabolites were consistent with previous 

studies except the addition of some novel discoveries. 

A series of biological behaviors caused by high glucose 

consumption have become a common feature in HCC 

patients. Patients underwent TACE seem to be more 

discriminatory from control than other HCC patients, 

which is consistent with that TACE treatment was targeted 

Table 2: Clinical information for healthy humans and HCC patients
Parameters Control HCC TACE Pre-surgery Post-surgery

Number 60 24 18 33 33

Age 58.5 ± 11.0 57.3 ± 3.3 60.5 ± 8.7 50.1 ± 4.2 50.1 ± .2

Male/Female 36/24 20/4 15/3 27/6 27/6

AFP value (ng/mL) 22 ± 1.1 463.2 ± 199.8 55387.5 ± 5399.5 62105.4 ± 2840.6 15865.3 ± 1103.9

HBsAg (positive %) - 100 89 50 50

ALP (IU/L) 72.0 ± 18.3 154.3 ± 20.3 124.8 ± 18.4 152.5 ± 22.3 129.8 ± 17.4

ALT (IU/L) 18.0 ± 6.4 73.6 ± 11.4 97.1 ± 23.8 120.0 ± 23.1 56.5 ± 9.7

AST (IU/L) 22.0 ± 10.4 74.5 ± 13.3 154.2 ± 54.0 151.2 ± 58.7 81.9 ± 13.2

D-BIL (µmol/L) 2.5 ± 1.2 7.1 ± 1.2 11.0 ± 4.4 12.9 ± 4.7 5.9 ± 0.8

T-BIL (µmol/L) 9.2 ± 3.2 21.6 ± 4.9 14.6 ± 2.4 22.5 ± 5.3 14.3 ± 2.2

Data are presented as mean ± SE.

Abbreviations: AFP, alpha-fetoprotein; HBsAg, hepatitis B surface antigen; ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate transaminase; D-BIL, direct bilirubin; T-BIL, total bilirubin.
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at advanced subjects in clinical practice. The key response 

of surgery was revealed by an overall increase in energy 

metabolism. However, the TACE and surgical treatments 

didn’t immediately induce obvious improvement in 

metabolic profiles. The corresponding metabolic pathway 
analysis vastly extends clinical relevance and effects of our 

proposed biomarkers. We are also aware that these results 

should be validated by a larger cohort of samples, and 

that external validations are essential to test the clinical 

validity of characteristic metabolites-derived classification 
models. The short interval of blood sampling after surgery 

is likely to expose one of the limitations of this study, and 

the confirmation should be contained in further work.
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