
Faculty Scholarship

2016

Plasma-Wave Generation In A Dynamic Spacetime
Huan Yang

Fan Zhang

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship
by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

Digital Commons Citation
Yang, Huan and Zhang, Fan, "Plasma-Wave Generation In A Dynamic Spacetime" (2016). Faculty Scholarship. 19.
https://researchrepository.wvu.edu/faculty_publications/19

https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications/19?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


PLASMA-WAVE GENERATION IN A DYNAMIC SPACETIME

Huan Yang
1,2

and Fan Zhang
3,4

1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L2Y5, Canada
2 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L3G1, Canada

3 Gravitational Wave and Cosmology Laboratory, Department of Astronomy, Beijing Normal University, Beijing 100875, China
4 Department of Physics and Astronomy, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA

Received 2015 September 27; accepted 2015 December 16; published 2016 February 1

ABSTRACT

We propose a new electromagnetic (EM)-emission mechanism in magnetized, force-free plasma, which is driven
by the evolution of the underlying dynamic spacetime. In particular, the emission power and angular distribution of
the emitted fast-magnetosonic and Alfvén waves are separately determined. Previous numerical simulations of
binary black hole mergers occurring within magnetized plasma have recorded copious amounts of EM radiation
that, in addition to collimated jets, include an unexplained, isotropic component that becomes dominant close to the
merger. This raises the possibility of multimessenger gravitational-wave and EM observations on binary black hole
systems. The mechanism proposed here provides a candidate analytical characterization of the numerical results,
and when combined with previously understood mechanisms such as the Blandford–Znajek process and kinetic-
motion-driven radiation, it allows us to construct a classification of different EM radiation components seen in the
inspiral stage of compact-binary coalescences.

Key words: gravitation – gravitational waves – plasmas – radiation mechanisms: general

1. INTRODUCTION

With the imminent direct detection of gravitational waves
(GWs) by second generation detectors (Dooley et al. 2015), the
pursuit of an understanding of the electromagnetic (EM)
counterparts to GWs becomes urgent, as a joint observation in
both channels will provide irreplaceable means to diagnose
properties of the astrophysical sources (Christensen et al.
2011). One of the most important types of sources that could
radiate both gravitationally and electromagnetically is a
coalescing compact binary, involving black holes and/or
neutron stars surrounded by magnetized plasma (forming the
so-called “magnetospheres”). The magnetic field could origi-
nate from the accretion disk of the binary or neutron stars
themselves, and the plasma could be generated from vacuum
polarization, and/or charged particles coming off of the star
surfaces and the accretion disk. Recent numerical simulations
(Palenzuela et al. 2010b; Neilsen et al. 2011; Alic et al. 2012)
have shown that EM radiation is indeed given off by such
systems in abundance even before merger and for binary black
hole systems (while current joint-observation efforts concen-
trate on the post-merger stage of systems with at least one
neutron star (Nissanke et al. 2013)), providing further optimism
for the success of multi-messenger astronomy. The next step is
then to clarify the various physical processes at work that,
together, produce the EM signals seen numerically (in
particular, an isotropic radiation that dominates near merger
time has not been previously understood analytically). A
complete classification and characterization of these processes
is a prerequisite for extracting useful information about the
binary systems from the observed EM signals. We provide such
an analytical characterization in this work and compare it with
previous numerical results (see Figure 1 below).

Within magnetospheres, the energy density of the magnetic
field often dominates over that of the plasma particles, creating
whatʼs referred to as a force-free plasma. Thanks to the seminal
works by Goldreich & Julian (1969) and Blandford & Znajek
(1977), it is widely accepted that force-free plasma can act as a

medium for powering outgoing EM radiation (or jets) at a cost
of reducing the rotational energy of neutrons stars or black
holes (Thorne 1994; Spruit et al. 1997; Palenzuela et al. 2011;
Hansen & Lyutikov 2001; Meier 2012). More recent studies
(Hansen & Lyutikov 2001; Palenzuela et al. 2009,
2010a, 2010b, 2010c; Lyutikov 2011; McWilliams & Levin
2011; Neilsen et al. 2011; Alic et al. 2012; Moesta et al. 2012;
Brennan & Gralla 2013; DOrazio & Levin 2013; Paschalidis
et al. 2013; Morozova et al. 2014; Penna 2015) suggest that a
force-free plasma could also drain the (linear-motion) kinetic
energy of moving objects to power EM radiations in the form
of jets launching from star surfaces (or the black hole horizon),
accompanied by some isotropic flux. We refer to this as the
kinetic-motion-driven radiation,5 which is also seen from
satellites moving in earthʼs ionosphere (Drell et al.
1965a, 1965b).
There is, however, a third mechanism, which we shall call

the gravitation-driven radiation, which will be the focus of this
paper. When the background spacetime becomes dynamic, the
local EM energy density of magnetized plasma deviates from
its equilibrium values and these inhomogeneities tend to
propagate out via plasma waves. A similar phenomenon is
known to exist in spacetimes without matter (the Gertsensh-
tein–Zeldovich effect (Gertsenshtein 1962; Zeldovich 1973)),
where the outgoing radiation consists purely of vacuum EM
waves. In addition, the generation of magnetohydrodynamic
(MHD) waves by the influence of GWs has been examined in
Duez et al. (2005). Although this effect has not been explicitly
discussed in the context of force-free magnetospheres, we note
that force-free electrodynamics (FFE) can be viewed as the
low-inertia limit of relativistic magnetohydrodynamics
(McKinney 2006; Paschalidis & Shapiro 2013). In this paper,
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5 We caution that although terms like this have been used, here and in other
literature, to label different EM emission mechanisms, the nonlinearity of
force-free dynamics and gravity makes a mathematically rigorous classification
difficult. This is particularly true with fully nonlinear numerical simulations, in
which all of the emission mechanisms discussed here and below are likely
present, even when the simulation aims to study a particular one.
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we will examine essentially the same physical process, but
where the driving gravitational dynamics is not a (idealized
wave-zone) gravitational wave. Within force-free plasma,
energy can be carried away by two different classes of waves.
One class is called the fast-magnetosonic waves in the local
short-wavelength limit (the wavelength is much smaller than
the radius of spacetime curvature), whose global and longer-
wavelength counterparts are named the “trapped modes” in
Yang & Zhang (2014); Yang et al. (2015). These tend to
behave similarly to vacuum EM waves and propagate in a more
egalitarian fashion in terms of sky directions. The other class of
waves are the Alfvén waves, generalizing to “traveling waves”
(Yang & Zhang 2014; Yang et al. 2015) or principal null
solutions (Brennan et al. 2013; Zhang et al. 2015). A salient
feature of the Alfvén waves and their generalizations (for
brevity, we will not distinguish between them below, similarly
for the other class) is that they propagate along the magnetic
field lines, and as such are automatically collimated if the
magnetic field threads through the orbital plane of the binary
nearly orthogonally (a natural configuration for accretion-disk-
supported field). Below, we show how to compute their fluxes
as generated by the gravitationally-driven process.

In order to perform the analysis, we apply the geometric
approach promoted by Carter (1979); Uchida (1997a, 1997b,
1997c, 1997d, 1998); and Gralla & Jacobson (2014), whose
introduction has triggered many new developments (Lupsasca
& Rodriguez 2014; Lupsasca et al. 2014; Zhang et al. 2014;
Gralla & Jacobson 2015; Gralla et al. 2015a, 2015b) in
obtaining exact solutions to FFE, in addition to new
interpretations of previous results (Penna 2014; Menon &
Dermer 2007). Unless otherwise specified, the formulae below
are in natural units, so that c G 1= = .

2. SET-UP OF THE PROBLEM

Let us assume that there is a stationary FFE configuration in
a stationary background spacetime with metric gB. According
to discussions in Uchida (1997c, 1997d) and Gralla & Jacobson
(2014), it is possible to find at least one pair of “Euler

potentials” 1B,2Bf , such that F d dB 1B 2Bf f=  , where FB is the
background EM field tensor. Now suppose that the spacetime
becomes dynamic and its metric is g g hB = + , where ò
parametrizes the magnitude of the spacetime deformation from
its stationary state. Correspondingly the Euler potentials will
also deviate from their original values: 1,2 1,2B 1,2f f df= + ,
whereby the nonlinear FFE wave equations they satisfy are
Gralla & Jacobson (2014)

d d F 0, 11,2 ( )f  * =

with F d d1 2f fº  . Note that the Hodge star ∗ is now with
respect to the total metric g, so that it depends on metric
perturbations. In order to study the gravitationally-induced
plasma waves, we shall linearize the above equation to the
leading order in ò, and obtain

d d F d d F

d d
F

. 2

1,2 B B 1,2B B

1,2B
B ( )



df f d

f

 * +  *

= - 
¶ *
¶

This equation describes the excitation of plasma fields 1,2df by
the source on the right-hand side, which is linear in h. It implies
that GWs interacting with magnetized plasma can generate
plasma waves. Moreover, it predicts that a time-dependent
Newtonian source within magnetized plasma also induces
plasma radiation, an effect that has been overlooked before and
could have observational consequences.

3. RADIATION IN NEARLY FLAT SPACETIMES

Now we specialize to a simple yet important example where
the background metric is flat, i.e., g hh= +mn mn mn . This is a
good approximation when the gravitational field generated by
matter sources or GWs is weak. In addition, let us assume that
the plasma is magnetized along the z direction, with field
strength B so that F Bdx dyB =  . When the spacetime
becomes dynamic, the EM field two-form can be written as
(note we consider only those FFE perturbations driven by the
spacetime variations, and so use the same flag ò)

F B dx dy . 31 2( ) ( ) ( ) df df= +  +

With this set-up, one can straightforwardly work out the Hodge
star rules, plug them into Equation (2), and obtain a coupled set
of wave equations for 1,2df . These equations can further be
diagonalized through the definition of a new set of variables:
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The first equation describes a wave propagating along the
magnetic field lines, or in other words the Alfvén wave. The
second equation describes the fast-magnetosonic wave, which
propagates in all directions. These equations are gauge-
invariant, as can be checked by substituting in the infinitesimal

Figure 1. The total fast-magnetosonic fast (blue, in units of ergs s−1), Alfvén
wave Alf (purple), and motion-driven (orange) luminosities as functions of the
orbital frequency Ω (in units of 1 s−1). For fast and Alf , the dots represent
numerical integration results; the dashed lines are linear fits with flexible
slopes; the solid lines are fits with a fixed slope of 4/3. For m , the curve is
from Equation (20) (although both terms are included, only the first term
corresponding to collimated radiation is significant). For numerical data, the
crosses are the measured isotropic and collimated fluxes taken from Neilsen
et al. (2011) for the non-spinning binary system.
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gauge transformation x xi i ix + that leads to

h h h , 6, , ( )∣ ∣x x x x + + » + +mn mn m n n m mn m n n m

and

, . 7x y
1 1 2 2 ( )df df x df df x +  +

Denoting the source terms in Equation (5) as S1 and S2,
respectively, the solutions to these wave equations can be
obtained through the use of Greenʼs functions,

dzdt t t z z S t z
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where Θ denotes the Heaviside step function. After evaluating
1,2y , we can reconstruct 1,2df , and subsequently F, by noting

that

,
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whose solutions are (applying the Greenʼs function for 2D
elliptic equations)
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where x xxD = - ¢ and y yyD = - ¢.
Analogous to the Gertsenshtein–Zeldovich effect, Equa-

tion (5) together with Equation (8) explicitly show that GWs
injected into magnetized plasma would generate both Alfvén
and fast-magnetosonic waves. Supposing that the gravitational
wave packet has a characteristic amplitude h and a length-scale
of λ, it is then straightforward to see that the plasma-wave
luminosity GW satisfies B h ;GW

2 2 2 lµ a relationship that can
be compared with future numerical experiments. Here we focus
instead on the case where the source is generated by two
orbiting compact masses, in order to study the radiation of a
binary system in the inspiral stage. With a Newtonian matter
source (as the leading order post-Newtonian term of general
relativistic expressions, which is sufficient for our purpose), h
is given by (Misner et al. 1973)

h d x
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When the source consists of a pair of orbiting black holes, the
formulae above are valid at places away from the black holes,
which are themselves replaced by point masses. However, the
Newtonian approximation becomes inaccurate near the black
holes. In addition, in order to compute the plasma waves from
far away and extract the energy flux, we must exclude the
points enclosed by the black hole horizons. Therefore, in
practice (see Section 5), we remove two excision spheres when
computing the integrals in Equation (8). To test the sensitivity
of the gravitation-driven luminosity values on the excision radii

choice, we vary their values from M2 ˜ to M3 ˜ (M̃ being the
black-hole mass), and observe that the resulting flux changes
less than 10%. For the presentation of data in Section 5 then,
we adopt the cutoff radius choice of M3 ˜ . We caution that this
insensitivity to excision radii could change significantly if we
take into account relativistic (Post-Newtonian) corrections to
the metric.

4. FLUX EXTRACTION

According to Equation (8), the fast-magnetosonic waves are
quite similar to the vacuum EM waves, where the source term
S2 can also be decomposed into multipole contributions. Let us
assume that the binary (with total mass M) is practicing near-
circular motion, with a period of 2p W, in which case 2y in the
radiative zone can be written as

f
e

r
, 12

m
m

im t r

2 ( ) ( )
[ ( )]

åy q~
f-W -

where the m=0 piece corresponds to the DC monopole field,
which does not radiate. The coefficients fm may be further
decomposed into a summation of associated Lengendre
polynomials, starting from l m∣ ∣ . In order to compute the
energy flux, we need to reconstruct 1,2df with Equation (10) (in
the absence of 1y ), or more efficiently, by noticing that 1,2df
must possess similar asymptotic forms as Equation (12):

g
e

r
, 13

m
m

im t r

1,2
1,2 ( ) ( )

[ ( )]
ådf q~

f-W -

and the relationship between gm
1,2 and fm can be obtained using

Equation (4) with 01y = :

g
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We can then substitute these expressions into 1df and 2df , and
subsequently Equation (3) to obtain the field two-form. It is
then straightforward, although tedious, to extract from it the
electric and magnetic field vectors, and compute the Poynting
vector. In the end, we arrive at the flux formula for fast-
magnetosonic waves:

S
B f

r

csc
. 15

m

m
fast

0

2 2 2

2

∣ ( )∣ ( )
( )å

q q
=

¹

The Alfvén waves, on the other hand, propagate along the
magnetic field lines. Based on Equation (8), we write 1y in the
radiative zone z M∣ ∣  as

dk dk A k k u v e, , , , 16x y x y
ik x ik y

1 x y( ) ( )òy =  +

where±stands for the top/down extraction surfaces and
u t z v t z,º - º + . The effective radiative part of 1y is only
a function of u for z M , and a function of v for z M-  .
One can write the associated 1,2df in a similar format, which
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satisfies Equation (4) with 02y = :

dk dk
ik
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from which we obtain the luminosity function

B dk dk
A A

k k
2 . 18x y

u v

x y
Alf

2
2 2

2 2

∣ ∣ ∣ ∣ ( ) òå=
 ¶ ¶

+

 

For systems with mirror symmetry about the orbital plane, it
suffices to only compute the luminosity on one side and double
the result.

5. BINARY BLACK HOLE COALESCENCE

We can now compare our analytical predictions with
numerical simulations of equal-mass binary black hole
coalescences, and try to identify the physical mechanisms
behind the “isotropic” and “collimated” EM radiations seen
there (Palenzuela et al. 2010b; Neilsen et al. 2011; Alic et al.
2012; Brennan & Gralla 2013), as well as to estimate the
magnitude of each piece. To facilitate comparison, we adopt
the same contextual parameters as in the numerical experiments
above, i.e., a binary black hole system with 108 solar masses
for each hole and a background magnetic field at 104 Gauss.
We also note that the strength of the EM emissions is much
weaker than that of the gravitational-wave emission, where the
gravitational radiation-reaction leads to the shrinking of the
orbital radius. As a result, it is a valid and common
approximation to ignore any back-reaction of the EM radiations
on the evolution of the spacetime.

Both fast-magnetosonic and Alfvén waves are produced
during the sequence (inspiral, merger, and then ringdown) of
binary merger stages, and they radiate mostly in the forms of
“isotropic” and “collimated” fluxes, respectively. Below, we
will concentrate on the inspiral stage (leading into the merger
itself) thatʼs the most interesting for multi-messenger astron-
omy. During this stage, the EM emissions can be classified into
rotation-driven, kinetic-motion-driven and gravitation-driven
types. The rotation-driven radiation is generated by the
Blandford–Znajek mechanism, which supports a jet-like
radiation with luminosity of the order of (Neilsen et al. 2011)

B M

M
a2.4 10 erg s

10 G 10
19i

ir
43 1

4

2

8

2
2¯ ( )⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ~ ´ -



in cgs units and when spin is aligned with the magnetic field, or
abbreviated as L B M a2.4 i i43 4

2
8
2 2¯ . Here Mi is the ith black hole

mass and ai¯ is the dimensionless spin parameter of the black
hole ranging from 0 to 1.

As a black hole moves through magnetized force-free
plasma, it launches collimated jets along the magnetic field
lines (Palenzuela et al. 2010b; Neilsen et al. 2011). The power
of this radiation is proportional to v2 and thus 2 3W . In addition,
if the black hole also follows accelerated motion, it generates
an additional Poynting flux similar to accelerated charges in a
vacuum, which can be attributed to fast-magnetosonic wave
emission. Its power is on the order of q a2 3 2 2 (“Larmor
formula” of Brennan & Gralla (2013)), where the effective

monopole charge q should have value BM2 2~ and the
acceleration obeys a v d2 4 3µ µ W . Summing up the two
contributions, we have for kinetic-motion-driven radiation that

L B M L B M1.6 0.5 . 20m 43 4
2

8
8 3

4
2 3

40 4
2

8
14 3

4
8 3 ( ) ~ W + W- -

The merger happens at around s2 10 4 1W ~ ´ - - , and so the
acceleration-induced radiation is sub-dominant through the
entire inspiral stage.
We now turn to the gravitation-driven radiation. With

Equations (5), (8), and (11), we can estimate the orbital
frequency dependence of this class of EM emissions for a
binary black hole system. The source term of fast-magneto-
sonic waves scales as M d3, where d is the orbital separation.
Such a source term generates 2y in the multipolar-expansion
manner of Equation (12), with the luminosity for each
multipole moment scaling as B M v l l2 2 2 2 3µ W . For unequal
mass binaries, the radiation contains a dipole piece with l=1,
whereas emission from an equal-mass binary starts at the
quadrupolar order (l=2). On the other hand, the source term
for Alfvén waves scales as Mv d2W and the corresponding flux
scales as B M v2 2 4 4 3µ W .
In Figure 1, we plot the Ω-dependent luminosities for both

fast-magnetosonic and Alfvén waves, for an equal-mass binary
system (as is simulated in Palenzuela et al. 2010b, Neilsen et al.
2011and Alic et al. 2012), with the cutoff radius chosen at 1.5
times the horizon radius (it turns out that the results are
insensitive to the cutoff radius). More specifically, we
substitute the density profiles appropriate for point masses
following Newtonian Keplerian orbits into Equation (11), and
feed the resulting metric perturbation into the right-hand side of
Equation (5) to obtain the expressions for S1 and S2. These then
allow us to numerically integrate out Equation (8) and acquire

1y and 2y , representing the Alfvén and fast-magnetosonic
waves, respectively. To compute the Alfvén flux Alf , we apply

u¶ and v¶ to 1y and take the results through a numerically
Fourier transformation procedure to obtain Au¶  and Av¶ 

according to Equation (16). Finally, another numerical
integration according to Equation (18) provides us with Alf .
We do this for several black hole separations, as signified by
their different Keplerian orbital frequencies, and plot the results
as the purple dots in Figure 1. We also compute the fast-
magnetosonic fluxes fast at these separations. In this case, we
simply need to project r 2y onto imexp( )f basis (taking m up to
30) and substitute the resulting fm values into Equation (15) to
compute fast . The results are plotted as the blue dots in
Figure 1.
From the figure, we can see that the luminosity values are

consistent with the quadrupolar contributionʼs dominance over
higher multipoles, with a 4 3W scaling. We can also read off the
dependence of Alf and fast on the magnetic field strength
from their respective formula (Equations (15) and (18)), which
is B4

2. Simple dimensional consideration fixes the dependence
onM8 for us, which is M8

10 3. What remains to obtain a formula
similar to Equation (20) for the gravitation-driven case is the
determination of the coefficients of proportionality, which set
the overall amplitudes for the fluxes. These are simply the
intercepts on the vertical axis of the solid purple and blue fitting
lines in Figure 1 (in other words, they come from actually
solving the equations and are not new independent rough
estimates). In the end, we obtain that the gravitation-driven

4
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radiation should scale as

L B M L B M1.7 0.58 . 21
G fast Alf

43 4
2

8
10 3

4
4 3

43 4
2

8
10 3

4
4 3 ( )

  = +
» W + W- -

Close to merger, the gravitation-driven, fast magnetosonic
radiation dominates over flux contributions from Blandford-
Znajek and kinetic-motion-driven radiations (Equations (19)
and (20)). This is consistent with the numerical observations of
Neilsen et al. (2011) and Moesta et al. (2012) (see the top-right
corner of Figure 1). On the other hand, we caution that our
computations do not take into account nonlinearities, so the
analytical fit to numerical data should be interpreted with a
pinch of salt. The aim of the present paper is only to
demonstrate the existence of the gravitation-driven radiation,
and the fact it can potentially produce large fluxes, especially
an isotropic one during merger, rather than trying to make a fit
to the numerical data with our zeroth-order calculation. In
particular, our results should in no way be interpreted as fully
“explaining” the numerical results. In particular, we note that
the matching for the fast-magnetosonic/collimated flux (blue
crosses versus blue lines) at low frequencies is less accurate.
Without a detailed examination involving targeted numerical
experiments and higher order analytical computations, we can
not state with certainty the exact reason for this, so future
studies are required. Here, we can but point out some more
obvious subtleties in the matching procedure.

Most importantly, as mentioned above, the Newtonian
approximation breaks down in the vicinity of the black-holes
in our zeroth-order calculation, and this happens regardless of
the orbital separation. Although the fluxes change by only a
few percentage points when we move the inner cutoff radius
from M3 ˜ to M2 ˜ , the dominant contribution to our numerical
flux integrations nevertheless originate from the neighbour-
hoods of the black holes, instead of the wavezone. Therefore
the omission of nonlinear relativistic effects might be the main
approximation here, and taking into account the post-New-
tonian or relativistic corrections may further change the
luminosity estimates above. Other effects, such as the
absorption by black holes, should also be treated properly.

Second, the numerical fluxes are divided according to their
directions of propagation, catering more for the observational
consequences than for matching with analytical classifications.
Such imperfect correspondences between concepts employed
by numerical and analytical studies lead to systematic matching
errors. For example, the collimation in the numerical study is
defined to be flux propagating inside a cone of a certain
opening angle, in analogy with the usual jet language, while for
Alfvén waves climbing the vertical magnetic field lines, a
cylinder enclosing the binary (or two cylinders around
individual black holes when they are far apart) would be more
appropriate. Therefore, with a large extraction radius and when
the black hole separation is large, the numerical cone would
likely enclose a fair amount of fast-magnetosonic waves,
contributing to the relative weakness of numerically measured
isotropic flux. Many other numerical difficulties associated
with subtracting off a background radiation in order to
construct a division of the overall flux into the collimated
and isotropic types, especially when the overall flux is weak,
have been discussed in the numerical papers such as Neilsen

et al. (2011) and Moesta et al. (2012). We refer interested
readers to these important literature.
In the future, more specifically designed numerical experi-

ments are necessary to test this gravitation-driven emission
mechanism, possibly including binary star, instead of binary
black hole, simulations. Improved sophistication in analytical
computations is also necessary, before the effects of the various
simplifying assumptions we made in the present work can be
disentangled.

6. DISCUSSION

We briefly comment on plasma wave generation during the
other stages of binary black hole coalescences. During the
merger phase, both the spacetime and the magnetosphere are
highly dynamic, and the best tool to understand their evolution
is through numerical simulations. However, in the ringdown
stage, the time-dependent part of the emission arises from: (i)
the ringdown of the magnetosphere, as described by its
eigenwaves (Yang & Zhang 2014; Yang et al. 2015); (ii) the
gravitational quasinormal modes will drive additional emission
by coupling to the stationary part of the black-hole jets, an
effect quantifiable using black-hole perturbation theory. Note
that by the “ringdown” stage, we mean the period before the
post-merger black hole settles down to Kerr. The settling time
can be estimated as 1 I

22w , where I
22w is the imaginary part of

the frequency for the l m2, 2= = quasinormal mode (the
dominant mode). The value of I

22w is about M0.1 for
Schwarzschild black holes and a M1I

22 ¯w ~ - for rapidly
spinning black holes, which asymptotes to zero in the extremal
spin limit (i.e. the modes are long lived and the settling is
protracted).6 For a post-merger black hole of 108 solar masses,
the Schwarzschild formula translates into a settling time of
about eight and a half hours. So although it is extremely
transient in nature, this period may be observationally
detectable. On the other hand, the real part R

22w is M1~ for
rapidly spinning black holes and M0.5~ for Schwarzschild
black holes. During the ringdown stage, the gravitation-driven
luminosity can be estimated as

B M M e , 22R t
G

2 2
22

4 3 2 I
22( ) ( ) w~ w-

while the Blandford–Znajek flux is approximately

B M a M , 23BZ
2 2

f
2( ) ( ) ~

where af is the spin parameter for the final black hole. As the
final black hole in generic binary mergers is rotating, we expect
the Blandford–Znajek contribution to be important, and the
gravitation-driven emission to also be an important part of the
total flux, at least within a timescale of 1 I

22w .
During the ringdown stage, both the spacetime metric and

the magnetosphere would be time-dependent, with similar but
not exactly the same characteristic frequencies (Yang & Zhang
2014). The gravitation-driven mechanism would account for
the metric variationʼs modifying effect to e.g., the Blandford–
Znajek process, but not that from the magnetosphere ringing. In
other words, multiple transient effects are present and it would
be difficult to disentangle the signals they generate. Never-
theless, if quasi-periodic flux variations from the post-merger

6 For generic Kerr black holes, please see Figure 5 in Yang et al. (2012) for
the mode decay rates.
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black hole can be detected, then one could in principal do
interesting measurements such as that on the black hole spin.

For completeness, we can also estimate the flux modification
due to the presence of current-sheets near the black holes,
which is approximately the geometric mean of collimated and
acceleration-induced radiations (see Equation (42) in Brennan
& Gralla (2013)). With units restored and according to
Equation (20), the corresponding luminosity is sub-dominant
near merger. In addition, although we have examined the
gravitation-driven plasma wave generation here in the context
of force-free plasma, we expect similar signatures to persist in
materials following more generic MHD equations.

Finally, we note that in the binary black hole example, energy
is emitted at very low frequencies (below the plasma frequency).
In fact, during the Blandford–Znajek process, the outgoing
energy flux is carried out at the DC frequency. This is allowed
for MHD waves (including waves in force-free plasma), but not
for unmagnetized plasma (Thorne & Blandford 2016).
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