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Alzheimer’s disease causes a progressive dementia that 
currently affects over 35 million individuals worldwide and 
is expected to affect 115 million by 2050 (ref. 1). There 
are no cures or disease-modifying therapies, and this may 
be due to our inability to detect the disease before it has 
progressed to produce evident memory loss and functional 
decline. Biomarkers of preclinical disease will be critical to 
the development of disease-modifying or even preventative 
therapies2. Unfortunately, current biomarkers for early disease, 
including cerebrospinal fluid tau and amyloid-b levels3, 
structural and functional magnetic resonance imaging4 and  
the recent use of brain amyloid imaging5 or inflammaging6,  
are limited because they are either invasive, time-consuming  
or expensive. Blood-based biomarkers may be a more  
attractive option, but none can currently detect preclinical 
Alzheimer’s disease with the required sensitivity and 
specificity7. Herein, we describe our lipidomic approach 
to detecting preclinical Alzheimer’s disease in a group of 
cognitively normal older adults. We discovered and validated 
a set of ten lipids from peripheral blood that predicted 
phenoconversion to either amnestic mild cognitive impairment 
or Alzheimer’s disease within a 2–3 year timeframe with over 
90% accuracy. This biomarker panel, reflecting cell membrane 
integrity, may be sensitive to early neurodegeneration of 
preclinical Alzheimer’s disease.

We enrolled 525 community-dwelling participants, aged 70 and older 
and otherwise healthy, into this 5-year observational study. Over 
the course of the study, 74 participants met criteria for amnestic  
mild cognitive impairment (aMCI) or mild Alzheimer’s disease (AD)  

(Online Methods); 46 were incidental cases at entry, and 28 pheno-
converted (Converters) from nonimpaired memory status at entry 
(Converterpre). The average time for phenoconversion to either 
aMCI or AD was 2.1 years (range 1–5 years). We defined three main 
participant groups in this paper: aMCI/AD, Converter and Normal 
Control (NC). The participants with aMCI and mild AD were 
combined into a single group (aMCI/AD) because this group was 
defined by a primary memory impairment, and aMCI is generally 
thought to reflect the earliest clinically detectable stage of AD. The 
aMCI/AD group included the Converters after phenoconversion. 
The Converters were included at two time points, prior to pheno-
conversion (Converterpre), when memory was not impaired, and 
after phenoconversion (post), when memory was impaired and they 
met criteria for either aMCI or AD. The NC group was selected to 
match the whole aMCI/AD group on the basis of age, education 
and sex.  In the third year of the study, we selected 53 participants 
with either aMCI or AD for metabolomic and lipidomic biomarker 
discovery. Included in this aMCI/AD group were 18 Converters.  We 
also selected 53 matched cognitively normal control (NC) partici-
pants. For the Converters, blood from both time 0 (at entry to the 
study) and after phenoconversion was used; for the other subjects, 
blood from the last available visit was used. We used an internal 
cross-validation procedure to evaluate the accuracy of the discovered 
lipidomics profile in classifying 41 additional subjects, consisting of 
the remaining subset of 21 participants with aMCI/AD, including 10 
Converters, and 20 matched NC participants (Supplementary Table 1  
and Supplementary Fig. 1).

The aMCI/AD, Converter and NC groups were defined primarily 
using a composite measure of memory performance (the decline in  
Zmem for the Converters (Cpre versus Cpost) is shown Fig. 1a). In addition,  
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composite measures of other cognitive abilities (Supplementary  
Fig. 2) and measures of memory complaints and functional  
capacities were compiled (Supplementary Tables 2 and 3). The 
discovery and validation groups did not differ on clinical mea-
sures (F(4,170) = 1.376, P = 0.244) or on any composite z-score 
(F(5,169) = 2.118, P = 0.066), demonstrating the general equivalence 
of the participants used for the discovery and validation phases of the  
biomarker analysis.

We examined 124 plasma samples from the 106 discovery-phase 
participants for untargeted metabolomic analysis (Online Methods). 
Metabolomic and lipidomic profiling yielded 2,700 positive-mode 
features and 1,900 negative-mode features. Metabolites defining the 
participant groups were selected using the least absolute shrinkage 
and selection operator (LASSO) penalty8,9. The LASSO analysis 
revealed features that assisted in unambigu-
ous class separation between the two non-
impaired groups, the Converterpre group and 
the NC subjects who do not phenoconvert 
(Table 1). This untargeted analysis revealed 
considerably lower phosphatidylinositol in 
the Converterpre group and higher glycour-
sodeoxycholic acid in the aMCI/AD group 
compared to the NC group. These metabolites 
were unambiguously identified using tandem 
mass spectrometry (Supplementary Fig. 3).

The untargeted LASSO analysis revealed amino acids and phos-
pholipids to be potent discriminators of the NC and aMCI/AD 
groups. Thus, we performed stable isotope dilution–multiple reaction 
monitoring (MRM) mass spectrometry (SID-MRM-MS) to unam-
biguously identify and quantify lipids, amino acids and biogenic 
amines; this would discriminate our groups with emphasis on dif-
ferences that might predict phenoconversion from NC to aMCI/AD. 
This targeted analysis revealed significantly lower plasma levels of 
serotonin, phenylalanine, proline, lysine, phosphatidylcholine (PC), 
taurine and acylcarnitine (AC) in Converterpre participants who later 
phenoconverted to aMCI/AD (Table 2).

A notable finding of this targeted metabolomic and lipidomic anal-
ysis was the identification of a set of ten metabolites, comprising PCs, 
(PC diacyl (aa) C36:6, PC aa C38:0, PC aa C38:6, PC aa C40:1, PC aa 
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Figure 1 Memory composite  
z-scores and trend plots for the  
ten-metabolite panel in  
the discovery phase. (a) Box  
and whisker plot shows the  
composite memory z-scores  
(Zmem) of the combined  
discovery and validation  
samples (Supplementary Table 3).  
The performance of the  
Converter group (Cpre,  
Converters at baseline) after  
phenoconversion (Cpost) is  
plotted for direct comparison.  
The plot shows Zmem, as  
described in Supplementary Table 3. The dotted line centered on 0 represents the median memory composite z-score for the entire cohort of  
525 participants, and the black horizontal line represents the cut-off for impairment (−1.35 s.d.). Error bars represent ±s.e.m. As defined, all 
converters had nonimpaired memory at baseline and impaired memory after phenoconversion. NC, n = 73; Cpre, n = 28; Cpost, n = 28; and aMCI/AD, 
n = 46. (b) The SID-MRM-MS–based quantitative profiling data was subjected to the nonparametric Kruskal-Wallis test using the STAT pack module 
(Biocrates). Results are shown for a panel of ten metabolites in the NC group (n = 53), Cpre (n = 18), Cpost (n = 18) and aMCI/AD (n = 35) groups, 
respectively. The abundance of each metabolite is plotted as normalized concentrations units (nM). The black solid bars within the boxplot represent 
the median abundance, and the dotted line represents mean abundance for the given group. Error bars represent ± s.d. QC, quality control samples. 
The P values for analytes between groups were P ≤ 0.05. The two metabolites with P values <0.005 are indicated with an asterisk. Each Kruskal-Wallis 
test was followed by Mann-Whitney U-tests for post hoc pairwise comparisons (NC versus Cpre and NC versus aMCI/AD). Significance was adjusted for 
multiple comparisons using Bonferroni’s method (P < 0.025).

Table 1 Putative metabolite markers resulting from binary comparison of the study groups

Metabolite
LASSO  

coefficient Comparison groups Mode
Mass/charge  

ratio

Phospatidylinositol (18:0/0:0) ↓ (−0.674) NC versus Converterpre NEG 599.3226

Proline-asparagine dipeptide ↑ (0.192) NC versus aMCI/AD POS 230.1146

Glycoursodeoxycholic acid ↑ (0.107) NC versus aMCI/AD POS 450.3196

Malic acid ↓ (−0.024) NC versus aMCI/AD POS 134.0207

The markers were chosen on the basis of significant predictive value as determined by LASSO coefficient analysis. 
The positive estimated LASSO coefficient suggests elevation in corresponding comparison group (aMCI/AD and 
Converterpre) compared to NC participants. Arrows indicate upregulation or downregulation in the comparison group 
as compared to the NC participants. NEG, negative; POS, positive.
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C40:2, PC aa C40:6, PC acyl-alkyl (ae) C40:6), 
lysophophatidylcholine (lysoPC a C18:2), and 
acylcarnitines (ACs) (Propionyl AC (C3) and 
C16:1-OH) that were depleted in the plasma 
of the Converterpre participants but not in that 
of the NC group (Fig. 1b). These metabolites 
remained depleted after phenoconversion to 
aMCI/AD (Converterspost) and were similar 
to the levels in the aMCI/AD group.

We then performed targeted quantitative 
metabolomic and lipidomic analyses using 
plasma from a separate group of 40 participants 
as an independent blinded cross-validation, as 
one sample from the aMCI/AD group was not available for lipidomic 
analysis. The validation samples were obtained from those clinically 
defined NC, Converterpre, aMCI/AD subjects. The samples were proc-
essed and analyzed using the same SID-MRM-MS technique as in the 
discovery phase. The targeted quantitative analysis of the validation set 
revealed similar levels for the ten-metabolite panel (Supplementary 
Fig. 4) as were observed in the discovery samples (Fig. 1b).

We used the metabolomic data from the untargeted LASSO analysis 
to build separate linear classifier models that would distinguish the 
aMCI/AD and Converterpre groups from the NC group. We used receiver 
operating characteristic (ROC) analysis to assess the performance of 
the classifier models for group classification. For the Converterpre 
and NC group classification, the initial LASSO-identified metabolites 
yielded a robust area under the curve (AUC) of 0.96 (Fig. 2a) and a 
more modest AUC of 0.83 for aMCI/AD and NC group classification.  
A separate classifier model using the discovered ten-metabolite 
panel from the targeted metabolomic analysis classified Converterpre 
and NC participants with an AUC of 0.96 (Fig. 2b) and an AUC of 
0.827 for the aMCI/AD versus NC classification. To validate our 
 biomarker-based group classification, we applied the same simple 
logistic classifier model developed for the discovery samples to the 
independent validation samples. The model classified Converterpre 
and NC participants with an AUC of 0.92 (Fig. 2c) and an AUC of 0.77 
for the aMCI/AD versus NC groups. This model yielded a sensitivity 
of 90% and specificity of 90%, for classifying the Converterpre and NC 
groups in the validation phase (Fig. 2c).

We then considered the effects of apolipoprotein E (APOE) geno-
type on our classification of the Converterpre and NC groups. APOE 
is involved in lipid metabolism, with the ε4 allele known to be a risk 
factor for AD. The proportion of ε4 allele carriers was similar in  
the aMCI/AD (19/69 = 27.5%), NC (17/73 = 23%) and Converter 
(5/28 = 17%) groups (χ2 = 0.19, P = 0.68, not significant). We repeated 
the classification analyses using the ten-metabolite model with APO 

ε4 allele as a covariate. The effect of the ε4 allele was not significant  
(P = 0.817), and classification accuracy for Converterpre and NC 
groups changed minimally from an AUC 0.96 to 0.968 (P = 0.992, not 
significant). Furthermore, a classifier model using only APOE ε4 pro-
duced an AUC of 0.54 for classifying the Converterpre and NC groups, 
implying virtually random classification. These findings indicate 
that the presumed pathophysiology reflected by the ten-metabolite  
biomarker panel is orthogonal to APOE-mediated effects.

Here we present the discovery and validation of plasma metabo-
lite changes that distinguish cognitively normal participants who will 
progress to have either aMCI or AD within 2–3 years from those 
destined to remain cognitively normal in the near future. The defined 
ten-metabolite profile features PCs and ACs, phospholipids that have 
essential structural and functional roles in the integrity and function-
ality of cell membranes10,11. Deficits of the plasmalemma in AD have 
been described previously12. Studies have shown decreased plasma 
PC levels13 and lysoPC/PC ratios14 and increased cerebrospinal fluid 
(CSF) PC metabolites in patients with AD15, as well as decreased 
phosphatidylinositol in the hippocampus16 and other heteromodal 
cortical regions17. Furthermore, amyloid-β may directly disrupt 
bilayer integrity by interacting with phospholipids18. ACs are known 
to have a major role in central carbon and lipid metabolism occur-
ring within the mitochondria11. They have also been associated with 
regulation, production and maintenance of neurons through enhance-
ment of nerve growth factor production11, which is a known potent 
survival and trophic factor for brain cholinergic neurons, particularly  
those consistently affected by AD within the basal forebrain19–21. 
Decreasing plasma AC levels in the Converterpre participants in our 
study may indirectly signal an impending dementia cascade that  
features loss of these cholinergic neuronal populations. We posit  
that this ten–phospholipid biomarker panel, consisting of PC and 
AC species, reveals the breakdown of neural cell membranes in those 
individuals destined to phenoconvert from cognitive intactness to 

Table 2 Difference detection of putative metabolites using SID-MRM-MS
Metabolite Fold change Comparison groups Mode P value

PC ae C38:4 ↓ NC versus Converterpre POS 0.00417

Proline ↓ NC versus Converterpre POS 0.00003

Lysine ↓ NC versus Converterpre POS 0.0020

Serotonin ↓ NC versus Converterpre POS 0.0160

Taurine ↓ NC versus Converterpre POS 0.0030

DOPA ↑ NC versus Converterpre POS 0.0001

Phenylalanine ↓ NC versus Converterpre POS 0.00001

Acylcarnitine C7-DC ↓ NC versus aMCI/AD POS 0.0001

The arrows indicate upregulation or downregulation in the comparison group as compared to the NC participants. 
DOPA, dihydroxyphenylalanine; C7-DC, pimelyl-l-carnitine.

a Untargeted discovery
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Figure 2 ROC results for the lipidomics 
analyses. (a–c) Plots of ROC results from  
the models derived from the three phases  
of the lipidomics analysis. Simple logistic 
models using only the metabolites identified  
in each phase of the lipidomics analysis  
were developed and applied to determine  
the success of the models for classifying the 
Cpre and NC groups. The red line in each  
plot represents the AUC obtained from the 
discovery-phase LASSO analysis (a), the 
targeted analysis of the ten metabolites in  
the discovery phase (b) and the application  
of the ten-metabolite panel developed from the targeted discovery phase in the independent validation phase (c). The ROC plots represent sensitivity 
(i.e., true positive rate) versus 1 – specificity (i.e., false positive rate).
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aMCI or AD and may mark the transition between preclinical states 
where synaptic dysfunction and early neurodegeneration give rise to 
subtle cognitive changes2.

Most approaches to fluid-based biomarker discovery have focused 
on amyloid-β1–42 (Aβ42), total tau and phosphorylated tau-181 
obtained from CSF. Classification of symptomatic patients versus 
normal controls or other dementias or conversion from MCI to AD 
is high22, but the predictive value of these CSF biomarkers in pre-
clinical patients is not as strong, suggesting that these markers may 
be useful only for confirmation of clinical diagnosis23. Blood-based 
biomarkers are not routinely used in clinical practice but may be more 
useful because they are easily obtained with less risk of complication 
in older adults. Studies focusing on Aβ42 or Aβ42/tau ratios derived 
from blood have been disappointing24, but recent studies suggest that 
assessment of the proteome and metabolome in blood may have more 
promise. One recent study using plasma identified 18 proteins that 
discriminated subjects with symptomatic AD from normal control 
subjects with nearly 90% accuracy and predicted conversion from  
symptomatic MCI to AD with 91% accuracy25. Another cross- 
sectional study reported 18 plasma biomarkers, many related to inflam-
mation, that correctly classified subjects with symptomatic AD and 
normal control subjects with a sensitivity and specificity of 85% and  
an AUC of 93% (ref. 26). The biomarker panel was externally validated 
in a cohort of normal control subjects and subjects with symptomatic 
AD with sensitivity and specificity of 80% and an AUC of 85%.

To our knowledge, this is the first published report of a blood-based 
biomarker panel with very high accuracy for detecting preclinical AD. 
This metabolic panel robustly identifies (with accuracy above 90%) 
cognitively normal individuals who, on average, will phenoconvert to 
aMCI or AD within 2–3 years. The accuracy for detection is equal to or 
greater than that obtained from most published CSF studies27,28, and 
blood is easier to obtain and costs less to acquire, making it more useful 
for screening in large-scale clinical trials and for future clinical use. This 
biomarker panel requires external validation using similar rigorous clini-
cal classification before further development for clinical use. Such addi-
tional validation should be considered in a more diverse demographic 
group than our initial cohort. We consider our results a major step toward 
the NIA-AA (National Institute on Aging and Alzheimer’s Association) 
consensus statement mandate for biomarkers of preclinical AD2.

MeTHoDS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Lipodomics data were deposited in the European 
Bioinformatics Institute MetaboLights database with accession code 
MTBLS72.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MeTHoDS
Neurocognitive methods. The University of Rochester Research Subjects 
Review Board and the University of California, Irvine Institutional Review 
Board each approved a common research protocol for this investigation. 
Content of informed consent forms was thoroughly discussed with sub-
jects at the time of entry into the study and verbal and written consent was 
obtained from all subjects, including that for serial neuropsychological testing 
and blood draws for biomarker evaluation. A total of 525 volunteers par-
ticipated in this study as part of the Rochester/Orange County Aging Study, 
an ongoing natural history study of cognition in community-dwelling older 
adults (Supplementary Note). All participants were community-dwelling 
older adults from the greater Rochester, NY, and Irvine, CA, communities. 
Participants were recruited through local media (newspaper and television 
advertisements), senior organizations and word of mouth. Inclusion crite-
ria included age 70 or older, proficiency with written and spoken English 
and corrected vision and hearing necessary to complete the cognitive battery. 
Participants were excluded for the presence of known major psychiatric or 
neurological illness (including Alzheimer’s disease or MCI, cortical stroke, 
epilepsy and psychosis) at time of enrollment, current or recent (<1 month) use 
of anticonvulsants, neuroleptics, HAART, antiemetics and antipsychotics for 
any reason and serious blood diseases including chronic abnormalities in com-
plete blood count and anemia requiring therapy and/or transfusion. Briefly, 
we prospectively followed participants with yearly cognitive assessments and 
collected blood samples following an overnight fast (withholding of all medi-
cations) (Supplementary Note). At enrollment, each participant completed 
detailed personal, medical and family history questionnaires. At baseline and 
at each yearly visit, participants completed measures assessing activities of 
daily living, memory complaints, and signs and symptoms of depression and 
were given a detailed cognitive assessment (Supplementary Table 2).

For this study, data from the cognitive tests were used to classify our par-
ticipants into groups for biomarker discovery. We derived standardized scores 
(z-scores) for each participant on each cognitive test and computed composite 
z-scores for five cognitive domains (attention, executive, language, memory 
and visuoperceptual) (Supplementary Table 3). Normative data for z-score 
calculations were derived from the performance of our participants on each 
of the cognitive tests adjusted for age, education, sex and visit. To reduce 
the effect of cognitively impaired participants on the mean and s.d., age-,  
education-, sex- and visit-adjusted residuals from each domain z-score model 
were robustly standardized to have median 0 and robust s.d. of 1, where the 
robust s.d. = IQR/1.35, as 1.35 is the IQR (interquartile range) of a standard  
normal distribution.

We categorized the participants into groups of subjects with incident aMCI or 
early AD (combined into one category, aMCI/AD), cognitively NC subjects and 
those who converted to aMCI or AD over the course of the study (Converters) 
based on these composite scores. Impairment was defined as a z-score 1.35 
below the cohort median. All participants classified as aMCI met recently 
revised criteria29 for the amnestic subtype of MCI30. We excluded other behav-
ioral phenotypes of MCI in order to concentrate on the amnestic, which most 
likely represents nascent AD pathology31. All participants with early AD met 
recently revised criteria for probable AD32 with impairment in memory and at 
least one other cognitive domain. For the aMCI/AD group, scores on the meas-
ures of memory complaints (MMQ) and activities of daily living (PGC-IADL) 
were used to corroborate research definitions of these states. All Converters had 
nonimpaired memory at entry to the study (Zmem≥−1.35), developed memory 
impairment over the course of the study (Zmem≤−1.35) and met criteria for the 
above definitions of aMCI or AD. To enhance the specificity of our biomarker  
analyses, NC participants in this study were conservatively defined with  
Zmem ± 1 s.d. of the cohort median rather than simply ≥−1.35, and all other  
z-scores ≥−1.35 s.d. (Supplementary Note).

At the end of year 3 of the study, 202 participants had completed a baseline 
and two yearly visits. At the third visit, 53 participants met criteria for aMCI/AD 
and 96 met criteria for NC. Of the 53 aMCI/AD participants, 18 were Converters 
and 35 had incident aMCI or AD. The remaining 53 participants did not meet 
our criteria for either group and were not considered for biomarker profiling. 
Some of these individuals met criteria for nonamnestic MCI, and many had 
borderline or even above average memory scores that precluded their inclu-
sion as either aMCI/AD or NC (Supplementary Fig. 1). We matched 53 NC 

participants to the 53 aMCI/AD participants based on sex, age and education 
level. We used blood samples obtained on the last available study visit for the 53 
MCI/AD and 53 NC for biomarker discovery. We included two blood samples 
from each of the 18 Converters, one from the baseline visit (Converterpre) when 
Zmem was nonimpaired and one from the third visit (Converterpost) when Zmem 
was impaired and they met criteria for either aMCI or AD. Thus, a total of 124 
samples from 106 participants were submitted for biomarker discovery.

We employed internal cross-validation to validate findings from the discovery 
phase. Blood samples for validation were identified at the end of the fifth year of 
the study, and all 106 participants included in the discovery phase were excluded 
from consideration for the validation phase (Supplementary Fig. 1). Cognitive 
composite z-scores were recalculated based on the entire sample available, and 
the same procedure and criteria were used to identify samples for the validation  
phase. A total of 145 participants met criteria for a group: 21aMCI/AD and  
124 NC. Of the 21 aMCI/AD, 10 were Converters. We matched 20 NC participants  
to the aMCI/AD participants on the basis of age, sex and education level as in 
the discovery phase. In total, 40 participants contributed plasma samples to the 
validation phase, as 1 aMCI/AD subject’s plasma sample was not able to be used. 
As before, the 10 Converters also contributed a baseline sample (Converterpre) 
for a total of 50 samples.

Neurocognitive statistical analyses. The neurocognitive analyses were 
designed to demonstrate the general equivalence of the discovery and valida-
tion samples on clinical and cognitive measures. We used separate multivariate 
ANOVA (MANOVA) to examine discovery and validation group performance 
on the composite z-scores and on self-reported measures of memory com-
plaints, memory related functional impairment and depressive symptoms, 
as well as a global measure of cognitive function. In the first MANOVA, 
biomarker sample (discovery, validation) was the independent variable and 
MMQ, IADL, geriatric depression scale and mini-mental state examination 
were the dependent variables. In the second MANOVA, biomarker sample 
(discovery, validation) was the independent variable, and the five cognitive 
domain z-scores (Zatt, Zexe, Zlan, Zmem and Zvis) were the dependent variables. 
Significance for the two-sided tests was set at α = 0.05, and we used Tukey’s 
honestly significant difference (HSD procedure for post hoc comparisons. All 
statistical analyses were performed using SPSS (version 21).

Lipidomics methods. Reagents. Liquid chromatography–mass spectrometry 
(LC-MS)-grade acetonitrile, isopropanol, water and methanol were purchased 
from Fisher Scientific (New Jersey, USA). High purity formic acid (99%) was pur-
chased from Thermo-Scientific (Rockford, IL). Debrisoquine, 4-nitrobenzoic  
acid (4-NBA), Pro-Asn, glycoursodeoxycholic acid andmalic acid were  
purchased from Sigma (St. Louis, MO, USA). All lipid standards including 14:0 
LPA, 17:0 Ceramide, 12:0 LPC, 18:0 Lyso PI and PC(22:6/0:0) were procured 
from Avanti Polar Lipids (USA).

Metabolite extraction. Briefly, the plasma samples were thawed on ice and 
vortexed. For metabolite extraction, 25 µL of plasma sample was mixed with 
175 µL of extraction buffer (25% acetonitrile in 40% methanol and 35% water) 
containing internal standards (10 µL of debrisoquine (1 mg/mL), 50 µL of 4, 
nitrobenzoic acid (1 mg/mL), 27.3 µl of ceramide (1 mg/mL) and 2.5 µL of LPA 
(lysophosphatidic acid) (4 mg/mL) in 10 mL). The samples were incubated on 
ice for 10 min and centrifuged at 14,000 r.p.m. at 4 °C for 20 min. The superna-
tant was transferred to a fresh tube and dried under vacuum. The dried samples 
were reconstituted in 200 µL of buffer containing 5% methanol, 1% acetonitrile 
and 94% water. The samples were centrifuged at 13,000 r.p.m. for 20 min at 4 °C 
to remove fine particulates. The supernatant was transferred to a glass vial for 
Ultraperformance liquid chromatography–electrospray ionization quadrupole 
time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis.

UPLC-ESI-QTOF-MS–based data acquisition for untargeted lipidomic 
profiling. Each sample (2 µL) was injected onto a reverse-phase CSH C18 
1.7 µM 2.1x100 mm column using an Acquity H-class UPLC system (Waters 
Corporation, USA). The gradient mobile phase comprised of water contain-
ing 0.1% formic acid solution (Solvent A), 100% acetonitrile (Solvent B) and 
10% acetonitrile in isopropanol containing 0.1% formic acid and 10 mM 
ammonium formate (Solvent C). Each sample was resolved for 13 min at a 
flow rate of 0.5 mL/min for 8 min and then 0.4 mL/min from 8 to 13 min.  
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The UPLC gradient consisted of 98% A and 2% B for 0.5 min and then a ramp 
of curve 6 to 60% B and 40% A from 0.5 min to 4.0 min, followed by a ramp of  
curve 6 to 98% B and 2% A from 4.0 to 8.0 min, a ramp to 5% B and 95% C from  
9.0 min to 10.0 min at a flow rate of 0.4 mL/min and finally a ramp to 98%  
A and 2% B from 11.0 min to 13 min. The column eluent was introduced 
directly into the mass spectrometer by electrospray ionization. Mass spectrom-
etry was performed on a quadrupole time-of-flight (Q-TOF) instrument (Xevo 
G2 QTOF, Waters Corporation, USA) operating in either negative (ESI−) or 
positive (ESI+) electrospray ionization mode with a capillary voltage of 3,200 V  
in positive mode and 2,800 V in negative mode and a sampling cone voltage 
of 30 V in both modes. The desolvation gas flow was set to 750 l h−1, and the 
temperature was set to 350 °C. The source temperature was set at 120 °C. 
Accurate mass was maintained by introduction of a lock-spray interface of  
leucine-enkephalin (556.2771 [M+H]+ or 554.2615 [M-H]−) at a concentra-
tion of 2 pg/µL in 50% aqueous acetonitrile and a rate of 2 µL/min. Data were 
acquired in centroid MS mode from 50 to 1,200 m/z mass range for TOF-MS 
scanning as single injection per sample, and the batch acquisition was repeated 
to check experimental reproducibility. For the metabolomics profiling experi-
ments, pooled quality control (QC) samples (generated by taking an equal 
aliquot of all the samples included in the experiment) were run at the begin-
ning of the sample queue for column conditioning and every ten injections 
thereafter to assess inconsistencies that are particularly evident in large batch 
acquisitions in terms of retention time drifts and variation in ion intensity over 
time. This approach has been recommended and used as a standard practice 
by leading metabolomics researchers33. A test mix of standard metabolites was 
run at the beginning and at the end of the run to evaluate instrument perform-
ance with respect to sensitivity and mass accuracy. The overlay of the total ion 
chromatograms of the quality control samples depicted excellent retention 
time reproducibility. The sample queue was randomized to remove bias.

Stable isotope dilution–multiple reaction monitoring mass spectrometry. 
LC-MSmass spectrometry (LC-MS/MS) is increasingly used in clinical settings 
for quantitative assay of small molecules and peptides such as vitamin D, serum 
bile acid and parathyroid hormone under Clinical Laboratory Improvement 
Amendments environments with high sensitivities and specificities34. In this 
study, targeted metabolomic analysis of plasma samples was performed using 
the Biocrates Absolute-IDQ P180 (BIOCRATES, Life Science AG, Innsbruck, 
Austria). This validated targeted assay allows for simultaneous detection and 
quantification of metabolites in plasma samples (10 µL) in a high-throughput 
manner. The methods have been described in detail35,36. The plasma samples 
were processed as per the instructions by the manufacturer and analyzed on 
a triple-quadrupole mass spectrometer (Xevo TQ-S, Waters Corporation, 
USA) operating in the MRM mode. The measurements were made in a 96-well 
format for a total of 148 samples, and seven calibration standards and three 
quality control samples were integrated in the kit. Briefly, the flow injection 
analysis tandem mass spectrometry (MS/MS) method was used to quantify a 
panel of 144 lipids simultaneously by multiple reaction monitoring. The other 
metabolites are resolved on the UPLC and quantified using scheduled MRMs. 
The kit facilitates absolute quantitation of 21 amino acids, hexose, carnitine,  
39 acylcarnitines, 15 sphingomyelins, 90 phosphatidylcholines and 19 biogenic 
amines. Data analysis was performed using the MetIQ software (Biocrates), 
and the statistical analyses included the nonparametric Kruskal-Wallis test 
with follow-up Mann-Whitney U-tests for pairwise comparisons using the 
STAT pack module v3 (Biocrates). Significance was adjusted for multiple com-
parisons using Bonferroni’s method (P < 0.025). The abundance is calculated 
from area under the curve by normalizing to the respective isotope labeled 
internal standard. The concentration is expressed as nmol/L. Human EDTA 
plasma samples spiked with standard metabolites were used as quality control 
samples to assess reproducibility of the assay. The mean of the coefficient of 

variation (CV) for the 180 metabolites was 0.08, and 95% of the metabolites 
had a CV of <0.15.

Sample size considerations. The signal intensity of the metabolites within 
similar groups was normally distributed with a standard deviation of 1.5. If 
the true difference in the Converterpre and NC groups’ mean is twofold, we 
will have over 90% power to detect differential metabolites at an overall signifi-
cance level of 5% with Bonferroni’s adjustment using 30 subjects per group.

Lipidomics statistical analyses. The m/z features of metabolites were nor-
malized with log transformation that stabilized the variance, followed by a 
quantile normalization to make the empirical distribution of intensities the 
same across samples37. The metabolites were selected among all those known 
to be identifiable using a ROC regularized learning technique38,39 based on 
the LASSO penalty8,9 as implemented with the R package ‘glmnet’40, which 
uses cyclical coordinate descent in a path-wise fashion. We first obtained the 
regularization path over a grid of values for the tuning parameter λ through 
tenfold cross-validation. The optimal value of the tuning parameter lambda, 
which was obtained by the cross-validation procedure, was then used to fit 
the model. All the features with nonzero coefficients were retained for sub-
sequent analysis. This technique is known to reduce overfitting and achieve 
similar prediction accuracy as the sparse supporting vector machine. The 
classification performance of the selected metabolites was assessed using area 
under the ROC curve (AUC). The ROC can be understood as a plot of the 
probability of classifying correctly the positive samples against the rate of 
incorrectly classifying true negative samples. So the AUC measure of an ROC 
plot is a measure of predictive accuracy. To maintain rigor of independent 
validation, the simple logistic model with the ten-metabolite panel was used, 
although a more refined model can yield greater AUC. The validation phase 
was performed in a blinded fashion such that the sample group was not known 
by the statistical team.
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