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Introduction: Motoric cognitive risk syndrome (MCR) is characterized by

subjective cognitive complaints (SCCs) and slow gait (SG). Metabolomics and

lipidomics may potentiate disclosure of the underlying mechanisms of MCR.

Methods: This was a cross-sectional study from the West China Health and

Aging Trend cohort study (WCHAT). The operational definition of MCR is the

presence of SCCs and SG without dementia or mobility disability. The test and

analysis were based on untargeted metabolomics and lipidomics, consensus

clustering, lasso regression and 10-fold cross-validation.

Results: This study enrolled 6,031 individuals for clinical analysis and 577

plasma samples for omics analysis. The overall prevalence of MCR was

9.7%, and the prevalence of MCR-only, assessed cognitive impairment-only

(CI-only) and MCR-CI were 7.5, 13.3, and 2.1%, respectively. By consensus

clustering analysis, MCR-only was clustered into three metabolic subtypes,

MCR-I, MCR-II and MCR-III. Clinically, body fat mass (OR = 0.89, CI = 0.82–

0.96) was negatively correlated with MCR-I, and comorbidity (OR = 2.19,

CI = 1.10–4.38) was positively correlated with MCR-III. Diabetes mellitus had

the highest ORs above 1 in MCR-II and MCR-III (OR = 3.18, CI = 1.02–9.91;

OR = 2.83, CI = 1.33–6.04, respectively). The risk metabolites of MCR-III

showed relatively high similarity with those of cognitive impairment. Notably,

L-proline, L-cystine, ADMA, and N1-acetylspermidine were significantly

changed in MCR-only, and PC(40:3), SM(32:1), TG(51:3), eicosanoic acid(20:1),
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methyl-D-galactoside and TG(50:3) contributed most to the prediction

model for MCR-III.

Interpretation: Pre-dementia syndrome of MCR has distinct

metabolic subtypes, and SCCs and SG may cause different metabolic

changes to develop MCR.

KEYWORDS

motoric cognitive risk syndrome, pre-dementia, subjective cognitive complaint, slow
gait speed, metabolomics and lipidomics, cross-sectional study

Introduction

Dementia is a chronic disease with high medical cost-
burdens to society and now ranks as the 7th leading cause
of mortality worldwide (Gauthier et al., 2021). Approximately
55 million people are suffering from dementia, which is
estimated to increase to 152 million in 2050 (Gauthier
et al., 2021), although less than 25% globally are diagnosed,
especially as low as approximately 10% diagnosis rates in
the lower-income countries (Semba et al., 2020; Gauthier
et al., 2021). Dementia has a long preclinical stage of
several years to decades before subtle cognitive alterations
are detectable (Semba et al., 2020). Early identification of the
increased risk individuals for future dementia, may offer timely
treatment, since disease-modifying strategies for dementia like
Alzheimer’s disease are almost unavailable worldwide. Motoric
cognitive risk syndrome (MCR), characterized by subjective
cognitive complaints (SCCs) and slow gait speed (SG) in
the absence of mobility assistance and dementia, was first
proposed and validated as a pre-dementia syndrome in 2013
by Verghese et al. (2012, 2014). The prevalence of MCR was
10% in older adults worldwide (Maggio and Lauretani, 2019;
Meiner et al., 2020).

Motoric cognitive risk syndrome has received increasing
attention (Verghese et al., 2012, 2013; Ayers and Verghese,
2016; Wang et al., 2016; Maguire et al., 2018), and previous
studies provide figures and data further justifying this
pre-dementia syndrome. In a study consisting of 26,802
samples has showed that MCR increases two-fold incidence
of cognitive impairment (aHR 2.0) (Verghese et al., 2014).
MCR increases the incidence of falls and post-fall fractures
(Beauchet et al., 2019), hospitalization, disability (Doi et al.,
2017), and mortality in older adults (Yuan et al., 2021).
MCR patients have poorer performance in global cognitive
performance by the Mini-Mental Status Examination, Free
and Cued Selective Reminding Test, Frontal Assessment
Battery and Trail Making Test parts A and B (Sekhon
et al., 2017; Maguire et al., 2018). The risk factors of MCR
include aging, low education, cardiovascular diseases, obesity,
physical inactivity, anxiety-depressive disorders (Meiner et al.,
2020), small cerebral vessel diseases (Wang et al., 2016), and

frailty (Sathyan et al., 2019). Increased levels of interleukin-
6 and C-reactive protein have also been observed in MCR
patients (Bortone et al., 2021). Compared with healthy
controls, MCR patients have lower gray matter volume in
the prefrontal and premotor cortexes, and higher levels
of lacunar lesions in the frontal lobe (Sekhon et al.,
2019), which are related to motor planning and modulation
(Blumen et al., 2019).

Previous studies indicated that the dysregulation of
specific lipids and amino acids is associated with cognitive
declines (Semba et al., 2020). However, the metabolomics
and lipidomics disorders caused by MCR is still less
studied. Here, we performed plasma metabolomics
and lipidomics investigations on MCR, preliminarily
providing insights into MCR metabolic mechanisms and
signatures.

Materials and methods

Study design of the West China Health
and Aging Trend cohort study and the
sample selection

This was a cross-sectional study, and the data came from
the ongoing prospective West China Health and Aging Trend
cohort study (WCHAT), which was initiated in 2018. The
Ethical Review Committee of West China Hospital approved
WCHAT [Permission number: 2017(445)], and it was registered
on the Chinese Clinical Trial Registry [ChiCTR1800018895]
(Hou et al., 2021). All procedures were conducted along the
principles of the 1964 Declaration of Helsinki guidelines and
its amendments. In brief, WCHAT originally recruited 7,536
community-dwelling residents. Most of the participants were
over 50 years old, 37.47% were males, and 62.53% were females.

Specifically, the WCHAT study recruited 7,536 community
residents. After excluding 60 persons under 50 years old, 22
people with dementia or severe cognitive impairment, 617
individuals with ADL assistance and 806 persons with missing
MCR diagnostic information, 6,031 participants were finally
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retained for subsequent epidemiological analysis. This study
included 577 plasma samples for metabolomics analysis from
participants who were willing to attend the follow-up visit,
and the subjects with severe diseases were excluded. Moreover,
to ensure the reliability of the metabolomics and lipidomics
analysis, we recruited as many subjects with MCR as possible.

Evaluation of motoric cognitive risk
syndrome

The operational definition of MCR was the presence of
SCCs and SG but without dementia or mobility disability,
as proposed and validated by Verghese et al.’s (2012, 2014),
Maggio and Lauretani (2019), and Stephan et al. (2020).
The diagnosis of present MCR was described elsewhere
in detail (Sun et al., 2022). Dementia was identified by
self-and/or proxy-reported previous diagnoses by physicians.
Additionally, we excluded probable dementia which was
classified as severe cognitive impairment using the 10-item
Short Portable Mental Status Questionnaire (SPMSQ) (Pfeiffer,
1975). Mobility disability was defined by Activities of Daily
Living (ADLs) assistance. The SCCs were based on standardized
questionnaire items: (1) the Geriatric Depression Scale (GDS):
“Do you feel that you have more problems with memory
than most?” (endorsed response: yes) (Stephan et al., 2020);
(2) In the past month, have memory problems affected your
daily activities? (endorsed response: yes). Gait speed was
obtained by measuring the normal pace of walking speed
over 4 m. SG was determined by having a walking speed
greater than or equal to 1 standard deviation (SD) below
the average of age- and sex-specific values, to overcome
population and program variability (Capistrant et al., 2014).
The present cognitive impairment group (CI) was defined as
having mild or moderate cognitive impairment by the SPMSQ
(Pfeiffer, 1975).

Metabolomics and lipidomics

Trained professionals collected three tubes of fasting
peripheral blood from participants in the morning. Routine
blood tests were performed on the same day. The plasma
samples were centrifuged at 14,000 g at 4◦C for 20 min, and
the supernatants were used to extract hydrophilic metabolites
and lipids. 13C6 L-Lysine hydrochloride powder (Silantes)
and 13C6

15N4 L-Arginine hydrochloride powder (Silantes)
were used to monitor the extraction efficiency of hydrophilic
metabolites. PE (16:0-D31-18:1) was used to monitor the
extraction efficiency of lipids. The hydrophilic metabolites were
extracted with pre-cooled methanol (Yuan et al., 2012), while
the lipids were extracted according to the method of Bligh and
Dyer (1959).

Untargeted metabolomics and lipidomics were carried
out at the Facility Center of Metabolomics and Lipidomics
of Tsinghua University (Patti et al., 2012; Hakimi et al.,
2016; Tang et al., 2016). A BEH amide column (Waters,
United States) and a BEH C18 column (Waters, United States)
were used for metabolomics analysis under positive and negative
ion modes, respectively. A CORTECS C18 column (Waters,
United States) was used for lipidomics under positive mode.
Pooled quality controls (QCs) were inserted for every 15–20
injections of plasma samples. Polar metabolites were assigned
using Tracefinder (Thermo, CA, United States) based on an
in-house database. Standard MS/MS spectra of over 1,500
metabolites were included in the database. Lipids were identified
using Lipidsearch (Thermo, CA, United States) software. Only
lipids with reliable MS/MS were used for the following statistical
analyses.

Bioinformatics analysis

The metabolites and lipids were extracted in the same
batch. Moreover, the samples were continuously analyzed by
mass spectrometry. Some metabolites were deleted, including
those with missing values NA >20% and CV (Coefficient of
Variation of QC samples) >30%. To normalize the metabolite
intensity, we first calculated the average total intensity of
all samples, and then divided the total intensity of each
sample by the average total intensity of all samples to get a
coefficient. Finally, the measured intensity of each metabolite
was divided by the coefficient for the corresponding sample
to obtain the normalized intensity of each metabolite in that
sample. The lipidome and the metabolome data obtained in
positive acquisition mode, and the metabolome data obtained in
negative acquisition mode, were filled the blank with half of the
minimum intensity of metabolites in all samples. The intensity
values were log2-transformed to reduce skewness and stabilize
the variance. Statistical analyses were conducted using R version
4.1.0 or SPSS software version 26 (IBM Corporation, Chicago,
IL, United States).

The Kolmogorov-Smirnov test was used to test the normal
distribution of the continuous variables, while the Mann–
Whitney U test was utilized for difference analyses and the
median ratio value was calculated, when the metabolomic
and lipid data were abnormally distributed (p < 0.05).
Logistic regression was used for risk analysis adjusted for sex
and age. Linear regression was used for the correlation of
continuous variables. The Kruskal-Wallis test was used for
the comparison of multiple groups. Consensus clustering of
metabolomics and lipidomics data was carried out to determine
the metabolic subtypes of participants with MCR (R package:
ConsensusCluster Plus). Lasso was used to select metabolic
characteristics and establish a regression model to predict MCR-
III. A 10-fold cross-validation was performed, and the minimum
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lambda value plus standard error was selected as the best
lambda to solve the model overfitting problem (R package:
glmnet, s = lambda.1 s). The contribution of each metabolite
in each prediction model was defined by the coefficient:
Contribution = abs(coefficient)/sum[abs(coefficient)] (Liang
et al., 2020).

Results

Epidemiological and clinical features of
motoric cognitive risk syndrome

The overall prevalence of MCR was 9.7% (n = 582), while
15.4% (n = 929) of participants suffered from CI. In the
clinical subgroups, 454 participants (7.5%) were diagnosed
with MCR-only, 801 (13.3%) with CI-only, 128 (2.1%) with
concurrent MCR and CI (MCR-CI), and 4,648 participants
(77.1%) without MCR or CI (Neither) (Figure 1A). Overall,
CI patients constituted 22.0% of MCR, while MCR patients
accounted for 13.8% of CI, which were in line with other
studies (Sekhon et al., 2017). In demography, the mean
ages sequentially increased among Neither (61.7 ± 8.1),
MCR-only (64.1 ± 7.7), CI-only (64.4 ± 8.9) and MCR-CI
(66.9 ± 9.1) groups, while the marriage rates successively
decreased. Female numbers prevailed in the four groups
(Figure 1B and Supplementary Table 1). The prevalence of
MCR and CI significantly differed by ethnicity (Supplementary
Table 1) (Liu et al., 2020). Additionally, the distribution of
a group of biological and clinical factors was significantly
divergent among the Neither, MCR-only, CI-only and MCR-CI
groups (Supplementary Table 1). Multiple logistic regressions
adjusted for age and sex were further analyzed. The significantly
correlated factors with specific subgroups differed among
the MCR-only, CI-only and MCR-CI groups. Low activity,
obesity, low handgrip strength, diabetes mellitus and stroke
were positively associated with MCR-only, while cholesterol
and high-density lipoprotein (HDL) were negatively associated
with it. For CI-only, it had positive associations with low
activity, malnutrition risk, and depression. Similar to CI-
only, we found that MCR-CI was positively correlated with
low activity, low handgrip strength, malnutrition risk and
depression (Figure 1C), in agreement with the previous reports
(Beauchet et al., 2020).

To verify whether MCR had a higher incidence of CI
than the healthy Neither group, we partially completed the
4-year follow-up of WCHAT in 2021, and 1983 participants
were available for epidemiological analysis. We found that the
prevalence of MCR-only, CI-only, and MCR-CI was higher in
2021 than in 2018 (Figure 1D). Moreover, the incidence of CI
(13.58%) in MCR-only people was higher than that (11.23%)
in Neither group, which was initially healthy people in 2018
(Figure 1E).

Metabolic characterization of motoric
cognitive risk syndrome

To investigate the metabolic characteristics of MCR,
metabolomics and lipidomics profiling were carried out in 577
plasma samples, with 82 in MCR-only, 66 in CI-only, and 19
in MCR-CI. In total, we identified 345 hydrophilic metabolites
and 231 lipids. PCA of the metabolome and lipidome data of the
samples and the QCs showed high data quality (Figures 2A,B).
Logistic regression analysis of the metabolites after adjusting for
sex and age identified 24, 72, and 45 differential metabolites
in the MCR-only, CI-only, and MCR-CI groups, respectively
(p < 0.05). All risk metabolites of MCR-only and the top
25 risk metabolites of CI-only and MCR-CI were shown
in Figures 2C–E and Supplementary Tables 4–6. L-Proline
(OR = 1.46, CI = 1.15–1.85), and L-cystine (OR = 1.37,
CI = 1.06–1.79) were positively associated with MCR-only, while
asymmetric dimethylarginine (ADMA) (OR = 0.67, CI = 0.51–
0.88), and N1-acetylspermidine (OR = 0.69, CI = 0.53–0.88)
were negatively associated with it. Triglycerides (TG, 50:2)
(OR = 1.71, CI = 1.27–2.32) and hexylresorcinol (OR = 0.55,
CI = 0.40–0.73) had the highest and the lowest ORs for CI-only,
respectively. For MCR-CI, TG (52:2) was the only positively
correlated, and PE(38:3) had the lowest OR. Further overlapping
analysis showed that the risk metabolites of MCR-only were
different from those of CI-only and MCR-CI, but the metabolic
changes induced by MCR-CI and CI-only were relatively closer
(Figure 2F). This indicated that MCR-only had a distinct
metabolic profile.

Metabolic stratification of motoric
cognitive risk syndrome

Omics studies show that the same diagnosed diseases
may have distinct molecular profiles (Mapstone et al., 2014).
To identify whether MCR-only has distinguishing metabolic
subtypes, we performed unsupervised clustering analysis using
the top 25% most variable metabolites (144 metabolites) from
576 metabolites of 82 MCR-only participants. Consequently,
three subtypes, MCR-I, MCR-II, and MCR-III were identified.
Multiple logistic regression further verified the clinical
discrepancy of these metabolic MCR subtypes compared with
healthy participants without MCR and CI (Supplementary
Table 3). The three subtypes shared five factors with the ORs
all below 1, including body mass index (BMI), short physical
performance battery (SPPB) score, skeletal muscle mass, total
body water and body minerals. Among them, the factor of
body minerals had the highest protective association with
these three subtypes, with ORs all below 0.3. Body fat mass
(OR = 0.89, CI = 0.82–0.96) was negatively correlated with
MCR-I, and comorbidity (OR = 2.19, CI = 1.10–4.38) was
positively correlated with MCR-III. Diabetes mellitus had
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FIGURE 1

Epidemiological statistics of motoric cognitive risk, cognitive functional impairment and comorbid motoric cognitive risk-cognitive functional
impairment. (A) A statistical analysis of the West China Health and Aging Trend study (WCHAT). 7.53% MCR-only, 13.28% CI-only, 2.12% MCR-CI
participants in WCHAT (n = 6,031). (B) Percentage of men and women in Neither, MCR-only, CI-only, MCR-CI. (C) Heatmaps showing
associated factors for MCR, CI, and MCR-CI. Red represents positive risk and blue represents negative risk. Significance is indicated by
“*”(*0.01 < p < 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001). (D) A statistical analysis of 1983 participants with MCR-only, CI-only, and MCR-CI in
2018 and 2021. (E) Incidence comparison between MCR-only and Neither for CI in the fourth year of follow-up.

the highest ORs for MCR-II (OR = 3.18 CI = 1.02–9.91) and
MCR-III (OR = 2.83 CI = 1.33–6.04) but it was not significant
for MCR-I.

To identify metabolic disparities among the three subtypes,
we screened out the differentially changed metabolites using
the Kruskal-Wallis test. A total of 124 metabolites were
significantly different among the three subtypes (False Discovery
Rate (FDR) <0.05) (Figure 3A), and consensus clustering
was used to divide them into four groups according to
the patterns of changes. The levels of triglycerides, which
occurred mainly in group 1 and group 4, were reported to
be closely associated with cognitive regulation (Figure 3B)
(van der Lee et al., 2018). In particular, triglycerides in group
1 were highly expressed in MCR-III (Figure 3A), and the
total carbon number of most of these triglycerides was less
than 53 (Figure 3B). In contrast, triglycerides in group 4
were highly expressed in MCR-I and MCR-II (Figure 3A),
and the total carbon numbers of most of them were above
54 (Figure 3B). Besides, more triglycerides, such as TG(56:9),
TG(58:5), and TG(58:6), contained unsaturated side chains in
group 4, which is consistent with previous findings that long-
chain polyunsaturated triglycerides (PUTGs) were significantly
reduced in the precursor stage of mild cognitive impairment
(MCI) and the reduction in PUTGs may be related to the early
changes in AD (Bernath et al., 2020). Group 2 was higher
in MCR-III, with metabolites including sphingomyelin and

ceramides. Elevated serum sphingomyelin and ceramide levels
have been reported to be associated with an increased risk of
AD (Wong et al., 2017). Aromatic amino acids and steroids
accounted for a large proportion in group 3 (Figure 3B).

Identification of the most harmful
motoric cognitive risk syndrome
subtype and metabolites

To identify the metabolic characteristics unique to the
three subtypes, especially MCR-III, we performed logistic
regression analysis within the MCR subtypes. Taking the
healthy Neither group as a reference, we identified 65 risk
metabolites for MCR-I, 75 for MCR-II, and 74 for MCR-III
(Supplementary Tables 7–9).

To determine the relationship between MCR subtypes
and cognitive impairment, we, respectively screened the
metabolites showing differences between MCR subtypes
and CI-total (which contains MCR-CI and CI-only)
using the Mann–Whitney U test. The metabolic and
lipidomic features of MCR-III were relatively more
correlated with CI-total than MCR-I and MCR-II
(Figures 3C–E), suggesting that metabolic MCR-III may
exacerbate cognitive decline and dementia more than other
subtypes.
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FIGURE 2

The metabolites with significant differences in motoric cognitive risk, cognitive functional impairment and comorbid motoric cognitive
risk-cognitive impairment. (A) PCA of the metabolome of samples and quality controls (QCs). (B) PCA of the lipidome of samples and QCs.
(C) The forest map showing the risk metabolites of MCR-only by logistic regression analysis (p < 0.05). There were 5 positive risk metabolites
and 19 negative risk metabolites. (D) The forest map showing the top 25 risk metabolites of MCR-CI by logistic regression analysis (p < 0.05).
There was 1 positive risk metabolite and 24 negative risk metabolites. (E) The forest map showing the top 25 risk metabolites of CI-only by
logistic regression analysis (p < 0.05). There were 11 positive risk metabolites and 14 negative risk metabolites. (F) Overlapping analysis of risk
metabolites of MCR-only, CI-only and MCR-CI. The metabolites in panels (C–E) are ranked by the crude odds ratios (OR). The segment of each
metabolite means 95% CI. Cer, ceramide; PC, phosphatidylcholine; LysoPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; LysoPE,
lysophosphatidylethanolamine; TG, triacylglycerol; SM, sphingomyelins; FA, fatty acid; ChE, cholesterol ester; GCDC, glycochenodeoxycholic
acid; ADMA, asymmetric dimethylarginine; Reduced NR, 1-(beta-D-ribofuranosyl)-1,4-dihydronicotinamide.

Overlapping analysis showed that 28 risk metabolites were
unique to the MCR-III subtype (Figure 4A). Next, we developed
a specific metabolic model to identify MCR-III participants out
of all MCR individuals. A random sampling of 50 discovery sets
(70% of samples) with replacement, and feature selection from
28 metabolic features unique to MCR-III, were used to build
LASSO regression models, which showed the best 10-fold cross-
validation performance for a given phenotype in the cohort. We
ran the model built in the discovery sets with the remaining
MCR participants as verification sets (n = 25), to measure
the independent performance of the metabolic model. Among
the 50 random metabolic models, the mean receiver operating

characteristic (AUROC) of the discovery sets was 0.9599 (AUC
range: 0.9000–0.9975), and the mean AUROC of the verification
sets was 0.8799 (AUC range: 0.7403–0.9936) (Figures 4B,C).

When the value of λ was one standard error plus the
minimum value, we analyzed the contribution of these
metabolites in the model. The metabolites of PC(40:3),
SM(32:1), TG(51:3), eicosanoic acid(20:1), methyl-D-
galactoside and TG(50:3) performed well and contributed
robustly in most of the 50 models (Figure 4D). Thereby, these
six metabolites can be used as key metabolites to distinguish
MCR-III from other MCRs. Then, we used them as eigenvalues
to establish a ridge regression model to predict MCR-III and not
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FIGURE 3

Three metabolic subtypes of MCR. (A) The heatmap shows the relative abundance (z score transformed) of the significantly changed
metabolites in three clusters (Kruskal-Wallis test, FDR <0.05). (B) Classification of metabolites into four groups. (C) The significantly changed
metabolites in both CI-total and MCR-I (Mann–Whitney U test, p < 0.05, Log2ratio >0.5 or Log2ratio <–0.5). (D) The significantly changed
metabolites in both CI-total and MCR-II (Mann–Whitney U test, p < 0.05, Log2ratio >0.5 or Log2ratio < –0.5). (E) The significantly changed
metabolites in both CI-total and MCR-III (Mann–Whitney U test, p < 0.05, Log2ratio >0.5 or Log2ratio <–0.5).

MCR-III. As above, 50 different discovery sets were randomly
selected to build 50 models. We found that the accuracy of the
model’s predictions was greatly improved. The mean AUROCs
value of both discovery sets and verification sets was above 0.9,
and the best AUROC value was above 0.98 (Figures 4E,F).

Metabolic features associated with
subjective cognitive complaint and
slow gait

Subjective cognitive complaints and SG are two key
components used to evaluate MCR. We assumed that the MCR
subtypes might have metabolic features similar to those of
SCCs and/or SG. To determine the association between MCR
subtypes and SG, we screened metabolites closely related to

walking speed. Linear regression analysis was adjusted for
sex and age. A total of 69 metabolites changed significantly
with the alteration of gait speed, of which 58 were positively
correlated and 11 were negatively correlated with gait speed
(Figure 5A). The 69 risk metabolites of SG could be classified
into ten categories (Figure 5B). Among them, sphingomyelins,
p-choline, ceramides, steroids, glycerophospholipids and
nucleotides increased with speed, while diglycerides decreased
with speed (Figure 5D). Overlapping analysis revealed the
largest number of common risk metabolites between SG and
MCR-II (Figure 5C). Notably, four risk metabolites of SG,
Hex1Cer(41:1), SM(38:3), SM(36:0), and SM(32:1), were also
risk metabolites of MCR-III.

Similarly, the logistic regression analysis revealed 13
metabolites associated with SCCs, of which seven were
positive and six were negative correlations (Figure 6A). When
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FIGURE 4

A metabolic model predicts MCR-III. (A) Overlapping risk metabolites of MCR-I, MCR-II and MCR-III. Shaded in blue are the risk metabolites
specific to MCR-III, which were used in subsequent modeling. (B) The 50 ROC curves of the training sets in lasso regression; the bold one is the
mean AUC of 50 times. (C) The 50 ROC curves of the test sets in lasso regression; the bold one is the mean AUC of 50 times. (D) Contribution
of the six metabolites to the prediction model of MCR-III or no. The error bar represents a 95% CI. (E) The 50 ROC curves of the training sets in
ridge regression; the bold one is the mean AUC of 50 times. (F) The 50 ROC curves of the test sets in ridge regression; the bold one is the mean
AUC of 50 times.

comparing them with the metabolites of MCR subtypes, we
found two overlapping metabolites between SCC and MCR-I,
none between SCCs and MCR-II, and four between SCCs and
MCR-III (Figure 6B). In detail, these four compounds were 2,5-
dihydroxybenzoic acid, oleamide, arachidonic acid(20:4) and
myristoleic acid (14:1). It is well known that subjective cognitive
complaints (SCCs) are currently considered a major feature of
mild cognitive impairment (MCI) (Mitchell, 2008). However,
only three common risk metabolites of CI and SCCs have been
found. We assume that SCC may not be severe enough to cause
significant metabolic alterations. As a result, we only obtained
13 risk metabolites for SCC. In contrast, 75 risk metabolites were
obtained for CI.

Discussion

Motoric cognitive risk syndrome, with the two components
SCCs and SG, is a stronger predictor of the cognitive decline

and dementia than either measure alone (Verghese et al., 2014).
Subjective cognitive complaints (SCCs) and slow gait speed (SG)
are two early indications of cognitive decline and dementia
(Semba et al., 2020). SCCs probably precedes MCI by up to
15 years (Reisberg et al., 2008), while the occurrence of the
decline in gait speed is 12 years ahead of MCI (Buracchio et al.,
2010). The pooled hazard ratios (HR) of MCR were 1.5 to 2.7
for cognitive impairment and 1.9 to 3.27 for dementia (95% CI,
1.75–2.39) (Verghese et al., 2012, 2014), but not all MCR will
develop into MCI, dementia, or even AD (Semba et al., 2020). It
has been reported that the prevalence of MCR varied in different
countries and/or regions, with 8.0% in Europe, 6.3% in Japan
and 7.0% in United States (Maggio and Lauretani, 2019). The
overall MCR prevalence of 9.7% in the present study was in line
with the pooled global prevalence of 9.7% estimated from 26,802
participants across 17 countries (Verghese et al., 2014).

Metabolomic platforms potentiate the detection of
hundreds of metabolites for the discovery of disease phenotypes.
However, multi-omics platforms have been barely used for
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FIGURE 5

Metabolic characteristics associated with slow gait. (A) The volcano map shows the metabolites associated with slow gait (linear coefficient,
p < 0.05). (B) Classification of the significantly changed metabolites with step speed. (C) Overlap analysis of metabolites associated with slow
gait and those associated with MCR-I, MCR-II, and MCR-III (logistic regression, p < 0.05). (D) The correlations between slow gait and 10 classes
of gait speed-associated metabolites are plotted with a Loess curve.

MCR investigation, which suggests the application of these
approaches to reveal the pathobiological mechanism of MCR.
Metabolomic investigations provided a number of clues in
identifying specific amino acids and lipids for the prediction
of cognitive decline (Li et al., 2019; Semba et al., 2020).
Additionally, early identification of the subpopulation of
MCR with the tendency of developing cognitive impairment,
dementia, or AD provides opportunities to give timely
preventive strategies (Verghese, 2021). Notably, MCR shares
connections but also has synergistic discrepancies with other
cognitive impairment syndromes, such as MCI, and the causal-
effective association between them remains to be elucidated
(Semba et al., 2020; Cheng et al., 2021). To exclusively focus
on MCR-only individuals, we rationally divided the population
into four groups, Neither, MCR-only, CI-only, and MCR-CI,

and this grouping method was verified by disparities in both
clinical and metabolic characteristics (Figures 1, 2).

Targeting MCR-only participants, we verified the plasma
metabolome and lipidome of MCR based on a large multi-
center cohort study in China. First, MCR was classified into
three distinct metabolic subtypes: MCR-I, MCR-II and MCR-III.
Those individuals with the MCR-III subtype were more likely
to develop CI than the others, followed by MCR-II and MCR-
I. As the present results indicated that MCR-III was the most
striking metabolic subtype among the three, we further explored
the predictive models and determined the best-performing one
with a model AUROC above 0.9, showing a good predictive
performance (Figures 4B,C). More precisely, the model was
composed of the six metabolites which were used as key markers
to distinguish MCR-III from other MCRs. Thus, we assumed
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FIGURE 6

Metabolic characteristics associated with subjective cognition complaints. (A) The forest figure shows the metabolites associated with cognitive
complaints (logistic regression, p < 0.05). The metabolites are ranked by the crude odds ratios (OR). The segment of each metabolite means
95% CI. (B) Overlap analysis of metabolites associated with complaints and those associated with MCR-I, MCR-II, and MCR-III (logistic
regression, p < 0.05).

that the present findings supported the reasonable stratification
of MCR.

Regarding the metabolic and lipidomic characteristics of the
two components of MCR, overlapping result discovered that
a larger number of common risk metabolites between SCCs
and MCR-III, while the SCCs people patients tend to develop
cognitive impairment (Semba et al., 2020). A previous multi-
center study showed that SCCs rather than SG contributes
more to the progression of dementia after the diagnosis of
MCR (Verghese et al., 2019). The metabolic alterations of SCCs
and SG justified our stratification of MCR and strengthened
the previous assumption that MCR-III was mostly related to
cognitive deterioration.

To our knowledge, our findings are the first to provide
an overview of the metabolic and lipidomic profile of
the pure MCR population and favor previous verification
that plasma metabolites are associated with cognitive aging
and cognitive decline (Ackerman et al., 2018; Bernath
et al., 2020; Lefèvre-Arbogast et al., 2021). Triglycerides
are significant in maintaining the homeostasis of specific
fatty acids. When triglycerides are disrupted by inner and
outer damaging stimulators, toxic saturated lipids accumulate,
causing overproduction of toxic acyl-carnitines, and saturated
ceramides, and activation of the NF-κB pathway (Ackerman
et al., 2018). Specifically, the level of long-chain polyunsaturated
triglycerides significantly reduced in the precursor stage of MCI
and dementia (Bernath et al., 2020). In this study, triglycerides
with saturated side chains increased in the MCR-III subtype,
while the triglycerides with unsaturated side chains manifested
the opposite changes.

Disorders of plasma phospholipids were reported in
predicting antecedent cognitive impairment in older
adults (Mapstone et al., 2014; Toledo et al., 2017).

Phosphatidylcholine (PC) is an important class of lipids
for cognitive health. Reduced PC species, such as PC(33:2),
PC(34:2), PC(35:2), PC(36:2), PC(37:2), and PC(34:3), showed
the association with the loss of cognitive function (Shea,
2019). A group of 10 plasma lipids were identified, and
the level of PCs and acylcarnitine significantly reduced
in participants who developed amnesic MCI or AD
within a 2 to 3-year time frame (Mapstone et al., 2014).
A longitudinal study found that PC(16:0_18:2), PC(18:0_18:1),
and PC(18:1_18:1) were positively correlated with the
performance of global and specific cognitive domains.
Among cognitively unimpaired older individuals, PC
(14:0_14:0) was independently associated with slower
cortical thinning and amyloid deposition (Li et al.,
2019). MCR is a pre-dementia syndrome, pathologically
with lower overall cortical thickness and regional gray
matter volume (Beauchet et al., 2016; Blumen et al.,
2017). In our study, a low level of PC(40:3) is a striking
feature to identify the MCR-III subtype. Additionally,
PC(40:3) was one of the six key metabolites in the
prediction model to distinguish MCR-III from other
MCRs.

In addition, our results shared concordance with previous
findings. For example, B vitamins slow the course of cognitive
decline (Smith et al., 2018). Palmitoleic acid, myristoleic
acid, and alpha-linolenic acid were all reported to be closely
correlated with cognition (Varma et al., 2018; Wang et al., 2020).
Compared with the control group, the serum level of linoleic
acid, myristic acid, and palmitic acid decreased in MCI and AD
patients.

However, there are still some limitations to this study.
The main body of our metabolic and lipidomic findings
was from one-time collected biological samples based on
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an ongoing longitudinal multi-center cohort; therefore,
we accessed limited causal-effective evidence. In addition,
because the number of MCRs was not large enough,
most of the MCR-related metabolites were not significant
when multiple testing correction using False Discovery
Rate (FDR) was carried out. Therefore, most of our tests
used raw p-values. Although the analysis of metabolic
and lipidomic data adjusted some covariables, the
comorbidities in the data analysis such as sleep disorders
and depressive and diabetes mellitus, would benefit
future investigations.

Motoric cognitive risk syndrome in the pre-dementia
phase has distinct metabolic subtypes, and SCC and
SG display discordant metabolic features in developing
MCR. The pathogenesis and mechanism of MCR need
further investigations.
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