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Abstract

Plasma fluid parameters calculated from solar wlnd and magnetic field data

obtained on ISEE 3 were studied to determine the characteristic properties of

driver gas following a select subset of interplanetary shocks. Of 54 shocks

observed from August 1978 to February 1980, 9 contained a well defined driver

gas that was clearly identifiable by a discontinuous decrease in the average

proton temperature across a discontinuity which we assume is tangential. While
helium enhancements were present somewhere downstream of the shock in all 9 of

these events, only about half of them contained simultaneous changes in the two

quantities. Often the He/H ratio changed over a period of minutes.

Simultaneous wlth the drop in proton temperature the helium and electron

temperature decreased abruptly. In some cases the proton temperature

depression was accompanied by a moderate increase in magnetic field magnitude

wlth an unusually low variance, by a small decrease in the variance of the bulk

velocity, and by an increase in the ratio of parallel to perpendicular

temperature. The cold driver gas usually displayed a bl-directlonal flow of

suprathermal solar wind electrons at higher energies (>!37 eV).

I. Introduction

Interplanetary shocks have been observed throughout that part of the

heliosphere sampled by space probes during the last two decades. These shocks

were generally formed either by hlgh speed streams which steepen wlth

increasing radial distance into forward-reverse shock pairs at their leading

edges [Hundhausen and Gosling, 1976; Smlth and Wolf, 1976], or by transient

events at the sun which expel coronal material to drive forward shocks [see

e.g. Hundhausen, 1972]. Shocks produced by transient events in the corona can

also form forward-reverse shock pairs but usually outside of I AU. The

characteristics of the plasma behind thls latter type shock have been studied

extensively. The "driver gas" for these shocks is usually identified by one or

more of the following anomalous solar wind conditions: He abundance

enhancements [Bame et al., 1968; Hirshberg et al., 1972; Borrlnl et al., 1982],

proton temperature depressions [Gosling et al., 1973], electron temperature

depressions [Montgomery et al., 1974], hlgh magnetic field strength [Hlrshberg

and Colburn, 1969; Schatten and Schatten, 1972; Burlaga and King, 1979] wlth
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low variance [Pudovkin et al., 1979], unusual heavy ion ionization states [Bame
et al. 1979; Fenimore 1980; Schwennet al., 1980; Gosling et al., 1980; Zwickl
et al., 1982], and bidirectional streaming of both solar wind electrons
[Montgomery et al., 1974; Temy and Vaisberg, 1979; Bameet al., 1981] and
energetic protons [Palmer et al., 1978; Kutchko et al., 1982].

The most commonly used characteristics in determining the presence of

driver gas behind interplanetary shocks are He abundance enhancements and

proton temperature depressions. However, these plasma signatures are observed

after less than half of all shocks [Schwenn et al. 1980; Borrini et al.,

1982], and when present can show a very complex pattern [Ogilvie and Burlaga,

1974; Bame et al., 1979].

Plasma fluid parameters calculated from solar wind data together with

magnetic field data obtained with instrumentation on ISEE 3 have been studied

to determine the characteristic properties of driver gas following a select

subset of interplanetary shocks. Of 54 shocks observed from August 1978 to

February 1980, 9 were followed by well defined driver gas that is clearly

identifiable by a discontinuous decrease in the average proton temperature.

This decrease is accompanied by an abrupt change in the magnetic field strength

in 7 and possibly 8 of the 9 events and when taken together with the observed

discontinuous changes in other plasma parameters implies the presence of a

tangential discontinuity at the interface between the shocked ambient plasma

and driver gas. In this paper the plasma properties of the driver gas from the

9 events are examined with a view toward characterizing the complexity of the
most well defined events.

2. Characteristic Properties of Driver Gas

The subset of 9 events in this study were selected only on the basis of a

well defined discontinuous decrease in proton temperature following a shock.

Constraints were not placed on any other property of the assumed driver gas.

Characteristic properties of the plasma following these 9 events are shown in

Table i. The identification of a He/H increase following a shock was not

restricted just to plasma within the lowest temperature region. The first

three properties are those most often used to identify the presence of driver

gas in this select subset. Helium abundance increases and Te decreases are
present in all but one case, indicating both properties are commonly present in

driver gas. Bi-dlrectional streaming of plasma electrons is often but not

always seen (Table I). The thin proton density enhancement, located near the

discontinuity separating the shocked plasma from the driver, is the least

reliable indicator of driver gas and is probably not a general feature. The

next three quantities in Table I have not been discussed previously and all

three (a bulk speed increase, a decrease in the RMS deviation of V, Cv, and an
increase in the parallel to perpendicular proton temperature ratio) are usually

present. The last two quantities in the table indicate the nature of the

magnetic field magnitude (increase) at the interface between the shocked plasma

and the low temperature driver gas and RMS deviation ,CB, decrease within the
temperature depressed phase of the driver gas. The significance of a decrease

in cB is hard to determine in cases where large macroscopic variations in B are
taking place.
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Table 1
ISEE-3

Characteristic Properties of Driver Gas
CharacterlstlcNov 12 Dec 14 Feb 21

1978 1978 1979

I. Tpdecreas e y

2. He/H increase Y

3. Te decrease Y

4, Bi-dlrectlonal Y

streaming

5. Density spike ?

6. V increase Y

7. _v decrease Y

8. TN/T ± y

9. IBl increase Y

10. _B decrease Y

Y Y

Y Y

Y Y

- ?

Y Y

Y Y

? Y

?

Mar 9 Mar 22 Apr 1 Apr 5 Apr 24 May 29
1979 1979 1979 1979 1979 1979

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y - y Y Y

Y Y - y Y Y

Y ? - _ _ y

Y Y - y Y Y

Y Y - y Y Y

Y Y Y Y ¥ Y

Y Y Y Y - y

Y Y - y Y Y

Y = yes ? = uncertain - = not present

3. Temporal variability of driver sas

The time history of several solar wind parameters together with the

strength of the interplanetary magnetic field are shown in Figure 1 for the

shock occurring on 21 February 1979. The dashed line (~1515 UT) indicates the

onset of the discontinuous drop in proton temperature and marks the location of

the discontinuity which we assume is ......_an_=_i_=_-_. Simultaneous with this drop

in proton temperature, the proton density increases, the He/H ratio increases,

and the electron temperature decreases (not shown). While the magnetic field

magnitude increases at this time, it is difficult to determine if this increase

is due to the presence of the driver gas or is just another of the many
variations in the field.

The plasma flow after the 21 February shock is a near classical example of

what the solar wind parameters (T_, Te, He/H) would look like in the ideal
case: all parameters change s_multanously at the onset of the driver gas.

However, such events are rare, only 3 of the special subset of 9 events show

similar characteristics.

In general the He/H abundance ratio enhancement can occur at any time

after the onset of the discontinuous drop in temperature. The most interesting

example of the He/H abundance variation is found in the 22 March 1979 event

shown in Figure 2. Here, the He/H abundance is enhanced before, depressed

during, and enhanced after the low temperature region. Several other

interesting features are also present in Figure 2. The magnitude of the

magnetic field increases simultaneously with the decrease in proton temperature
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and remains high with a reduced RMS deviation throughout the low temperature

region. During the same time interval the ratio of the parallel to

perpendicular proton temperature increased to relatively high levels. However,

a significant part, though not all, of the increase is due to the difficulty of

making accurate measurement of the two components at low temperature.

4. Discussion

Many of the parameters shown in Table I and Figures 1 and 2 have been

examined previously. The most often studied parameter, the He/H ratio, has

long been held to be the best indicator of the presence of driver gas behind a

shock [Hirshberg et al., 1972]. The present study indicates that He/H

increases [Bame et al., 1979] can occur anywhere with respect to the boundaries

of the low temperature regions. They usually have rise and decay times on the

order of minutes, a time much shorter than the overall duration of the He

enhancement. Such would not be the case if the He/H increases were a necessary

and sufficient identifier of cold driver gas. In the case of the He/H increase

occurring prior to the T_ decrease in the 22 March 1979 event shown in FigureP
2, we believe the enhanced He plasma was ejected from the corona ahead of the

discontinuity, and as such is simply an extended signature of the transient

disturbance which later produced the shock.

This study confirms and extends recent work concerning the nature of the

magnetic field during the passage of driver gas. Borrinl et al. (1982), in a

statistical survey of 103 forward shocks, showed that, on the average, driver

gas containing enhanced He/H ratios also exhibited increased magnetic field

strength. Earlier Pudovkin et al. (1979) had indicated that the _:S =eviation

of the magnetic field often decreases during the passage of driver gas. These

two characteristics are clearly seen in the 22 March 1979 event shown in Figure

2 and their frequency of occurrence in clearly identified cold driver gas can
be determined from the data in Table i.

The signature of the magnetic field parameters in driver gas suggests a

°_i_a_ examination be made of the bulk flow velocity and its RMS deviation.

These parameters, shown in Table i, indicate that while the solar wind bulk

velocity often increases at the onset of the driver gas, the RMS deviation,

averaged over a 10 minute interval, usually decreases slightly. Thus, the

plasma data and the magnetic field data indicate that cold driver gas contains

lower than normal levels of low frequency wave activity.

A schematic model illustrating a possible geometry for plasma driving an

interplanetary shock is shown in Figure 3 (based on Figure 10 from Bame et al.,

1979). Many of the characteristic properties of driver gas listed in Table i

are illustrated in the figure. Of particular note in Figure 3 is the uneven

distribution of helium enriched plasma and the smooth closed magnetic field

lines. The geometry of our model differs considerably from that presented by

Pudovkin et al. (1979). Our model suggests that it is possible to observe the

shock without detecting driver gas, and when driver gas is observed the He

enhancement may occur early or late or the He enhancement may occur in several

distinct regions. These characteristics, which are observed in the data, are

not shown in their model [Pudovkin et al., 1979].
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A POSSIBLE GEOMETRY OF

PLASMA DRIVING A SHOCK WAVE

SHOCKWAVE

HEATED 8= COMPRESSED
AMBIENT PLASMA

TANGENTIAL
DISCONTINUITY

N-SPIKE SHELL

LUMPY DISTRIBUTION
OF HELIUM ENRICHED
PLASMA

LOWEST STAGE T-DEPRESSION
IN CLOSED MAGNETIC BUBBLE

ENRICHED PLASMA EXTENDING
BEYOND LOWEST STAGE T-DEPRESSION

©
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Figure 3. Schematic model illustrating a posslble geometry

for plasma driving an interplanetary shock (based on Figure

10 from Bame et al., 1979).
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