PLASMA PHYSICS AND FUSION ENERGY

There has been an increase in worldwide interest in fusion research over the last decade due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed during the next century to meet the ever increasing demand for electrical energy. This has led to an international agreement to build a large, \$4 billion, reactor-scale device known as the "International Thermonuclear Experimental Reactor" (ITER).

Plasma Physics and Fusion Energy is based on a series of lecture notes from graduate courses in plasma physics and fusion energy at MIT. It begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as fusion power production, power balance, and the design of a simple fusion reactor before discussing the basic plasma physics issues facing the development of fusion power – macroscopic equilibrium and stability, transport, and heating.

This book will be of interest to graduate students and researchers in the field of applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.

JEFFREY P. FREIDBERG is a Professor and previous Head of the Nuclear Science and Engineering Department at MIT. He is also an Associate Director of the Plasma Science and Fusion Center, which is the main fusion research laboratory at MIT.

PLASMA PHYSICS AND FUSION ENERGY

Jeffrey P. Freidberg Massachusetts Institute of Technology

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521851077

© J. Freidberg 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 13 978 0 521 85107 7 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Karen

Contents

	Pref	ace	page xiii
	Ackr	nowledgements	XV
	Unit	S	xvii
Pa	rt I	Fusion power	1
1	Fusi	on and world energy	3
	1.1	Introduction	3
	1.2	The existing energy options	4
	1.3	The role of fusion energy	16
	1.4	Overall summary and conclusions	19
		Bibliography	20
2	The	fusion reaction	21
	2.1	Introduction	21
	2.2	Nuclear vs. chemical reactions	21
	2.3	Nuclear energy by fission	23
	2.4	Nuclear energy by fusion	24
	2.5	The binding energy curve and why it has the shape it does	29
	2.6	Summary	35
		Bibliography	35
		Problems	36
3	Fusi	on power generation	37
	3.1	Introduction	37
	3.2	The concepts of cross section, mean free path, and collision	
		frequency	38
	3.3	The reaction rate	42
	3.4	The distribution functions, the fusion cross sections, and the fusion	
		power density	46
	3.5	Radiation losses	51
	3.6	Summary	56
		Bibliography	57
		Problems	58

CAMBRIDGE

Cambridge University Press				
978-0-521-85107-7 - Plasma	Physics	and	Fusion	Energy
Jeffrey P. Freidberg				
Frontmatter				
More information				

vii	i	Contents	
4	Pow	er balance in a fusion reactor	60
	4.1	Introduction	60
	4.2	The 0-D conservation of energy relation	60
	4.3	General power balance in magnetic fusion	62
	4.4	Steady state 0-D power balance	62
	4.5	Power balance in the plasma	65
	4.6	Power balance in a reactor	69
	4.7	Time dependent power balance in a fusion reactor	74
	4.8	Summary of magnetic fusion power balance	82
		Bibliography	82
		Problems	83
5	Desi	gn of a simple magnetic fusion reactor	85
	5.1	Introduction	85
	5.2	A generic magnetic fusion reactor	85
	5.3	The critical reactor design parameters to be calculated	86
	5.4	Design goals, and basic engineering and nuclear physics constraints	88
	5.5	Design of the reactor	91
	5.6	Summary	105
		Bibliography	106
		Problems	106
Pa	rt II	The plasma physics of fusion energy	109
6	Over	view of magnetic fusion	111
	6.1	Introduction	111
	6.2	Basic description of a plasma	113
	6.3	Single-particle behavior	113
	6.4	Self-consistent models	114
	6.5	MHD equilibrium and stability	115
	6.6	Magnetic fusion concepts	116
	6.7	Transport	117
	6.8	Heating and current drive	118
	6.9	The future of fusion research	120
		Bibliography	120
7	Defi	nition of a fusion plasma	121
	7.1	Introduction	121
	7.2	Shielding DC electric fields in a plasma – the Debye length	122
	7.3	Shielding AC electric fields in a plasma – the plasma frequency	126
	7.4	Low collisionality and collective effects	130
	7.5	Additional constraints for a magnetic fusion plasma	133
	7.6	Macroscopic behavior vs. collisions	135
	7.7	Summary	135
		Bibliography	136
		Problems	137

CAMBRIDGE

Cambridge University Press				
978-0-521-85107-7 - Plasma	Physics	and	Fusion	Energy
Jeffrey P. Freidberg				
Frontmatter				
More information				

		Contents	ix
8	Singl	e-particle motion in a plasma – guiding center theory	139
	8.1	Introduction	139
	8.2	General properties of single-particle motion	141
	8.3	Motion in a constant B field	143
	8.4	Motion in constant B and E fields: the $\mathbf{E} \times \mathbf{B}$ drift	148
	8.5	Motion in fields with perpendicular gradients: the ∇B drift	151
	8.6	Motion in a curved magnetic field: the curvature drift	156
	8.7	Combined $\mathbf{V}_{\nabla B}$ and \mathbf{V}_k drifts in a vacuum magnetic field	159
	8.8	Motion in time varying \mathbf{E} and \mathbf{B} fields: the polarization drift	160
	8.9	Motion in fields with parallel gradients: the magnetic moment and	
		mirroring	167
	8.10	Summary – putting all the pieces together	177
		Bibliography	179
		Problems	179
9	Singl	e-particle motion – Coulomb collisions	183
	9.1	Introduction	183
	9.2	Coulomb collisions – mathematical derivation	185
	9.3	The test particle collision frequencies	191
	9.4	The mirror machine revisited	198
	9.5	The slowing down of high-energy ions	201
	9.6	Runaway electrons	207
	9.7	Net exchange collisions	212
	9.8	Summary	219
		Bibliography	220
		Problems	221
10	A sel	f-consistent two-fluid model	223
	10.1	Introduction	223
	10.2	Properties of a fluid model	224
	10.3	Conservation of mass	227
	10.4	Conservation of momentum	229
	10.5	Conservation of energy	234
	10.6	Summary of the two-fluid model	241
		Bibliography	242
		Problems	243
11	MHE	D – macroscopic equilibrium	245
	11.1	The basic issues of macroscopic equilibrium and stability	245
	11.2	Derivation of MHD from the two-fluid model	246
	11.3	Derivation of MHD from guiding center theory	252
	11.4	MHD equilibrium – a qualitative description	258
	11.5	Basic properties of the MHD equilibrium model	261
	11.6	Radial pressure balance	264
	11.7	Toroidal force balance	271

CAMBRIDGE

Cambridge Univer	sity Press				
978-0-521-85107-7	' - Plasma	Physics	and	Fusion	Energy
Jeffrey P. Freidber	g				
Frontmatter					
More information					

X		Contents	
	11.8	Summary of MHD equilibrium	292
		Bibliography	293
		Problems	293
12	MHD	– macroscopic stability	296
	12.1	Introduction	296
	12.2	General concepts of stability	297
	12.3	A physical picture of MHD instabilities	302
	12.4	The general formulation of the ideal MHD stability problem	307
	12.5	The infinite homogeneous plasma – MHD waves	313
	12.6	The linear θ -pinch	317
	12.7	The $m = 0$ mode in a linear Z-pinch	320
	12.8	The $m = 1$ mode in a linear Z-pinch	324
	12.9	Summary of stability	329
		Bibliography	329
		Problems	330
13	Magne	etic fusion concepts	333
	13.1	Introduction	333
	13.2	The levitated dipole (LDX)	335
	13.3	The field reversed configuration (FRC)	344
	13.4	The surface current model	350
	13.5	The reversed field pinch (RFP)	358
	13.6	The spheromak	373
	13.7	The tokamak	380
	13.8	The stellarator	423
	13.9	Revisiting the simple fusion reactor	437
	13.10	Overall summary	441
		Bibliography	443
		Problems	445
14	Transp		449
	14.1	Introduction	449
	14.2	Transport in a 1-D cylindrical plasma	451
	14.3	Solving the transport equations	465
	14.4	Neoclassical transport	478
	14.5	Empirical scaling relations	497
	14.6	Applications of transport theory to a fusion ignition experiment	513
	14.7	Overall summary	529
		Bibliography	529
		Problems	531
15		g and current drive	534
	15.1	Introduction	534
	15.2	Ohmic heating	537
	15.3	Neutral beam heating	540

Cambridge University Press				
978-0-521-85107-7 - Plasma	Physics	and	Fusion	Energy
Jeffrey P. Freidberg				
Frontmatter				
More information				

Contents	xi
15.4 Basic principles of RF heating and current drive	551
15.5 The cold plasma dispersion relation	569
15.6 Collisionless damping	571
15.7 Electron cyclotron heating (ECH)	586
15.8 Ion cyclotron heating (ICH)	597
15.9 Lower hybrid current drive (LHCD)	609
15.10 Overall summary	624
Bibliography	625
Problems	627
16 The future of fusion research	633
16.1 Introduction	633
16.2 Current status of plasma physics research	633
16.3 ITER	637
16.4 A Demonstration Power Plant (DEMO)	642
Bibliography	644
Appendix A Analytical derivation of $\langle \sigma v \rangle$	645
Appendix B Radiation from an accelerating charge	650
Appendix C Derivation of Boozer coordinates	656
Appendix D Poynting's theorem	664
Index	666

Preface

Plasma Physics and Fusion Energy is a textbook about plasma physics, although it is plasma physics with a mission – magnetic fusion energy. The goal is to provide a broad, yet rigorous, overview of the plasma physics necessary to achieve the half century dream of fusion energy.

The pedagogical approach taken here fits comfortably within an Applied Physics or Nuclear Science and Engineering Department. The choice of material, the order in which it is presented, and the fact that there is a coherent storyline that always keeps the energy end goal in sight is characteristic of such applied departments. Specifically, the book starts with the design of a simple fusion reactor based on nuclear physics principles, power balance, and some basic engineering constraints. A major point, not appreciated even by many in the field, is that virtually no plasma physics is required for the basic design. However, one of the crucial outputs of the design is a set of demands that must be satisfied by the plasma in order for magnetic fusion energy to be viable. Specifically, the design mandates certain values of the pressure, temperature, magnetic field, and the geometry of the plasma. This defines the plasma parameter regime at the outset. It is then the job of plasma physicists to discover ways to meet these objectives, which separate naturally into the problems of macroscopic equilibrium and stability, transport, and heating. The focus on fusion energy thereby motivates the structure of the entire book – how can we, the plasma physics community, discover ways to make the plasma perform to achieve the energy mission.

Why write such a book now? Fusion research has increased worldwide over the last several years because of the internationally recognized pressure to develop new reliable energy sources. With the recently signed agreement to build the next generation International Thermonuclear Experimental Reactor (ITER), I anticipate a substantial increase in interest on the part of new students and young scientists to join the fusion program. While fusion still has a long way to go before becoming a commercially viable source of energy, the advent of ITER enhances the already existing worldwide interest and excitement in plasma physics and fusion research. The incredibly challenging science and engineering problems coupled with the dream of an energy system characterized by unlimited fuel, near environmental perfection, and economical competitiveness are still big draws to new students and researchers.

xiv

Preface

Who is the intended audience? This textbook is aimed at seniors, first year graduate students, and new scientists joining the field. In general, the style of presentation includes in depth physical explanations aimed at developing physical intuition. It also includes many detailed derivations to clarify some of the mathematical mysteries of plasma physics. The book should thus be reasonably straightforward for newcomers to fusion to read in a stand alone fashion. There is also an extensive set of homework problems developed over two decades of teaching the subject at MIT.

With more explanations and detailed derivations something must give or else the book would become excessively long. The answer is to carefully select the material covered. In deciding how to choose which material to include and not to include, there are clearly tough decisions to be made. I have made these choices based on the idea of providing newcomers with a good first pass at understanding all the essential issues of magnetic fusion energy. Consequently, the material included is largely focused on the plasma physics mandated by fusion energy, which for a first pass is most easily described by macroscopic fluid models.

As to what is not included, there is very little discussion of fusion engineering. There is also very little discussion of plasma kinetic theory (e.g. the Vlasov equation and the Fokker– Planck equation). Somewhat surprisingly to me, it was not until the next-to-last chapter in the book that I first actually needed any of the detailed results of kinetic theory (i.e., the collisionless damping rates of RF heating and current drive), which I then derived using a simple, intuitive single-particle analysis. The point is that the first time through, the best way to develop an overall understanding of all the issues involved, with particular emphasis on self-consistent integration of the plasma physics, is to focus on macroscopic fluid models which are more easily tied to physical intuition and experimental reality. Ideally, a followon study based on kinetic theory would be the next logical step to master fusion plasma physics. In such a study, many of the topics described here would be analyzed at the more advanced level marking the present state of the art in fusion research.

As is clear from the length of the book, it would take a two semester course to cover the entire material in detail. However, a cohesive one semester course can also be easily constructed by picking and choosing from among the many topics covered. In terms of prerequisites, my assumption is that readers will have a solid foundation in undergraduate physics and mathematics. The specific requirements include: (1) mathematics up to partial differential equations, (2) mechanics, (3) basic fluid dynamics, and (4) electromagnetic theory (i.e., electrostatics, magnetostatics, and wave propagation). Experience has shown that an undergraduate degree in physics or most engineering disciplines provides satisfactory preparation.

In the end it is my hope that the book will help educate the next generation of fusion researchers, an important goal in view of the international decision to build ITER, the world's first reactor-scale, burning plasma experiment.

Acknowledgements

The material for this book has evolved over many years of research and teaching. Many friends, colleagues, and students, too numerous to mention, have contributed in a significant way to my knowledge of the field, making this book possible. I acknowledge my deep appreciation for their collaboration, cooperation, and comraderie.

A number people at MIT also deserve special thanks. Bob Granetz, Ian Hutchinson, Ron Parker, and Abhay Ram have also all taught the subject upon which the book is based. I am grateful to them for sharing their notes and experiences with me.

Many colleagues at MIT have also been kind enough to read chapters of the book and provide me with me valuable feedback. I would like to thank Paul Bonoli, Leslie Bromberg, Peter Catto, Jan Egedal, Martin Greenwald, Jay Kesner, Jesus Ramos, and John Wright for their efforts. Other MIT colleagues gave generously of their time by means of intensive discussions. My appreciation to Darin Ernst, Joe Minervini, Kim Molvig, Miklos Porkolab, and Steve Scott.

A number of friends and colleagues from the general fusion community also read sections of the manuscript and provided me with valuable comments, particularly with respect to Chapter 13, which describes many present day fusion concepts. I would like to acknowledge help from Dan Barnes and Dick Siemon (the FRC), Riccardo Betti and Dale Meade (the tokamak and fusion reactors), Alan Boozer and Hutch Neilson (the stellarator), Bick Hooper (the spheromak), Martin Peng (the spherical tokamak), and John Sarff (the RFP).

Special thanks to my colleague Don Spong for producing the striking illustration appearing on the cover of the book.

As one might expect, preparing a manuscript is an ambitious task. I am extremely grateful to a cadre of MIT graduate students (many of them now full-time researchers) for their help in preparing the figures. My thanks to Joan Decker, Eric Edlund, Nathan Howard, Alex Ince-Cushman, Scott Mahar, and Vincent Tang. Special thanks to Vincent Tang who proof-read the entire manuscript for content and style. My assistant Liz Parmelee also provided invaluable administrative and organizational support during the entire preparation of the manuscript.

The team at Cambridge University Press has been a great help in publishing the manuscript, from the initial agreement to write the book to the final production. Thanks to

xvi

Acknowledgements

Simon Capelin (publishing director), Lindsay Barnes (assistant editor), Dan Dunlavey (production editor), Emma Pearce (production editor) and Maureen Storey (copy editor).

Last, but most certainly not least, I would like to thank my wife Karen for her unending support and encouragement while I prepared the manuscript. She was also kind enough to proofread a large fraction of the text for which I am most grateful.

Units

Throughout the textbook standard MKS units are used. The one exception is the temperature. It is now common practice in the field of fusion plasma physics to absorb Boltzmann's constant *k* into the temperature so that the combination kT always appears as *T*; that is, $kT \rightarrow T$, where *T* has the units of energy (joules).

There are also a number of relationships expressed in "practical" units, which unless otherwise specified, are given by

Number density	n	$10^{20} \ {\rm m}^{-3}$
Temperature	Т	keV
Pressure	р	atmospheres
Magnetic field	В	tesla
Current	Ι	megamperes
Minor radius	a	m
Major radius	R	m
Confinement time	$ au_{ m E}$	S