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Abstract. The plasma-surface interactions expected in the divertor of a future fusion reactor are
characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful
linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface
interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces
of a fusion device are comparable to those used in various plasma-assited deposition and etching
techniques, the ion (and energy) fluxes are up to four orders of magnitude higher. This large upscale
in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects
to light, some of which will be described in this paper.
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1. Introduction

In a magnetic confinement fusion device, power from

the core plasma has to be exhausted by the plasma-

facing components, mainly in the divertor area, a spe-

cial area of the plasma chamber, where the open

magnetic field lines intersect the primary plasma fac-

ing components and where the plasma is neutral-

ized and pumped away [22]. In ITER, the steady-

state heat load onto the divertor plates will be about

10 MW m−2 [23]. In addition, the very high local-

ized heat fluxes caused by so-called Edge Local-

ized Modes (several GW m−2 for 0.5 ÷ 1 ms) is high

enough to lead to material erosion, melting and va-

porization for most materials, and represent a se-

rious concern for the lifetime of the plasma-facing

components, because of the expected ELM frequency

of up to 40 Hz. In parallel, the divertor surfaces will be

exposed to intense particle fluxes (up to 1024 m−2 s−1

or 1.6 × 105 A m−2) with energies below 50 eV, for ex-

tended durations of times [18]. Those conditions can-

not be reproduced in present fusion devices, and pow-

erful linear plasma generators have been developed

to allow the study of plasma-surface interactions under

those extreme conditions of heat and particles.

This paper will describe the high flux facilities avail-

able at the FOM Institute DIFFER and give a brief

overview of the specifics of plasma-surface interactions

under the uniquely achievable high heat and particle

fluxes.

2. High flux plasma generators
Linear plasma generators, such as the PISCES fa-
cilities at UC San Diego [10, 11] or the NAGDIS
facilities at the University of Nagoya [21], have long
been used for the study of plasma-surface interac-
tion under fusion-relevant conditions. The achievable
ion flux density in those devices is typically limited
to 1 × 1023 m−2 s−1 in steady-state, a factor of 10
lower than what is expected in the divertor of ITER.
In addition, it is currently not possible to generate
transient plasma pulses in those devices and, instead,
high power lasers are used to combine a plasma en-
vironment and transient heat fluxes and get some
insights into the effects of ELMs on plasma-exposed
surface [13, 28], albeit missing the transient particle
flux associated with an ELM. In parallel, powerful
plasma guns [9] can be used to study the effect of pow-
erful transient plasma pulses on surfaces, in the ab-
sence of continuous plasma loading however.

In order to fill the existing gaps and allow mate-
rial exposure to ion fluxes higher than 1024 m−2 s−1,
the Pilot-PSI and Magnum-PSI devices were devel-
oped at FOM DIFFER.

A schematic diagram of Pilot-PSI is shown in Fig. 1.
Plasma is generated by a so-called cascaded arc source
[29] and exhausts into the vacuum vessel. An ax-
ial magnetic field of up to 1.6 T is used to confine
the plasma and generate an intense magnetized cylin-
drical plasma beam. The maximum pulse duration
is dependent on the magnetic field strength and is
typically 100 s at 0.4 T and 10 s at 1.6 T. Discharge
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Figure 1. Schematic diagram of the Pilot-PSI linear
plasma device.

currents in the range of 150 ÷ 250 A and gas flows
in the range of 1 ÷ 3 slm (1 standard litre per minute
is 4.48 × 1020 part s−1) are typically used. Pumping
of the process gas (H, D, He, Ne, N, Ar) is ensured
by mechanical booster pumps with an effective pump-
ing capacity of 7200 m3/hr. The samples are clamped
on a water-cooled copper holder, an intermediate layer
of Grafoil is used to improve the thermal contact, and
are located at a disctance of 54 cm from the plasma
source. In addition, the device offers the unique
possibility to combine the continuous plasma with
a transient heat and particle pulse (up to 1.2 GW m−2

for 1 ms) allowing the study of ELM effects on plasma-
exposed surfaces [6, 7]. The ELM-like pulses are gen-
erated by discharging a capacitor bank system into
the plasma source to transiently increase the input
power, and thus the plasma density and temperature.
Figure 2 gives an overview of the plasma conditions,
for both continuous and pulsed plasma, measured
by Thomson scattering at a distance of 17 mm from
the exposed surface. For DC plasmas, the densities
of up 2 ÷ 3 × 1021 m−3 with temperatures below 3 eV
have been attained. Pulsing the plasma source re-
sults in a strong increase of both the plasma densities
(up to 1022 m−3) and temperatures (up to 20 eV).

Pilot-PSI served as a development platform for
the Magnum-PSI device which is a large linear
plasma generator designed for steady-state opera-
tions. Magnum-PSI is designed around a 2.5 T su-
perconducting coil, the same cascaded arc source used
on Pilot-PSI, and a large pumping capability of about
53 000 m3/hr. The device is 15 m long. A sophis-
ticated target system has been developed in order
to accommodate a wide variety of sample size and
shapes, from small disc-type samples to targets with
dimensions up to 60×12 cm and 100 kg [3]. The target
head is attached to the target manipulator allowing
the withdrawal of the target from its exposure position
to the target exchange chamber. This target exchange
chamber can be isolated from the main vacuum cham-
ber with its exposure chamber via a double gate valve
system. This allows for an in-situ transfer of the tar-
get from the exposure location to the target exchange
chamber in less than 30 s in the presence of the mag-
netic field. The machine is currently operated with

Figure 2. Illustration of the achievable plasma condi-
tions in Pilot-PSI for various settings of the magnetic
field, gas flow and input power; the dark grey points in-
dicate the DC plasma conditions, while the blue points
denote the plasma conditions during high power pulses.

Figure 3. Schematic diagram of the Magnum-PSI lin-
ear plasma device: (a) global view on the device with
a description of the main components, (b) cut-out view
through the vacuum vessel illustrating the geometry
of the magnetic coil arrangement as well as a typical
plasma exposure.

conventional copper coils generating a magnetic field

of up to 1.9 T for 7 s (the lower the field the longer

the discharge), allowing similar plasma conditions

as in Pilot-PSI albeit with a larger plasma beam di-

ameter. A schematic diagram of Magnum-PSI in its

present configuration is shown in Fig. 3.
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Figure 4. Typical operation windows for various
ion-induced processing techniques; also indicated are
the typical conditions used during the experiments
described in this work.

3. PSI under high heat and
particle fluxes

3.1. Flux: how high is high?

The linear plasma devices at FOM can generate
plasma fluxes of up to 1025 m−2 s−1 in DC opera-
tions and up to 1026 m−2 s−1 for ms durations when
the plasma source is pulsed. The energy of the ions
impinging on the surface is determined by their accel-
eration in the sheath region. When the target is left
floating, and since the electron temperature is typi-
cally lower than 3 eV (except during plasma pulses),
the ion energy remains lower than 15 eV – assuming
Te = Ti. The ion energy can be varied by nega-
tive biasing of the sample with respect to the plasma
potential. The negative bias voltage is at maximum
100 V, with arcing occuring for higher voltages. Before
discussing how such intense fluxes of low energy ions
interact with surfaces, it is of primary interest to define
the flux magnitude by comparison with that typically
encountered in other plasma processing technologies.
Figure 4 summarizes typical values of ion energy and
ion fluxes to the surface in various plasma-assisted
processes. While the ion energies used in this study
(and in the divertor of a fusion device) are compara-
ble to those used in various plasma-assited deposition
and etching techniques, the ion (and energy) fluxes
are several (up to four) orders in a magnitude higher.
Some effects related to this large upscale in particle
flux will be described in the next sections.

3.2. Particle recycling

As mentioned above, the plasmas used in our stud-
ies are characterized with a low electron temperature
and a high plasma density. Under those conditions,
the mean free path of particles released from the sur-
face is very short and typically shorter than the charac-
teristic size of the plasma. In the case of the chemical

Figure 5. Characteristic SEM images of a graphite
surface after plasma exposure in case of negligible
re-deposition (a and b) and a surface covered with
cauliflower-like dust structures (c and d).

sputtering of graphite by hydrogen plasmas, for exam-
ple, for 0.3 eV ≤ Te ≤ 2 eV, the ionization of the hy-
drocarbons released from the surface primarily occurs
through charge exchange. The ionization mean-free
path strongly depends on the plasma density in front
of the surface and for instance decreases from 3.2 mm
for ne = 1×1020 m−3 to 0.8 mm for ne = 4×1020 m−3.
This has to be compared with the Full-Width at Half
Maximum of the plasma beam which is about 10 mm.
As a consequence, every eroded particle will experi-
ence a cycle of erosion/re-deposition events before it
can eventually escape the plasma beam. Modeling
shows that every CH molecule eroded from the surface,
for a density of 4×1020 m−3, will visit the surface in av-
erage 19 times before actually escaping the plasma
beam [26]. As a result, this strong material recycling
reduces the net surface erosion and it has been exper-
imentally determined that up to 90 % of the eroded
material is re-deposited back on the surface [4]. Re-
deposits appear in the form of large cauliflower par-
ticles which cover the surface, the surface coverage
depends on the re-deposition fraction.

3.3. Surface self-organization

For plasma fluxes higher than 1024 m−2 s−1, each sur-
face site will be visited every 10 µs or less, time which
is shorter than the residence time of adsorbed par-
ticles and in the range of typical relaxation times
for processes such as diffusion of vacancies and inter-
stitials, phase transformation and chemical reactions.
In addition, low-energy ions (≤ 10 eV), having ki-
netic energies in the range of the interatomic binding
energies, can transfer their energies very efficiently
to surface atoms thus enhancing adatoms mobility,
leading to enhanced surface diffusion and reactivity
for example. In other words, incoming ions will in-
teract with a surface, which is far out of equilibrium.
Those conditions promote self-organization effects and
the appearance of novel structures.

A striking example of ion-induced surface self-
organization was obtained when studying the chem-
ical sputtering of a fine grain graphite by a high
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Figure 6. (a) Secondary and (b) Transmission Elec-
tron Microscopy images of carbon nanotubes formed
during the interaction between a high flux nitrogen
plasma and a polished fine grain graphite substrate.

flux nitrogen plasma. Injection of extrinsic impu-
rities such as nitrogen might be used in ITER to de-
crease the power loads onto the divertor surfaces,
such an effect has been succesfully demonstrated
in the ASDEX-Upgrade tokamak [16]. The inter-
action of nitrogen ions with carbon surfaces is known
to lead to the formation of volatile compounts (CN
for example) and has mainly been studied for low
flux conditions and for energies above 50 eV [12].
Since the chemical sputtering of carbon by hydro-
gen is thought to be flux dependent with a pro-
nounced decrease of the erosion yield with fluxes [25],
studies were carried out in Pilot-PSI to investigate
the chemical sputtering by high fluxes of nitrogen
ions. Polished polycrystalline graphite samples were
exposed to high-density magnetized nitrogen plasmas
(ne = 1.5 × 1020 m−3, Te = 1 eV), with ion energy
of 30 eV. After 150 s of plasma exposure, at a sur-
face temperature of 900 ◦C (the temperature depends
on the plasma-deposited power), the formation of car-
bon nanotubes was observed on the surface by high-
resolution microscopy (Fig. 6). The nanotubes length
is typically lower than 500 nm and their diameter
around 5÷10 nm. A transmission electron microscopy
(Fig. 6b) confirms that the nanotubes are multi-wall
and also indicate the presence of amorphous carbon
around the tubed. It should be mentioned that no
special pre-treatment of the surface was applied and
that the nanotubes grew uniquely thanks to the action
of the high flux plasma.

3.4. Plasma-induced morphology
changes

Refractory metals, such as tungsten, are prime can-
didate for plasma-facing materials in future fusion
devices due to their high melting point, good ther-
mal properties and low sputtering yield by the low-Z
species characteristic of a tokamak divertor plasma.
The solubility of species like hydrogen and helium in re-
fractory metals is very low [5]. In addition, the incom-
ing particle flux is high enough to cause a local super-
saturation of mobile gas particles within the implanta-
tion zone and strong surface morphology changes as a
result of cluster/bubble growth. For example, it has re-
cently been reported that irradiation of metal surfaces
at elevated temperatures by low-energy helium ions

Figure 7. High-resolution SEM images of helium-
induced nanostructures formed on (a) tungsten and (b)
molybdenum surfaces after high flux plasma exposure.

(with energy below the ion damage threshold) leads
to the formation of a fibreform nano-structure, with
filament diameter below 20 nm. Figure 7 illustrates
the helium-induced nanostructure formed on both
tungsten and molybdenum surfaces exposed to pure
helium plasmas in Pilot-PSI [8]. The conditions neces-
sary to induce the formation of such nanostructures in-
clude a sufficiently high surface temperature, the value
of which depends on the material under considera-
tion, high enough flux of helium ions and ion energy
higher than 20÷30 eV [14, 1, 17]. The helium-induced
nanostructures formed on tungsten and molybdenum
surfaces are characterized by a very low density of less
than 10 % of that of the bulk material, a high level
of porosity [2], and, in turn, a very low surface reflectiv-
ity making the surface appear completely black [15].
This makes the high flux plasma processing an at-
tractive approach for the synthesis of black metals
allowing maximum light absorption for solar power
concentration [24].

3.5. Synergistic effects

Finally, plasma instabilities, such as the so-called
Edge Localized Modes (ELMs), lead to transient heat
loading of the plasma-exposed surface. As mentioned
above, the continuous plasma exposure leads to strong
morphology changes and a high concentration of mo-
bile gas particles in the near-surface region. This re-
sults in strong interplays between the effects of the qui-
escent plasma and the transient loads. It has been
reported, for example, that the damage threshold
of a plasma-exposed surface was significantly reduced
compared to that of a virgin surface [7]. To study
the role of plasma exposure on the response of the sur-
face during transient heating in more details, tungsten
targets pre-exposed to deuterium plasma in Pilot-PSI
were subsequently irradiated by multiple laser pulses.
The plasma exposures were made using pure deu-
terium plasmas (peak nee ∼ 1.6 ÷ 3.2 × 1020 m−3

and Te ∼ 0.8 ÷ 1.4 eV), the ion energy was fixed
to 38 eV. The laser pulse spot size was about 2 mm
diameter with the duration of 1.2 ms at 1064 nm from
an Nd:YAG laser, with a repetition rate of 10 Hz.
The samples were exposed to differing fluences be-
tween F = 0.6 × 1025 and 11.2 × 1025 D+ m−2. Pre-
exposed samples displayed clear blisters and bubbles
on the surface (Fig. 8a), increasing in size as a function
of fluence. Each sample was then exposed to 100 pulses
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Figure 8. SEM pictures of tungsten samples ex-
posed to either (a) only 40 s steady state plasma
(2.5 × 10

26
m

−3), (b) only transient laser pulses (100
20 MJ m

−2
s

1/2 pulses) (c) consecutive exposures of (a)
and (b) or (d) simultaneous exposures of 10 s steady
state plasma and 1000 20 MJ m

−2
s

1/2 pulses.

at either 20 or 40 MJ m−2 s1/2. The effect of a laser
exposure on a virgin surface is illustrated in Fig. 8b,
where typically no surface modification can be ob-
served. For the plasma-exposed surfaces however,
after laser exposure strong surface roughening is ob-
served for all samples (Fig. 8c). More details can be
found in [20]. However, no clear difference in terms
of surface roughening was observed after the laser ex-
posure between samples exposed to different plasma
fluences.

In order to further test the effect of synergis-
tic enhancement of the damage, a target was ex-
posed to simultaneous steady state plasma and pulsed
laser irradiation in Magnum-PSI. The plasma con-
ditions were similar to those of pre-exposed targets
above, while the laser produced a heat flux param-
eter of 20 MJ m−2 s1/2 for each of 1000 pulses at a
10 Hz repetition rate. The results (Fig. 8d) show an
enhanced surface damage under those simultaneous
loading conditions, with strong cracking of the sur-
face. This further outlines the possible strong role
of mobile hydrogen present in the near-surface region
during the plasma exposure, and is in agreement with
the results reported in [27]. Future experiments will
aim at clarifying the exact mechanisms at stake and
study the differences induced by the use of a pulsed
plasma (which is both a source of heat and particles)
and a pulsed laser.

4. Conclusions

The plasma-surface interactions expected in the di-
vertor of a future fusion reactor are characterized
by extreme heat and particle fluxes interacting with
the plasma-facing surfaces. Those extreme conditions
bring new and exciting physics posing both a serious
issue for the lifetime of plasma-facing components
in a reactor and an interesting glimpse into the be-
haviour of the surfaces under highly non-equilibrium

conditions. The understanding and control of those
effects is crucially needed to design materials able
to withstand the harsh conditions expected in a fu-
sion reactor. In particular, the interplays between
the steady-state plasma exposure and the regular tran-
sient heat loads associated with ELMs, lead to syner-
gistic effects resulting in a decreased damage thresh-
old of tungsten surfaces. The impact of those effects
for the lifetime of plasma-facing materials in future
fusion devices needs to be further investigated. On the
other hand, harnessing those extreme fluxes to manipu-
late material structure also opens the door to produce
new structures and chemistries that are thermody-
namically or kinetically inaccessible by conventional
near-equilibrium techniques.
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