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Abstract

Background: Metabolomics studies in Caucasians have identified a number of novel me-

tabolites in association with the risk of type 2 diabetes (T2D). However, few prospective

metabolomic studies are available in Chinese populations. In the present study, we

sought to identify novel metabolites consistently associated with incident T2D in two in-

dependent cohorts of Chinese adults.

Methods: We performed targeted metabolomics (52 metabolites) of fasting plasma sam-

ples by liquid chromatography-mass spectrometry in two prospective case-control stud-

ies nested within the Dongfeng-Tongji (DFTJ) cohort and Jiangsu Non-communicable

Disease (JSNCD) cohort. After following for 4.61 6 0.15 and 7.57 6 1.13 years, respect-

ively, 1039 and 520 eligible participants developed incident T2D in these two cohorts,

and controls were 1:1 matched with cases by age (6 5 years) and sex. Multivariate condi-

tional logistic regression models were constructed to identify metabolites associated

with future T2D risk in both cohorts.
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Results: We identified four metabolites consistently associated with an increased risk of

developing T2D in the two cohorts, including alanine, phenylalanine, tyrosine and palmi-

toylcarnitine. In the meta-analysis of two cohorts, the odds ratios (95% confidence inter-

vals, CIs) comparing extreme quartiles were 1.79 (1.32–2.42) for alanine, 1.91 (1.41–2.60)

for phenylalanine, 1.85 (1.37–2.48) for tyrosine and 1.63 (1.21–2.20) for palmitoylcarnitine

(all Ptrend�0.01).

Conclusions: We confirmed the association of alanine, phenylalanine and tyrosine with

future T2D risk and further identified palmitoylcarnitine as a novel metabolic marker of

incident T2D in two prospective cohorts of Chinese adults. Our findings might provide

new aetiological insight into the development of T2D.
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Introduction

Type 2 Diabetes (T2D) is metabolic disorder characterized

by impaired insulin sensitivity and increased insulin resist-

ance.1 The pathogenesis of T2D involves complex genetic

and environmental influences among which pronounced eth-

nic disparities have been reported, with Asians being at

higher risks compared with Caucasians.2,3 In China, the

prevalence of T2D has been increasing dramatically over re-

cent decades, from less than 1% in 1980 to 11.6% in 2010,4

and the pace of the T2D epidemic in China is projected to

continue accelerating.5 The investigation of novel bio-

markers of T2D risk may advance the understanding of dis-

ease pathophysiology and facilitate targeted preventive care.

Metabolomics is an emerging analytical technology

defined as the high-throughput characterization and quan-

tification of molecule metabolites in biological samples.6,7

The metabolic profile represents the end products of gen-

omic, transcriptomic and proteomic variability as well as

environmental stimulations, thereby providing the most

integrated profile of biological status and being more rele-

vant to disease phenotypes.7–9 Several prospective metabo-

lomic studies conducted in Caucasians have identified a

number of novel metabolites predictive of T2D risk,

including branched-chain amino acids (leucine, isoleucine

and valine),10,11 aromatic amino acids (phenylalanine and

tyrosine),10–12 other amino acids,11,13,14 acylcarnitines13

and certain lipids.12,13,15,16 Likewise, Zhao et al.17 re-

ported novel associations of flavonoids and tetra-peptides

with future T2D risk in American Indians, and Tillin

et al.18 confirmed most of the aforementioned associations

of amino acids in South Asians, particularly that of tyro-

sine. Moreover, Walford et al. found in a multi-ethnic

population that betaine was predictive of reduced risk of

incident T2D, and an increase in circulating betaine during

preventive lifestyle interventions was also associated with

lower T2D incidence.19 Only one prospective metabolomic

study has been conducted in a Chinese population investi-

gating T2D risk, though no replication was available and

only 73 incident cases were included.20

In the present study, we performed targeted metabolo-

mics in two large nested case-control studies within the

Dongfeng-Tongji (DFTJ) cohort and Jiangsu Non-

communicable Disease (JSNCD) cohort. We focused on

amino acids and (acyl) carnitines in particular, as they

were promising candidate biomarkers of T2D risk as re-

vealed by previous studies10–14 and could be easily accom-

modated within a single analytical run.21 We aimed to

identify novel metabolites consistently associated with

T2D risk in both cohorts, and to examine the predictive

utility of identified metabolic markers beyond established

diabetes risk factors.

Research Design and Methods

Study population

A detailed description of the baseline profiles of the DFTJ

cohort has been published elsewhere.22 In brief, the DFTJ

cohort was launched in 2008 and enrolled retirees of the

Key Messages
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• Alanine, phenylalanine, tyrosine and palmitoylcarnitine were consistently associated with an increased risk of

developing T2D in the two cohorts of Chinese adults.

• Palmitoylcarnitine was identified as a novel metabolic marker of incident T2D.
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Dongfeng Motor Corporation (DMC) who were residents

in Hubei Province of central China. A total of 27 009

DMC retirees responded to questionnaires, participated in

physical examinations and provided blood samples during

2008–10. Follow-up investigations were conducted during

2013–14, with a follow-up rate of 96.2%. T2D was

defined if at least one of the following criteria was met:23

(i) fasting glucose� 7.0 mmol/l; (ii) haemoglobin A1c

(HbA1c)�6.5%; (iii) self-reported use of antidiabetic

medication. As HbA1c levels were not measured, baseline

T2D were diagnosed only with a fasting glucose test and

reported use of antidiabetic medications. After 4.61 6 0.15

years of follow-up, 1515 participants developed incident

T2D. After further exclusion of participants with baseline

cardiovascular disease or cancer and those without suffi-

cient blood samples, a total of 1039 incident cases re-

mained. Controls were randomly selected from

participants who were free of diabetes, cardiovascular dis-

ease and cancer at baseline and were also diabetes-free in

the follow-up examinations, and were 1:1 matched for age

(6 5 years) and sex to incident cases.

The JSNCD cohort was established in 2004–05, and

participants were recruited with multi-stage random clus-

ter sampling from residents of Wujin district in Jiangsu

Province of east China. All participants were at least 35

years of age and had lived in their current residence for no

less than 5 years. In total, 17 723 participants completed

the baseline survey. Follow-up investigations were per-

formed during 2008–09 and 2012–13, and the follow-up

rates were 91.8% and 92.1%, respectively. As HbA1c lev-

els were not measured in this cohort, incident T2D cases

were diagnosed only with a fasting glucose test and re-

ported use of antidiabetic medications. After 7.57 6 1.13

years of follow-up, 779 participants developed incident

T2D, and a total of 520 incident cases remained after

excluding participants with baseline cardiovascular disease

or cancer and those without sufficient blood samples.

Controls were selected and matched to incident cases with

the same criteria as aforementioned.

In both cohorts, participants were interviewed by

trained investigators using semi-structured questionnaires

to collect information on socio-demographic factors, life-

style habits, health status and medical history. Standing

height, body weight and waist circumference were meas-

ured by trained personnel with participants being in light

indoor clothing without shoes. Body mass index (BMI)

was calculated as weight in kg divided by the square of

height in metres. Participants who reported regular exer-

cise for at least 30 min on no less than 5 days per week

were defined as physically active. Blood pressures were

measured on the left upper arm with the participants

in a seated position after a brief rest, and hypertension

was defined if the participant had a blood pressure� 140/

90 mmHg, or reported use of antihypertensive medica-

tion. All blood samples were drawn after an overnight

fast for at least 8 h, and stored at -80�C until analysis.

Serum lipids and glucose levels were measured with

Architect Ci8200 analyser (Abbott Laboratories, Abbott

Park, United States) in the DFTJ cohort and with

OLYMPUS AU640 analyser (Olympus Diagnostic

Systems, Southall, Middlesex, UK) in the JSNCD cohort.

All participants gave written informed consent. The study

protocol was approved by the Ethics and Human Subject

Committee of Tongji Medical College and Nanjing

Medical University.

Metabolic profiling by high-performance liquid

chromatography–mass spectrometry

Metabolic profiling by high-performance liquid

chromatography–mass spectrometry (HPLC-MS) was per-

formed based on the methods described by Wang et al.10

and Kalim et al.21 with modifications. In brief, reference

standards (all from Sigma-Aldrich, St Louis, MO) were

used to determine chromatographic retention times, mul-

tiple reaction–monitoring (MRM) transitions, fragmentors

and collision energies for all concerned metabolites. The

LC-MS/MS system consisted of an Agilent 1200 Series

HPLC equipped with a 6400 triple quadrupole mass spec-

trometer (Agilent Technologies). Plasma samples (10ml)

were extracted using 90ml of 74.9:24.9:0.2 (v/v/v) acetoni-

trile/methanol/formic acid containing stable isotope-

labelled internal standards (2.5 mmol/l valine-d8, 5mmol/l

phenylalanine-d8 and 1mmol/l carnitine-d9; all from

Cambridge Isotope Laboratories, Andover, MA), briefly

vortexed and then centrifuged (10 min, 12000g, 4�C). The

supernatants (10 ml) were injected onto a Cortecs HILIC

column (100 x 2.1 mm, Waters Corp., Milford, MA)

which was eluted isocratically at a flow rate of 0.5 ml/min

with 5% mobile phase A (10 mmol/l ammonium formate

and 0.1% formic acid in water) for 0.5 min followed by a

linear gradient to 40% mobile phase B (acetonitrile with

0.1% formic acid) over 5 min. MS analyses were carried

out using electrospray ionization and dynamic MRM scans

in the positive ion mode which enables the parallel analysis

of 52 metabolites. Internal standard peak areas were moni-

tored for quality control, and individual samples with peak

areas deviating from the mean by more than two standard

deviations (SD) during one day’s analysis were re-analysed.

Raw peak areas of each metabolite were normalized rela-

tive to the pooled plasma reference samples that were

analysed in the sample queue periodically after each set of
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20 samples, to account for the instrument drift occurring

over time.10,24 All samples were analysed in randomized

and blinded order with the same instrument in the central

laboratory at the School of Public Health, Tongji Medical

College, Huazhong University of Science and Technology.

The ion spray voltage was 4.5 kV and the source tempera-

ture was 350�C.

Statistical analysis

Before analysis, metabolites data were natural-log trans-

formed and then standardized to z scores in each cohort.

Pearson partial correlation coefficients were calculated

across metabolite pairs in controls, adjusting for age and

sex. Participants were then categorized into four categories

according to quartile cutoffs of each metabolite in controls.

We constructed multivariate conditional logistic models

for each metabolite (as categorical or continuous variables)

adjusting for age, BMI, smoking status, drinking status,

education level, physical activity, systolic blood pressure,

serum high-cholesterol lipoprotein (HDL) cholesterol and

triglycerides, fasting glucose, family history of T2D and

metabolomics batch. Metabolites with the same direction

of association in both cohorts were selected, and false dis-

covery rates (FDRs) were calculated considering all metab-

olites showing the same direction of association in both

cohorts, to account for multiple testing. Metabolites

achieving FDR< 0.1 in both cohorts were identified, and

their associations with T2D risk were pooled with inverse-

variance weighted meta-analysis. A metabolomic score

was created by summing the quartile ranks of the identified

metabolites to assess their composite effects.25 We then

conducted a sensitivity analysis with further adjustments

of dietary variables, including intakes of fruit and vege-

table, meat, fish and seafoods, dairy products and soy-

beans, and a meta-analysis of other metabolites with the

same direction of associations in both cohorts regardless of

the FDR values.

We examined the predictive ability of the identified me-

tabolites by comparing diabetes prediction models using

traditional risk factors with and without all the identified

metabolic markers in the present study. We calculated the

area under the receiver operating characteristic curve

(AUC), the net reclassification improvement (NRI) and the

integrated discrimination improvement (IDI) to assess the

incremental value of these metabolic markers for risk pre-

diction beyond traditional risk factors.26 Considering the

fact that no criteria were established for interpretation of

the magnitude of the IDI, we also calculated the relative

IDI.27 All statistical analyses were performed with SAS ver-

sion 9.3 (SAS Institute Inc.).

Results

Table 1 presents the baseline demographic and clinical char-

acteristics of the study participants from the two cohorts ac-

cording to case-control status. In both cohorts, incident

T2D cases had higher baseline levels of BMI, waist circum-

ference, blood pressures, triglycerides and fasting glucose,

whereas higher levels of HDL cholesterol were observed in

controls (all P-values< 0.01). Cases were also more likely to

report a family history of diabetes in both cohorts (both

P-values< 0.01).

A total of 52 metabolites were detected in our metabolo-

mics platform, including 26 amino acids, 12 carnitine and

acylcarnitines, two cholines, two amines, two purine deriva-

tives, two B vitamins, two indole derivatives and four other

metabolites. MRM transitions and retention times of these me-

tabolites are provided in Supplementary Table 1, available as

Supplementary data at IJE online. We then assessed age- and

sex-adjusted pairwise Pearson correlations between baseline

levels of metabolites (Figure 1). Mean correlations within

amino acids and (acyl) carnitines were modest in the DFTJ

and JSNCD cohorts [r¼ 0.15 and 0.16 for amino acids, re-

spectively; r¼ 0.27 and 0.31 for (acyl) carnitines, respectively].

We observed 20 metabolites demonstrating associations

in the same direction with T2D risk in both cohorts (Figure

2; Supplementary Tables 2 and 3, available as

Supplementary data at IJE online). Among these metabol-

ites, alanine, phenylalanine, tyrosine and palmitoylcarnitine

were identified with FDRs< 0.1 in both cohorts. The associ-

ations of these four metabolites with diabetes risk remained

unchanged after further adjustments of dietary variables

(data not shown). In fixed effect pooled analysis of these

four metabolites (Figure 3; Supplementary Table 4, available

as Supplementary data at IJE online), the odds ratios (95%

confidence intervals, CIs) comparing extreme quartiles were

1.79 (1.32–2.42) for alanine, 1.91 (1.41–2.60) for phenyl-

alanine, 1.85 (1.37–2.48) for tyrosine and 1.63 (1.21–2.20)

for palmitoylcarnitine (all Ptrend� 0.01), and participants in

the highest quartile of the metabolomic score had 2.44-fold

odds of developing T2D (95% CI: 1.79–3.32; Ptrend¼ 2.

42E-09) compared with those in the lowest quartile.

We also performed an exploratory analysis of pooling

other metabolites with the same direction of association in

both cohorts (Supplementary Table 4). An additional set

of 12 metabolites achieved FDR<0.1, including six amino

acids (betaine, glutamate, leucine/isoleucine, ornithine,

proline and valine) and six other metabolites (acetylcho-

line, a-glycerophosphocholine, creatinine, indoleacetate,

inosine and trimethylamine-N-oxide).

We then assessed predictive performance of the four

identified metabolites in both cohorts (Figure 4;

Supplementary Table 5, available as Supplementary data

1510 International Journal of Epidemiology, 2016, Vol. 45, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/45/5/1507/2450938 by guest on 20 August 2022

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw221/-/DC1


at IJE online). In the JSNCD cohort, the addition of these

four metabolites increased the c-statistic from 0.673 (refer-

ence model without fasting glucose) to 0.718 (P¼ 2.88E-

4), and from 0.777 (reference model with fasting glucose)

to 0.794 (P¼ 0.007). The relative IDI and NRI were esti-

mated at 54.0% and 11.6%, respectively, in the latter

scenario (P-values both<0.0001). However, risk predic-

tion improvement in the DFTJ cohort was modest. The

Table 1. Baseline characteristics of the study populations

Variables

The DFTJ cohort The JSNCD cohort

Cases Matched controls P Cases Matched controls P

N 1039 1039 520 520

Age, years 62.82 6 7.23 62.93 6 7.32 0.736 53.82 6 10.25 53.74 6 10.18 0.896

Male sex, % 44.7 44.7 1 34.8 34.8 1

BMI, kg/m2 25.73 6 3.34 23.64 6 3.07 < 0.001 25.53 6 3.42 23.70 6 3.22 < 0.001

Waist circumference, cm 85.88 6 9.84 80.38 6 8.39 < 0.001 86.09 6 9.53 80.57 6 9.13 < 0.001

Current smoker, % 19.0 19.6 0.850 22.7 23.3 0.888

Current drinker, % 22.5 24.0 0.019 19.04 20.8 0.662

Physical activity (yes, %) 70.6 71.3 0.386 59.6 61.9 0.242

Systolic blood pressure, mmHg 131.07 6 18.29 124.10 6 17.23 < 0.001 132.87 6 21.15 126.59 6 20.14 < 0.001

Diastolic blood pressure, mmHg 78.94 6 11.10 74.98 6 10.06 < 0.001 83.43 6 10.98 80.59 6 10.24 < 0.001

Hypertension (%) 54.4 30.4 < 0.001 52.5 36.7 < 0.001

HDL cholesterol, mmol/L 1.42 6 0.47 1.49 6 0.43 < 0.001 1.45 6 0.46 1.55 6 0.63 0.003

LDL cholesterol, mmol/L 3.04 6 0.78 2.95 6 0.73 0.008 2.36 6 0.97 2.36 6 0.95 0.996

Total cholesterol, mmol/L 5.24 6 0.93 5.09 6 0.89 < 0.001 4.59 6 1.05 4�48 6 1�04 0.094

Total triglycerides, mmol/L 1.61 6 0.98 1.23 6 0.72 < 0.001 1.89 6 1.28 1.49 6 1�20 < 0.001

Fasting glucose, mmol/L 5.99 6 0.60 5.48 6 0.53 < 0�001 5.68 6 0.80 5.03 6 0.61 < 0.001

Family history (%) 5.0 2.3 0�001 11.0 5.8 0.002

Continuous variables were presented as mean 6 SD and compared with one-way analysis of variance (ANOVA); categorical variables were compared with chi-

square tests.

Figure 1. Correlation matrix of plasma metabolite levels in controls of the DFTJ cohort (A) and the JSNCD cohort (B). Age- and sex-adjusted Pearson

correlation coefficients are presented.
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increase of c-statistic was 0.017 for the reference model

without fasting glucose (P¼ 0.002) and 0.004 for the refer-

ence model with fasting glucose (P>0.05). Nevertheless,

the relative IDI and NRI in comparison with the latter ref-

erence model suggested predictive improvement, which

were estimated at 12.6% and 5.0%, respectively (P values

both< 0.0001).

Discussion

In this prospective investigation in two independent nested

case-control studies of targeted metabolomics and T2D

risk, we identified four metabolites consistently associated

with the risk of developing T2D, including alanine, phenyl-

alanine, tyrosine and palmitoylcarnitine. We also observed

a notable composite effect of the combination of these four

metabolites. In the assessment of predictive performance,

we found that only in one cohort did these metabolites

modestly improve risk prediction of future T2D beyond es-

tablished diabetes risk factors.

Among the three amino acids identified as associated

with incident T2D, alanine is non-essential to the human

body and its association with diabetes risk has been re-

ported in some studies. As a major hepatic substrate for

Figure 2. Metabolites demonstrating associations in the same direction with the risk of future diabetes in both cohorts. ORs were obtained with con-

ditional logistic models adjusting for age, BMI, smoking and drinking status, education level, physical activity, systolic blood pressure, serum HDL

cholesterol and triglycerides, fasting glucose, family history of diabetes and metabolomics batch. Metabolites shaded in darker grey were identified

as being associated with future T2D risk: alanine (FDR¼ 0.077 and 4.39E-04); phenylalanine (FDR¼ 0.077 and 0.002); tyrosine (FDR¼ 0.009 and 0.008);

palmitoylcarnitine (FDR¼ 0.077 and 0.020).

Figure 3. Pooled ORs of the four identified metabolites and the metabolomics score. ORs were pooled with a fixed effect meta-analysis.
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gluconeogenesis28 and a stimulator of glucagon secre-

tion,29 circulating alanine was found to be correlated

cross-sectionally11 and prospectively30 with impaired insu-

lin sensitivity. Two prospective studies have reported that

elevated alanine level was positively associated with inci-

dent diabetes in Finnish males11 and South Asian males liv-

ing in UK.18 However, these two studies were modest in

sample sizes (151 incident cases and 227 incident cases, re-

spectively) and included only male participants. Moreover,

no replication samples were available in these studies and

therefore the robustness of their results remained unclear.

In our study, we found a relation of alanine with increased

risk of developing T2D in two large independent cohorts,

which constituted the first report of this association in the

Chinese population. Given the fact that some studies have

failed to observe an association between alanine and T2D

risk,10,12 our results need further replication, particularly

in Chinese populations.

In the present study, we also found positive relations of

phenylalanine and tyrosine with increased T2D risk, which

were consistent with previous prospective reports in

Caucasians and South Asians.10–12 Phenylalanine is essen-

tial to the human body, whereas tyrosine is semi-essential

and is synthesized from phenylalanine.31 Postulated path-

ways linking this association involves the inhibition of glu-

cose transport/phosphorylation32 and induction of insulin

resistance through phosphorylation of the insulin receptor

substrate 1.11,33 Previous metabolomics studies also found

that phenylalanine and tyrosine were associated with the

development of insulin resistance,18,30,34,35 supporting

their roles in the pathogenesis of T2D. Notably, a recent

study revealed that tyrosine was more strongly predictive

of future diabetes in South Asians compared with their

European counterparts,18 suggesting potential ethnic dif-

ferences in metabolic disturbances related to diabetes risk.

However, it remains to be elucidated whether tyrosine and

phenylalanine could contribute to the mechanisms underly-

ing the ethnic difference of T2D risk between Asians and

Europeans.2,3 Our finding confirmed the association of

tyrosine and its precursor, phenylalanine, with future T2D

risk for the first time in a Chinese population, and further

highlighted the involvement of aromatic amino acid me-

tabolism in the pathogenesis of T2D, especially in Asians.

Besides amino acids, a long-chain acylcarnitine, palmi-

toylcarnitine was also found to be associated with

increased T2D risk in our study. Acylcarnitines are gener-

ated through the esterification of fatty acids, a process

required for the transportation of long-chain fatty acids

(> 14 carbon atoms) across the mitochondrial membrane

for b oxidation.36 The 16-carbon fatty acid, palmitic acid,

is the most abundant saturated fatty acid in human

serum.37 A number of studies have reported a positive as-

sociation between palmitic acid levels and future T2D

risk;38–40 however, whether palmitoylcarnitine might also

play a role in T2D pathogenesis remains unknown. A re-

cent study reported that palmitoylcarnitine treatment

could directly reduce insulin sensitivity in human myo-

tubes,41 supporting the aetiological involvement of palmi-

toylcarnitine in insulin resistance. Some cross-sectional

studies also revealed that circulating palmitoylcarnitine

was positively correlated with obesity measures42 and was

elevated in pre-diabetic and diabetic patients.43,44 Our

study provided the first prospective evidence to date relat-

ing palmitoylcarnitine to future T2D risk. This novel asso-

ciation needs to be replicated in other studies, and the

underlying mechanisms warrant further investigation.

Figure 4. ROC curves for risk of future diabetes in the DFTJ cohort and JSNCD cohort. The reference model included age, gender, BMI, smoking sta-

tus, drinking status, physical activity, systolic blood pressure, serum HDL cholesterol and triglycerides. Subsequent models include the basic clinical

variables plus the identified metabolic predictors as indicated. Glc, fasting glucose; FH, family history.
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A number of prospective metabolomics studies have

identified branched-chain amino acids (leucine, isoleucine

and valine) as being associated with the development of in-

sulin resistance and T2D.10,11,18 Despite the fact that the

associations of these amino acids failed to reach the criter-

ion of FDR<0.1 in both cohorts, the directions of associ-

ations were consistent in these two cohorts, and the meta-

analysis suggested that they could be potentially related to

incident T2D. Likewise, we found several other metabol-

ites possibly related to T2D risk as suggested by the meta-

analysis, some of which have displayed associations with

insulin resistance, prevalent or incident T2D, such as orni-

thine,45 proline45–47 and betaine.19

We observed that the associations of the four identified

metabolites with T2D risk and the predictive improvement

were more pronounced in the JSNCD cohort, whose mean

age was nearly 10 years younger than that of the DFTJ co-

hort. We therefore suspected that these metabolites might

play a more important role in the development of early-

onset T2D, whereas at advanced age, their effects might be

obscured by the marked decreases in insulin sensitivity

associated with ageing.48 Besides, the different definitions

of T2D used in the two cohorts might also be accountable.

Alternatively, this observation might be a chance finding

and needs to be clarified in further investigations.

Incremental risk prediction of metabolic biomarkers be-

yond traditional diabetes risk factors has been evaluated in

some previous studies. The Framingham Offspring Study

found that the c-statistic was barely improved by the iden-

tified metabolites associated with T2D risk in the study

sample in which controls were randomly selected,10 and

the EPIC-Postdam study also reported a very modest im-

provement of c-statistic.12 In our study, the incremental

predictive ability of the four identified metabolites beyond

traditional risk factors was also modest. Nevertheless, as

reviewed by Sattar et al.,49 the incremental usefulness of

novel biomarkers for predicting future T2D is generally

limited, in contrast to the remarkable predictive accuracy

yielded by established risk factors. Despite the limited im-

provement in risk prediction, our findings are still import-

ant in providing new pathogenic insights in T2D

development.

The strength of our study largely lies in its prospective

nature, the inclusion of two independent population-based

cohorts to reduce the possibility of chance findings, and

the considerable sample size. To our best knowledge, the

present study included the largest number of incident T2D

cases among prospective investigations of metabolic pro-

files and T2D risk. Moreover, we were able to confirm pre-

viously reported associations of three metabolites (alanine,

phenylalanine and tyrosine) with incident T2D while fur-

ther discovering a novel one (palmitoylcarnitine) with a

stringent criterion (FDR<0.1 in both cohorts). Finally, in-

cident T2D cases were diagnosed by a fasting glucose test

in both cohorts, and plus HbA1c levels in the DFTJ cohort,

rather than by self-reported medical history alone, there-

fore minimizing the contamination of undiagnosed and

misdiagnosed cases.

Our study also has several limitations. First, our metab-

olomics platform only covered a limited number of metab-

olite targets, therefore not being able to capture the full

metabolic profile of the study population. However, amino

acids and (acyl) carnitines were well characterized in the

present study, which provided information on protein and

lipid metabolism, two important metabolic pathways in

human body.50,51 Second, although the associations be-

tween branched-chain amino acids and T2D risk did not

reach the criterion of FDR< 0.1 in both cohorts, supportive

evidence was obtained in meta-analysis of two cohorts.

Third, participants in the current study consisted of middle-

aged and elderly Chinese; as a result, caution must be taken

when generalizing our findings to other populations.

Conclusions

In the present study, we confirmed the association of ala-

nine, phenylalanine and tyrosine with future T2D risk, and

further identified palmitoylcarnitine as a novel metabolic

marker in two prospective cohorts of Chinese adults. If

replicated, the identified metabolites may provide novel in-

sights into the pathophysiology of T2D which has become a

major health concern in China. Further studies are urgently

warranted to elucidate the underlying mechanisms and ex-

plore related intervention strategies to reduce T2D risk.
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