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ABSTRACT

A formalism is presented for wave reflection for a slowly

varying spatially inhomogeneous thermal plasma described by the

Vlasov equation. The formalism generalizes a method originated by

Bremmer for differential wave equations. In a numerical example

we show that the intrinsic thermal properties of the plasma can

supply reflection mechanisms that compete with the reflection oo-

effioient predioted for a simple inhomogeneous fluid.
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PLASMA WAVE REFLECTION HI SLOWLY VARYING MEDIA

I. INTRODUCTION

Recent investigations of the POST-ROSENBLUTH loss cone instabil-
1 2 3

ity * • have given rise to the question of how reflection of convec-

tively unstable waves in mirror machines can affect stability criteria.

In the usual description, one expects that waves generated in the center

of the machine are Landau damped at the ends. Hence if the axial

wavelength in the devioe is long, (typically more than l/lO of the

machine length) the wave amplitude does not grow to a level dangerous enough

to cause particle loss. However, to these considerations reflection

effeots due to spatial inhomogeneity should be considered. Although

the reflection coefficient can be expected to be exponentially small

if the wavelength is much less than the plasma length, the reflected

wavelets are themselves exponentiated due to the plasma instability.

Thus it may still be possible that the reflection coefficient in the

center of the device is of order unity or greater, in which case the

system will have a noise level detrimental to particle containment.

AAMODT and BOOK have already treated this problem starting

from fluid equations. However, since the effects of reflection might

be determined by Landau damping and other non—fluid behavior, we

shall attempt to develop here the mathematical formalism for the

reflection problem starting from the Vlaaov equation. In this paper

we shall develop the formalism for a stable plasma. At a later date,

application to the Post-Rosenbluth instability will be presented.

Now let us oonsider the propagation and reflection of plasma

waves in a spatially inhomogeneous, but slowly varying, plasma medium

in a strong magnetic field. An external potential %{'k)i which

simulates a confining magnetic field plus any static electric

potential arising from the charged partiole equilibrium, is used to

maintain a decreasing electron density along the magnetic field. The

ions are considered in the infinite mass limit and effects of their

motion are neglected.

In order to calculate the wave propagation, we approximate the

continuous potential, £(TC) , by a discontinuous potential .Pj (x) as
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shown in Fig. 1. The potential, <j) (x) , is taken as zero at

and is monotonioally increasing.

Smooth potential $C*) and step potential approximation Q , 00

ig* 1

We assume that in the -neighborhood, of each discontinuity, we

can solve the Vlasov-Poisson equations as if the medium is uniform on

eaoh side of the discontinuity (i.e., we neglect the other discontinu-

ities). This enables us to calculate the transmission and reflection

coefficients at each separate discontinuity. The overall transmitted

and reflected wave is then obtained by evaluating the superposition

of waves transmitted through and reflected from each of the discontinu-

ities in the limit £J (x) *"* .r'*/ .

This method has been used by BR3MM3R and others '^f-> to obtain

wave propagation and reflection from a system of differential equations.

In these cases, it can be shown that under certain restrictions ' f

the "Bremmer method" produces an exact solution to the differential

equation. On the other hand, for the Vlasov equation, it is difficult

to demonstrate if the Bremmer method yields in principle an exact

solution to the problem. However, we show that the lowest order

transmitted wave obtained by our generalized Bremmer method yields

the same WJC.B. result obtained from a more direct'calculation and

we expect from physical, intuition and agreement1 with special cases

that the expression we obtain for the reflected wave properly describes

the scattering due to local gradients.
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II. SINGLE ST3P PHOBLEM

Let us now compute the transmission and reflection coefficients

of a plasma wave, propagating at an angle to tlie magnetic field, where

the external potential <§("*) is chosen as a step discontinuity (see

Fig. 2). The time-varying perturbed potential, <jfe , is of the form

<f> = falx] ttXPi1 kt ̂  "~ C to* J -whore \L is the spatially uniform direction

perpendicular to the magnetic field and KA. is the wave number component

in the perpendicular direction. We assume that in the % direction

the incoming wave propagates to the right and we look for outgoing

waves, whioh propagate to the left for X < O and to the right for

s
k

1.

Step discontinuity

Fig. 2

The linearized Vlasov equation for the step discontinuity,

) a ^ <f O(xJ f in a strong magnetic field is

(i)

where ' and \ are the equilibrium and perturbed distribution

functions averaged over their perpendicular velocities, V" is the

particle velocity parallel to the magnetic field, £ " £ §1*) * ~-

is the normalized parallel particle energy, and & and ^ are the

particle charge and mass.
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The oscillating potential <j> satisfies the Poisson equation

^x^
L

where f\o is the equilibrium density for X < 0 .

The equilibrium Tlasov equation requires that the equilibrium

distribution depend only on £ •

Eqs. (l) and (2) are solved by perturbation theory by consider-

ing the external potential A jf small. Hence we take

f r f '•' + f " > * - . - .

+

= O 4 4 $. &

To lowest order, Eqs. (l) and (2) beoome the well-known

equations for a spatially homogeneous medium.

These equations allow the propagation of a wave

(3)

where ky», Kj,, Kn satisfy the dispersion relation

if""'
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where

We choose H<L. ̂  >° and ^ «~ ^" > ° so'that the wave

is moving to the right. The oscillating distribution function is

given by

* i It,,

In Appendix A, it is indicated that k\\ should be taken in the

upper half of the complex plane. For a stable plasma, this criterion

is automatically satisfied when ̂  is real. For an unstable plasma,

Kit is in the lower half plane, for real LO . The proper scattering

behavior is then obtained, if CO is first treated in the upper half

plane, above the roots of £ (to, l<«). For this case, ku is in the upper

half plane. The transmission and reflection ooeffioients are then

obtained as a function of complex u> and then analytically oontinued

for W real.

To first order in A £ , the equations beoome

9V

The function •*" , determined from the relation r + p

is given

0) : A

In Fourier transform space, Eqs. (7) and (8) are
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)~ "^ C L U- WM 51> ^ iTx ) • " Sir I

(10)

where ; £u * $ °l* ^T "" f (?tj

A?" -e

We can readily solve for t ^ and ^ f and obtain

r» . - * V

* f* 9

1
')

r) J

(13)

~ ki/J (.to -
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When
in;
<f k is transformed to X -space, we have

C

(H)
With this integral, we can evaluate the wave response far from

the source (lU*xl "> ̂  ' ) • Tiie ^ contour can be distorted into

the complex K plane so that £ ' k"* -^ o (we distort into the

upper half plane for ** > 0 , and the lower half plane for *x c O ) •

The singularities that are first encountered are a double pole at

Its kit when ~K >o and a single pole at lc = -k\i for X < o • T h e

residue of these poles is the coherent wave response. In addition

to the wave response, it is known that additional singularities in

Sl^s V) generate fields that decay on a faster soale than the wave

decrement * /lv-* Vn * ̂  However, this field does not decay exponentially,

so that at very large distances from the source, these fields dominate

the wave field. However, here we shall assume that we can neglect all

fields other than the coherent response. Similarly, we neglect the

poles at k = v/to since these terms produce only rapidly decaying

transients.

If now the residue of the double pole at U- U^ when It > o

is evaluated, we find

w K / c ^ J c l to. Kn )

- k«

The first two terms in the bracket are the change in amplitude

of the forward wave, while the coefficient of C-K <f>Q in the last term

is the wave number shift, A k , of the incident wave when Tt>0 .

Since first-order perturbation theory only produces terms

proportional to A$ , the wave number shift whioh to all orders in
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perturbation theory would appear in the form £, , appears

here in the form ^ l'^x (/ f C&kX) • Equation (15) suggests

that A k is given "by

This indeed is the lowest order d i< that is obtained by

setting the local dielectric function to zero,

The remaining terms in the l.h.s. of Eq,. (15) define the

transmission coefficient. Combining the solution of zeroth. and

first order perturbation theory, we see that the transmission co-

efficient, /-+ cTf?r*o) , at. "*-o,is

Tut o ^—_ - \ dv ¥d- I

If we now consider * < o , the evaluation of the residue at

- - U,, yields the following expression for the reflected wave;

-.'In.*

~ C

Z <o^ »i



We have used the relation

dv %['"

r / t o + U>, \J) i to - U,, v) *o v

which is obtained if use is made of the relations £ ( ^, t U,, J *• o .

Note that changes in the reference potential of the single

step problem, i . e . , A<?©(xJ"~? x o
 + ^ x &^J > and the

position of the discontinuity from X = & to *K * X( i alters

the preceding results given by Eqs. (15) and (18). only in that

t~ ~ * r (~ ** —^ ) and *X, - * X"X^ . The dielectric

function £ (to, k J appearing in the solutions is then changed to

6 (to, U,£) > defined by Eq. (16).

III.- CO13TINUOUS PROBLEM

We are now in a position to apply the results of the single

step problem to the problem of a continuously varying static potential.

Uow imagine that the incident wave propagates through a potential

<p . ̂ >/ consisting of Â  steps, and approximating a continuous

potential $7*i a a shown in Fig. 1. We assume, as in the work of

Bremmer,that the incident wave at each point in space is determined

to first approximation only by the transmission at eaoh singularity.

Obviously, this assumption neglects the additional effects of multiple

reflections. With this assumption, the incident wave fix) between

the jth and (j + l)th discontinuities is given by

i*t

(19)

Here, ^o t> is the incident field when Tt- Tt0
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,(the position of the first discontinuity) X1 (' * ° / '• • *• ^''J iB

the position of each discontinuity, K-1 is the local wave number

determined by the relation £ (tyJ/ U<t $4 (*)).* o » '.+ *(*''/

is the transmission coefficient at f-i , and p is an arbitrary phase

factor which,for convenience,ia chosen here so that the phase of

the incident wave is ultimately zero at X-0 .

Proceeding to the limit fj (*) ~? §fx) , where each dis-

continuity becomes arbitrarily small, and an infinite number of them

arise, we see that the phase faotor becomes the integral \ k(x')dx'

v/" :

and the product 77* (/+ wfX'j) becomes
i J

If (ff J(t;)) p I i

where 0*(x) is the limit of £ji^ when J^ (X} -? J fx

At the point ?C , the tjransmitted wave is then given by

£ i: fir} c/x •# y e/̂ ; O-Cr/J (21)

Prom Bq. (15) and the l i m i t r e l a t i o n A ^ ~ "jT̂ L ^ w e

have

Ui~ U,, V ) ̂  ^

(22)
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We shall establish below that

» ,

Upon substituting this equation into Bq. (21), we find that the

transmitted wave is given by

This is the same answer that one obtains from a direct W.K.B. calcula-
te

tion of the Vlasov equation .

In order to establish Sq. (23), we note that ^

depends on "* through k,, and f . If we then perform the derivative

operation shown in Eq. (23)» we obtain

r

Since 6 C1^, Uu, J ) = O , the total derivative

6 C1^) <̂»» $)-O- and therefore

H . (26)

5
Upon substituting this result into Eq. (25), we obtain

6̂ 3H ^ 1

(27)
aw

We confirm that ^ t*Xj is our desired expression, given by Eq. (22),

when we substitute the relations,
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ve- . . a. . . -L C <*v — _ ^

If (co - V u j L (28)

(to- U V ) 5 (29)

If a wave is initially travelling to the left with wave number

- Uw f and has an amplitude <$, at the point **» , a similar analysis

would yield the result r- \/ ^

U
(30)

where we have used the relation

In order to calculate the reflected wave, we ohserve that the

total field moving to the .left at a point *% arises from a super-

position of each of the wavelets generated at each discontinuity to

the right of X . In the neighborhood of eaoh discontinuity Xi we

see from Eq. (18) that the reflected wavelet is given "by

"1

ITow each wavelet, onoe formed, is assumed to propagate without

further reflection. Hence if one aocounts for the alteration of the

phase and amplitude of the wavelet, due to transmission effects, we

see from the previous discussion concerning wave transmission that we

should replace the factor -*' ̂  '*-*•') by the factor
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'
e.

The f ie ld <ffri) i s given by Eq. (24). If we now sum a l l the

wavelets reaching the point % , -we see that as x -• - •© the to ta l

reflected wave $i>fi*.J i s given "by

X'

X'

Z.C S

Jf

where we have used Eq. (26).

The derivation of the reflected and transmitted waves has been

heuristio and we shall not attempt a rigorous justification of the

method. We have, however, several consistency checks for our method.

We note that as in the Bremmer method for differential equations, the

transmitted wave alone is the same as the lowest order WJC.B. sole..

ution. It can be shown that as U. -» o and KA , much less than

the Debye wave number, the expression for the reflected wave, Eq. (32),

approaches the lowest order Bremmer solution

—> e r



It is shown further in Appendix B that if a distribution

function

u

is used, an exact differential equation is obtained,

JX J l V

where £ is the electric field, "Wix)- £z(S~ •£; £(>j)~l

k s © •

The reflected wave obtained by the Bremmer method applied to

this differential equation is found to be *

A e

(34)

An identical result is obtained from Eq.. (32) when the dielectric

function, £ [u> U) * I + tô >x V" fx; ( is used.

Finally, it can be shown that in the case in which perturbation

theory is applicable to a slowly varying potential, (i.e., when the

following conditions are satisfied* e J << "^ "T/Iu where £y
] L] L

is the total change in the external potential, -~-z jr ^< / _, and

A k L ̂ < I where L is the range in which $ changes) the

resulting transmitted and reflected waveB agree with the expressions

derived here.

However, whereas for differential equations the Bremmer method

can be continually iterated to produce an exact solution,for the .

Vlasov equation an exact solution cannot be obtained from such an

iteration. There are two obvious reasons for the limitations of the

Bremmer method in our application. The first is that the transmitted

and reflected fields on either side of the discontinuity are not

exactly wave fields as in differential equations, but only approach

wave fields some distance from the discontinuity. Hence, to higher

orders one might expect residual reflection and transmission due to

incoherent components interacting with additional disoontinuities.
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Another limitation is that our perturbation theory does not properly

describe the complete history of a particla in an actual system and

additional non-local phenomena can perhaps affect the scattering.

For example, how does the past history of a reflected particle prior

to its reflection modify the wave reflection coefficient? An approach

to answer this query is proposed in Appendix C.

IV. CALCULATION OF KEFL3CTIO1T COSFFICIEBT

We will now compute the reflection coefficient given by

Eq. (32) for the case of a plasma with a Marwellian distribution of

electrons along the lines of foroe.

For a Maxwellian distribution funotion

-A-j£\ (35)

the dielectric function given by Eq. (16) becomes

where ¥ and 7-'- -r^'are the functions tabulated by FRIED and COUTE .

Using Equations (26) and (32), the reflection coefficient oan be

written as

where C is the contour determined by £ ( |(u ^\ — Q as the density

goes from its initial value to zero. The contour is independent of the

particular potential and is shown in Figure 3.

Since the phase of the integral is rapidly oscillating, the
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major contributions to the integral come from the points of stationary-

phase and from the end points. The saddle points are given by

which implies either

fc

„

The point \̂ ( =• O is an essential singularity of € , and its value

at this point depends on the direction of approaoh. The saddle point

at ^ r r O associated with that part of the contour C going down the

imaginary axis gives zero contribution to the integral because the

integrand vanishes. The condition z§- __ Q has a denumerable

infinity of roots.

k "2. \ "2 3£ Tit/ \ /\

k S? Kit TfiT — O ^ ^^e roo'ts of ̂  (us Q*

These roots and the directions of steepest descent are located in the

}<H -plane by using the tables of the ;£•' function. The paths of

steepest descent or stationary phase are found by following

numerically from the jth saddle point (Ct),i. • The paths do not

cross the original contour C but instead start and end in the part

of the plane where *2.' is divergent. Portions of the paths from

neighboring saddle points cancel, leaving the sum of the paths of

steepest descent equivalent to a contour C^y as shown in Fig. 3.

Thus the scheme for evaluating the integral is to deform the

original path of integration C to a path going from }(ii(X:=— otfy to

Ki — O and then through the saddle points on the paths of stationary

phase. On the deformed path of integration - Eq. (37) becomes

17 -



The integrals through the saddle points are easily evaluated. The

contribution from the infinite sum is evaluated "by converting the

sum from \ - ̂ f "to i = CO, where J ia sufficiently large, into an

integral. This gives an algebraic quantity multiplied by the phase

faotor

The evaluation of the integral from KwlXr-^ *° Kit —

depends in more detail on the potential.

We now consider the following potential,

with the associated dispersion relation

The refleotion coefficient is of the form

where £XJ is the residue of the jth saddle point. For this potential

the integral from K u l X ^ - ^ ) 'to Ku ~ ^ yields a term of the

form

- 18 -



which is identical to the result from the differential equation derived

from fluid equations,

• * •

(42)

We. now introduce the approximation,

w h i c h i s t e s t for small Kw ( i -e - / k u <SL W/y^). . At the

largest saddle point, k\v,| > a n d a t X =• - CO for 2 k£ Xo £ -10 »

the error in the approximation i s about 10^. Then, absorbing the

real par ts of the phase in tegrals in the ooeffioients Qi; we have

(43)

where K* is the dimensionless KX\ variable defined by \C
 = ^

For very small rĈ  Ap the term arising from the saddle

point at KM i = O dominates the sum.

(44)

This is the reflection coefficient given by the fluid equations for

this density funotion. For £ \(£ Vj> > .005 the first term in the

series dominates, and we obtain

using ^ . ^

approximation

For values of N^ Ap for which the

is valid this term varies as

- 19 -



(46)

K_j_ Ap the Iff\ \ K^ ̂ '^ku 4K\\For larger values of K_j_ Ap the Iff\ \ K^ ^ ' ^ k u 4K\\ must
JMx*-c

be oomputed using, the exact dispersion relation.

Thus, in this example, the formalism establishes the transition

between the reflection due to the fluid behavior "which dominates at

very long wavelengths compared to ^ V o ) and the thermal behavior

which becomes important and even dominates at shorter wavelengths.

For the unstable plasma,whioh will be analyzed in a later paper, it

is the short wavelength regime, Kv^ £d Vft/GO , that gives the largest

reflection coefficient and can cause a non-convective instability.
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APPENDIX A. COMMENT'ON ANALYTIC CONTOTJATIOir PRESCRIPTION

In the text we found that the response to a step funotion

perturbation i s of the form

CA.D

where Wo is a real frequency, Ktt(t0a) is the wave number for the forward

wave determined by the equation £ {(y)9} \^\ — 0 » a n d Sw© i s

proportional to the amplitude of the inoident wave.

It has "been observed that if the system is unstable, KH(u><j) is

in the lower half plane. If we believe Eq. (A..l) in its present

form, we see that for an unstable system we have a refleoted wave to

the right of the discontinuity and a transmitted wave to the left; a

result that violates our boundary conditions.

In order to obtain the correct results it must be remembered

that a problem must be posed with initial conditions present. If,

for example, we assume we have a dipole source at the point Xo < 0

whose time behavior is of the form & «.

then after transients have died, waves with wave number

to the right and left of the source* The wave propagating to the

right can be taken as § =. Sw 0 ê
: ku(w»\X-i'uJ«t I t o a n

then be shown that the perturbed field due to the step function at

X as, o has *th@ form

*00

whereQ^is a contour in the upper half plane above any roots 0)

determined by £ (.W. ki\̂  ~ O ^OT real £w. Since theCto contour is

chosen above the zeros of G((A). K\ŷ  > it follows that the roots

K.((j) for 10 on(Jwcan be chosen in the upper half plane. Thus for

X > 0 where we oan enclose the K^contour in the upper K^plane, we

find that the poles K—Kutui) are encircled, while for X < O "we
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can enclose the (^contour in the lower l^plane where the poles KJ = -

are encircled. How if 0&( US, k\^<fi^ 4; n i n *he uPP e r h&lf 03

plane, the only contribution that persists after a long time in the

final (*> integral is from the pole at &l=Wo . Hence we may now

replace CO by L00 treating ^(yj^in the upper half plane, as

prescribed in the text. The condition £)<=(u,ifM(u)̂  i Q in the

upper half plane guarantees that any instability present is convective,

i.e., disturbances propagate away from its source.

APPENDIX B. SOLUTION FOR «Q" DISTRIBUTION FUNCTION

For the special case in which the equilibrium distribution

funotion is a 0 function, ( F — ^ T d(E* ̂ Ai where

£ s—\jl+ $1)0 ) "k*16 Vlasov-Poiss on equations can be reduced

to a differential equation. Here we consider only a one-dimensional

system or, equivalently, K^ — Q , The solution to this problem

enables us to test the general expression derived in the text.

Although one can proceed direotly from the Vlasov-Poisson

equations, the equations of the system are more quiokly derived by

observing that if the initial state is a 9 -function, the distribution

function can only change at its points of discontinuity, £ s: £ • , .

since

Hence, only the width of the 0 -function changes in time and

space. The density of particles for all time is then given by

vhere C is

determined from the equilibrium to be C-—J--2. » Y\o ̂ B "̂ be particle

density at X = -00 , and V + and V a r e the points of discontinuity.

How f\(Xj'fc) can be related to the electric field by Poisson's equation
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and we need only solve the linearized equations of motion for

Thus we have,

^x '"" L~2*vy'~u ;~ N W 1 (B.3)

where £ is the perturbed electric field and A/(x) a _VW v 1 o (r- "go vV

is the density of the rigid ion background.

The equilibrium solution is \J~t — — 'U^ "" -- \j 2. ('K ""^^ ~

If now we add and subtract the equations for perturbed velocities,

V" * » we

- V,-) = - £ (B.4)

Combining (B.4) and (B.5)» we have

Using (B.3), integrating with respect toX with the boundary-

condition 6 - 0 at X " 00 , and subst i tu t ing ty\t r - - t O 1 * ve

find

(B.7)
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This is our desired result and we can apply the Bremmer method

directly to this equation. If we consider "<B(y\ ^° ̂ e a step function,

we obtain the boundary conditions by integrating aoross the discontinu-

ous jump. These yield the conditions V~(fy £7*) > and £tx) a r e

continuous across the jump. These boundary conditions determine the

transmission (-t) and reflection (r) coefficients to be

" V i (B.8)

where the subscripts 1 and 2 refer to quantities to the left and right

of the jumps.

Using the same procedure as in the text, we can construct the

incident and reflected waves for a continuous potential and find that

they are respectively given by

(B.9)Q

B > i o )

where 6(, is the initial amplitude of the incident wave, £t« (*$ is the

transmittal wave, £>{(.'>$ is the reflected wave for large negative

X and )£l(x) s ^ V v ^ x ) - H^VA\Tfx) • ^ote that if the oscil-

lating potential, h , is used instead of the electric field in Eq.

(B.IO) (as in the text), the sign of Eq. (B.IO) reverses.



APPENDIX C . irON-LOCAL REFLECTION

Here, we indicate how a more detailed history of the particle

orbits can perhaps be taken into acoount in our formalism and isolate

what other terms might be important for wave scattering*

The equation for the response of the distribution function to a

step is given by Eq. (7). If we view Eq. (7) as the response of a

system with a smoothly varying potential to a step discontinuity, we

can improve the accuracy of the right-hand side by substituting for

Z-S- and 4" a raore accurate approximation than the solution for

the spatially homogeneous system. Instead we shall substitute the

best available solution to the original equations. For convenience we

restrict ourselves to the case Kj.= 0 • Then it can be found from

orbit integrations that T is exactly given by

= e _ _ _
(C.la)

where the signs t refer to positive and negative velocity partioles

and

Por the oscillating field we can substitute in a WJC.B.

solution given by Eq. (30). Por such choices of £'° and |i * ,

Eq. (6) can be solved for the response to the step. "We can then use

the Bremmer method of superposition to find the response of many steps

which form the potential <f>(x) • In "this way we find that the reflect-

ion coefficient is given by



-oo

(c.2)

" ™™^» ĥ \1* m u ^^^ » • * . L I • "W • • • •

o

This expression contains more information as to the history of

the particle orbits than Eq. (32). Equation (32) is recovered if

we substitute for ^ that part of Eq. (C.l) that is obtained by-

integrating "by parts once and neglecting the integral remainders.

Now the last term on the right-hand side of Eq. (C.lb) describes how

particles arriving with negative velocities at the point (X»"t) affect the field

because they have interacted with the field at ( X »"£' ) where the

same particles had a positive velocity. Certainly, this term is in

no way described in the formulation in the text. It is therefore of

interest to look at this term in more detail.

If we substitute into (C.2) just that part of -f due to particle

motion prior to reflection^ we obtain A K » the additional wave

reflection coefficient,

-co

(C3)
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This multiple integral is quite diffioult to evaluate in

general. However, it can be reduced somewhat if we extract only the

contribution from those partioles whose velocity was resonant at some

point with the phase velocity of the wave, i.e.,mathematically

speaking,we evaluate the integrals at the stationary points

\f(x) — (yK(x) • This enables us to perform two of the integrals and

reduce (C.3) to the form

where Vs is defined by W/fc(*a =: \1 2(.E-^vw$(xd) » *** C(.XS^ is
a slowly varying funotion. To evaluate this integral, we again have

to seek the points of stationary phase and possible end point contrib-

utions.

Our analysis here is inoompletejbut tentative results indicate

a muoh smaller scattering coefficient than previously calculated for
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Tm(K,)

.1 .3 .4

The contour C denotes the path of integration in

the K, plane for x on the real axis. The path C is

equivalent to.the sum of the paths C, , whioh axe the paths

of steepest descent through the stationary points rC. .

Figure 3
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ABSTRACT

Two mathematical formalisms are presented to describe wave

reflection in a slowly varying spatially inhomogeneous thermal plasma

described by the Vlasov equation. We find that the transmitted wave,

whioh is the W JK .B. solution, and the reflected wave, can be expressed

in terms of the local dieleotric properties of the medium. In a

numerical example, we show that the intrinsic thermal properties of

the plasma can supply reflection mechanisms that compete with the

reflection coefficient predicted when the plasma is described by

fluid equations.
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I, Introduction

1 2 3
Recent investigations of the POST-ROSENBMTH loss cone instability ' '

have given rise to the question of how reflection of convectively unstable

waves in mirror machines can affect stability criteria, In the usual descrip-

tion, one expects that waves generated in the center of the machine are Landau

damped at the ends. Hence if the axial wavelength in the device is sufficiently

long, (typically more than 1/10 of the machine length) the wave amplitude does

not grow to a level dangerous enough to cause particle loss. However, to

these considerations reflection effects due to spatial inhomogeneity should be

considered. Although the reflection coefficient can be expected to be exponen-

tially email if the wavelength is much less than the plasma length, the re-

flected wavelets are themselves exponentiated due to the plasma instability.

Thus it may still be possible that the reflection coefficient in the center

of the device is of order unity or greater, in which case the system will have

a noise level detrimental to particle containment.

AAMODT and BOOK13 have already treated this problem starting from fluid

equations. However, since the effects of reflection might be determined by

Landau damping and other non-fluid behavior, we Bhall attempt to develop here

the mathematical formalism for the reflection problem starting from the Vlasov

equation. In this paper we shall develop the formalism for a stable plasma.

At a later date, application to the Post-Rosenbluth instability will be

presented.

Since we are ultimately interested in the application to the Post-Rosen-

bluth loss cone instability, we shall use approximations associated with this

mode in our formalism. If the ion motion is neglected, then the mode of

interest is a stable electrostatic oscillation of electrons where \ . , the



wave number perpendicular to the magnetic field is much greater than ^

the wave number parallel to the field and the oscillation frequency 60 is

much less than the electron gyrofrequency C*Jte . IMrther, the group velocity

of this mode propagates mostly along the field. Hence, we can consider a

plasma model which is uniform perpendicular to the field but spatially in-

homogeneous along the field. The lnhomogeneity is provided by an external

potential Q(x), which simulates a confining magnetic field plus any static

electric field arising from the charged particle equilibrium. The potential

illustrated in Figure -1, is taken as zero at *» — CO and monotonically in-

creasing to either a constant or infinity as X-^pce. The ions will be con-

sidered as rigid and are present only to provide a neutralizing background.

For this model, the basic equations for the linearized system take the form,

(1)

+ 00

(Hereafter we take V s r - t since it is~assumed that Uj.»k||throughout).

Here F(E) is the equilibrium distribution function which depends only

on the energy £ = 2£? ̂  ^. 3>i«\, -f and $ are the oscillating distribution

function and potential, x and v are the position and velocity coordinates

along the field, e and m the charge and mass and n the electron density at

X s - o o - The distribution function has been averaged over its -perpendic-

ular velocities. We shall treat the case of a source situated far to the left

of the j.©homogeneous region and providing a disturbance proportional to

exp (-CliSt + t-K^^ * HenceJ a w a v e impinges on the inhomogeneous

part of the plasma and we are required to find the reflected and transmitted

- 3 -



waves. We see that the y, t dependence enters only through the factor

exp (_-iWT -V i. n^u) which shall be subsequently suppressed.

We have developed two mathematical formalisms in an attempt to describe

plasma waves in media slowly varying in space. Both methods are generaliza-

tions of techniques for obtaining the reflection coefficient for waves governed

by differential equations.

h 3 5
The fir6t method generalizes the one used by Bremmer and otherŝ -1 and

will be referred to as the "Bremmer method." For this method, the continuous

potential <|Ux)is approximated by a discontinuous potential (JJj (yO as shown in

Fig. 1. We assume that in the neighborhood of each discontinuity we can solve

the Vlasov-Poisson equation ae if the medium is uniform on each side of the

discontinuity (i.e. we neglect the other discontinuities). This enables us

to calculate the transmission and reflection coefficients at each separate

discontinuity.

The overall transmitted and reflected wave is then obtained from the

coherent superposition of wavelets transmitted through and reflected from

each discontinuity in the limit "<J>̂  (x) —^ $(x).

For differential equations this summation technique produces under certain

S ft 1
restrictions an exact solution * ' . On the other hand, it will be clear from

our construction that the Bremmer method cannot produce an exact solution of

the Vlasov equation. Nevertheless, this method seems physically realistic

end yields the correct W.K.B. solution as well as the correct answers for

special distribution functions that can be treated exactly.

« 8
The second method generalizes an approach of Ginzberg and is more

direct than the Breramer method. Here we begin with the integral equation for

the oscillating field that is obtained by integrating the Vlasov equation over

its unperturbed orbits. The integral equation is then solved by an iteration

- k -



scheme in which the lowest order solution is the K.K.B, solution originally

obtained by Berk, Rosenbluth and Sudan . The neglected terms then serve as

sources for reflected waves.

Neither of the above methods is rigorous although the second method can

perhaps ultimately be made rigorous. However, the two methods complement one

another in that after some approximation the methods yield the same result but

the most obvious neglected correction terms come from different sources.

In Sections II and III we shall derive the reflection and transmission

coefficients for the above two methods, while Section IV is devoted to a dis-

cussion of our derivations. In Section V the reflection coefficient is computed

for a nonT:trivial choice of distribution function and $ (x) . In this example

the thermal reflection coefficient is found to ber/vexpf-^— J which dominates
Vfe'>

p isthe fluid result,r r* exp (-^K COp Kj. M , if 2 (̂ *iYtM > .005. Here <

the typical electron plasma frequency of the system and L = f '/<\X

Although we have limited ourselves to a special mode of oscillation,

our method has general application to problems where spatial inhomogeneity exists

in one dimension.

II. The Bremmer Method

A. Step Problem

In order to apply the Bremmer method, we first calculate the elementary

transmission and reflection coefficient of a wave incident on a single step

at X - X^, shown in Figure 2. We assume that the incoming wave propagates to

the right and we look for outgoing waves for X > X\ and % < X ; • These

elementary wavelets will then ultimately be superimposed to calculate the fields

propagating throughout the plasma.

The basic equations for the single step problem are,

- 5 -



8x W\

where A ^ C K O * S *^e discontinuous jump in $ .

This system can be solved by perturbation theory in the parameter

Hence we take,

F B F
(o>

 + F"* +" * • •

= o

Then to lowest order the system describes a spatially homogeneous medium.

The solution with an incoming wave boundary condition is,

9 = <po e (5)

where 1{|V i s determined by the dispersion relation

. 6 -



too
.*. r

o (7)
v-

where
1 VYl

We choose \^£(to}>O and R e l l i ^ ^ O so that the wave moves to

the right. In Appendix A it is indicated that \ss should be treated as if

it is in the upper half complex plane. For a stable plasma this criterion

is automatically satisfied when 60 is real. For an unstable plasma, "KX\ is

in the lower half plane for real W . The proper reflection behavior is ob-

tained only if CO is first treated in the upper half plane so that the root

of £-1 toy Tfu"i — © occurs for K\\ in the upper half plane. The transmission

and reflection coefficients can then be obtained as a function of complex to

and analytically continued for W real.

Now to first order in A<§ , equations (3) and (4) become,

9V

Iv (9)

where \-1" ~ -^ &§ - S i O - ^ | ^ r \ z. ' T* * - ' e i n c e

- 7



Vfe can readily solve this system of equations in terms of their Fourier

t r a n s f o r m s d e f i n e d b y ( ^ T f c < V L / - : J ^ ' I * * K ' J
; -co

We then find that the solutions for -f^ and ̂ ' are given by,

c o -

of

When 4>h i s transformed to X space> ve have>

From this integral we can evaluate the wave response far from the source

X \ *"?? ' • The k contour can be distorted into the complex k plane

so that g —> O (we distort into the upper half plane for X>^1

and the lower half plane for X4.)^0' The singularities that are first en-

countered are a double pole at "V- — ?̂\iwhen X>Xi" and a single pole at

•%= —A ŵ for X<.Xi'« The residue of these poles is the coherent wave

response. In addition to this coherent wave response,, i t is known that the

additional singularities in £(tO, $) generate "stray" fields that decay on

a faster scale than the wave decrement

. 8 -



The stray fields do not decay exponentially,, so that at very large

distances from the source, these fields dominate the wave field. However,

here we assume that we can neglect al l fields other than the coherent response.

Similarly, we neglect the poles \~ /& Bince these terras also produce only

rapidly decaying transients for a smooth distribution function.

If we now evaluate Eq. (12) for X>X; by extracting the residue of

the double pole at T*.̂  ^ we find,

\

to 4

(13)

—00

The first two terms in the bracket are the relative change in the ampli-

tude of the forward wave from unity, so that the transmission coefficient at

X; is given by t (*») •=, \ + T (Xi) . The coefficient of I ( X - ^ e

in the last term represents the wave number shift &7̂  for • X > XC i^° a ^ 1

orders in perturbation theory the wave number shifts appear as ^ ^ " ^ i •nlK

, but to first order in &% this exponent has the form

« KvX t\+. i'&4t(X-*i^ ° T n l 6 BW-ft can ^ e verified by expanding

as O for small /

If we now consider X^,X;> the evaluation of the residue at ^-ss. — ^ n

- 9 -



yields the following expression for the reflected wave,,

— l" *m\ ( X ~ * 0

k

£6(u,M

We have used the relation

and

B. Continuous Problem

We can now apply the results of the step problem to the continuously

varying potential. Ilrst we imagine that the incident wave propagates

through a potential A j (^x) consisting of N steps which approximate the

continuous potential ^{x) a s sllown i n FlS» !• As a first approximation^

- 10 -



we neglect multiple wave reflections so that the field at X is Aatermlned

by the transmissions coefficients t(X*O - \-f "ftx*} of the steps to the

left of X . Hence the incident vave <^(X) is given by

m-l

(15)

- X w - J "t » f J

Xvv\-1 < X <, X^«

Here <J>O £ • x + l ' f i s the incident field for X <XO (the f i r s t

step), ft i s an arbitrary phase factor which, for convenience, i s chosen so

that the phase i s ultimately zero at K%o and ^ i s the local wave number

determined by the relation £ ( U), kiy $4 (x{j) = O

Proceeding to the limit S i £*) —>• S Cxi where each dis-

continuity becomes arbi t rar i ly small and. an Infinite number arise, we find

that Eq. (15) becomes,

where &(*) =s V\vv* ^C?<? . From Eq. (13) ve see that

is given by,

- 11 -



Now having obtained an expression for the incident wave at each point

in space, we can find the magnitude of the reflected wavelet at a step X(

If ve assume it propagates to the left without further reflection we then

find that the reflected wave field q> (_x) in the limit of a continuous

potential is given by

where 0(K) = \SY* i~£- is determined from Equation (l4). In

this way^ we see ve have constructed a reflection coefficient which neglects

multiply reflected wavelets.

Now ve need only substitute for &(*) and P(x) found from Eqs. (13)

and (l4). It can be shown that tft*) given by Eq. (17) can be vritten as,

after the following identities are used:

(20)

- C O

- 12 -



and

(22)

*3F

Hence the incident wave is given by

(23)

vhich is similar to the result of ref. 9 .

For the reflected wave we fiua irom 0{*) determined from Eq. (l^) and

Eqs. (18)' and (19) that as X*"^""** t l i e reflected wave is given by

— w e

-CD 3 ^

Notice that Q (x) is ejcponentially small since the phase of the exponential

is rapidly varying in space while the rest of the integrand varies slowly in space.

- 13 -



III . Alternate Method

Instead of following the indirect route of the Breramer method in deriving

the transmission and reflection coefficients^ we can obtain them more directly

from the integral equation determining <t>(,x) • If Eq. (l) is solved by

integrating over the characteristic orbits and then substituted into Eq. (2),

the following integral equation i s obtained.

where lTtx,C) =

We now assume that

where M (y) is the amplitude of an incident wave propagating from x •& - oo

and .dx(x) is the amplitude, of the reflected wave propagating to. X-=<~ oo

and lSt.utx) is determined by the relation £ C OS. TItt txj, ${*)) — O

If we substitute this form of <|HX) into Eq. (25) and integrate by

parts with respect to X* twice (in the same manner as Re.f. 9), we obtain

exactly the following expressions^,



1-

T*

e v. » i \ i JO ' \ i x . in^ IXJ; 125J

Here S^Ovt) are the integral remalnaer terms and are given by

S^ — (jOtOo

A f

i

e "
- c o

- 15 -



The terms on the left side of Eq. (26) are the WKB operators fcr waves

of wave number T?,, and -~ -fy() and are similar to the WKB operator found in

Ref. (9). Equation (26) i s s t i l l exact but now the right hand side i s smaller

in a WKB sense since each terra involves two derivatives of a slowly varying

quantity.

We proceed further if we assume that <fc> (xj , the reflected wave i s much

less than CftlK) > the incident wave. !ftien, since ^ (*) i s small, we

neglect the expression containing d) {*) on the right hand side. If, for c

we take the WKB solution,

(28)
— U^o

then Eq. (26) becomes

[>« (M
(29)

i

We can now easily solve for (fz (.*) • With the boundary condition that

&= 0 at X = +-CO t we find,

- 16 -



The reflection coefficient, T = Vzi'^/^o is obtained by

taking X —̂  — Co . If we then reverse the order of the integration and use

r.A _b. \ — __ *3€ ,-,.. J \ > we find that r can be written as,

As i t stands, the expression derived here contains more information than

the reflection coefficient derived from the Bremmer method, Eq. (2^). We

obtain Eq.. (2^) from Eq. (31) after we perform an approximate phase integration

on the x-integral in Eq. (31) t and then neglect double derivatives of slowly

varying quantities. The procedure i s shown in deta i l in Appendix B.

IV. Diacussion

Our derivations of the reflected and transmitted waves have been heuristic

and we shall not attempt any rigorous justification. Instead we shall point

- IT -



out several short comings, consistency checks and further information that

can be gleaned from our results.

The principal criticism of our methods is that there is no guarantee

that the terms that have been neglected produce small corrections. This

criticism even applies to differential equations when the Bremraer method is

used. The reason is that although higher order terms are smaller in a WKB

sense, the reflection is exponentially small. There is then no guarantee

that the higher order terms arising from multiple reflections are annihilated

as efficiently as the lower order terms and thus they can conceivably be impor-

tant. For differential equations i t can be shown that the Bremmer integral

gives at least the correct exponential behavior. To check the accuracy of

the Bremmer integral more precisely we have also evaluated numerically the

Bremmer reflection integral arising from the Helmholtz equation

= O
\-t-e

TO

and compared the result with the exact solution. The results shown in Pig. 4

show excellent agreement as long as the WKB criteria are obeyed, or -3— « \ .

For our problem additional corrections arise from fields that propagate

at wave numbers determined from other zeros of the dispersion relation,

€ Cw
y T̂w J = O • If in the Bremmer method only first order perturbation

theory is employed, these fields are unimportant since they damp quickly,

i .e . , on the order of a Debye length, and the magnitude of the reflected

coherent wave is unaffected. However, If two interactions of the wave with

the inhomogeneties are considered, i t is possible that the stray fields will

reecatter back into a coherent mode. We attempted to estimate the order of

magnitude of this effect by formulating a two step problem but unfortunately

this procedure lead us to an unexplained divergence.

- 18 -



ID our alternate method, the fields arising from the additional roots

of fiC0^ Mw)** O were explicitly neglected. I t would seem that these

fields should be included in the WKB propagator if one is to set up an itera-

tion procedure that ultimately converges to an exact solution.

The alternate method can be cast as a formal iteration procedure, where

ve equate <b, with S_ ' ( ^ and ^ x with Sj:C-<J(O - I f t o l ° w e s t order

we choose <̂ >J° _ Q and < )̂̂  as the WKB solution, a formal iteration pro-

cedure leading to an infinite series is defined. The first order term pro-

duces our result for the reflection coefficient but we have not been able to

exhibit the convergence of the series. Thus there is s t i l l some question as

to the formal basis of our procedures and whether we have neglected any impor-

tant sources of reflection arising in higher order perturbation theory.

Our alternate method does have the virtue of exhibiting how the detailed

history of a particle contributes to the wave reflection. Remember that in

order to reduce Eq. (31) to Eq. (2*0, only the end point contribution of the

x-integral in Eq. (31) was taken into account. However, other processes may

be important to wave reflection. One such process that can be isolated is the

effect on wave reflection by particles that have already been turned around

but were at one time resonating with the wave. To analyze this , we isolate

that tenn in Af given by Eq. (3l) in which the x-integral varies from

- w to x , After some algebra, in which spatial derivatives of k and v

are omitted, this contribution to A-r oan be written as,

- 1 9 -



From this integral we can extract the resonant contribution by-

evaluating the integrals at the stationary phase points where V(*/E):=

This enables us to do two of the integrals and reduce (32) to the form,

where Xs is defined by ^ . .C* ) = ^ 2.C£ 7 £ Qt*S) and C(.XS) is

a slowly varying function. To evaluate this integral we again have to seek

points of stationary phase and possible end point contributions. Our anal-

ysis here is incomplete, but tentative results indicate a much smaller

reflection coefficient than is obtained from Eq. (2k) when applied to the

example given in the next section.

We have several consistency checks for our method. We note that as in

the Bremmer method for differential equations, the transmitted wave is the

same as the lowest order WKB solution. I t can be shown that as *T?,,-*>oand

much less than the Debye wave number, the expression for the reflected wave,

Eq. (2k), approaches the result of Aamodt and Book,

00

I t i s Bhown further in Appendix C that if a distribution function

- X A(:<!_ P\ where 0tti •=-. \° j%<0
 l s u s e d,

- 20 -



an exact differential equation is obtained,

-V- —r.. \ / /«» u ^ i » . ,..? JL, .^ _. Q , .

x̂  =r \jl C H - ̂- ?wjj'where

The transmitted and reflected waves obtained when the Bremmer method is

applied directly to this equation is

-i e *
C v ( ^ " H > ^

 t36a)

= ^*. e " J "37

where

Identical results are obtained from Eq. (23) and (2*0 if one uses the

dielectric function, € £ « , « = \"V ' ^ ^ ^ z _£)

V. Calculation of the Reflection Coefficient

We now compute the reflection coefficient for a Maxwellian distribution

function and for a particular potential,

- 21 -



( 3 T )

(38)

For this distribution function the local dielectric constant is

where £ Cp) is the plasma dispersion function tabulated by Fried and Conte,

which for

p*»

It is convenient to transform the variable of integration in the reflec-

tion coefficient, Eq. {2h),' from x to \%i as related by £ (cO, jf,̂  $(,<)) = O

and to use diroensionless variables defined by

- 22 -



Making these transformations we find that the reflection coefficient

becomes

r s-L
4

where

ana i -^ <* c

The contour of integration C is determined by

and is shown schematically in Fig. (4). For Maxwellian, the contour is given by

Xw\ ("Z'(.^~'}3 — O ^ ^ hence is independent of the potential.

Since ^ iB typically a large parameter, the method of stationary phase

integration is appropriate for the approximate evaluation of the integral in

Eq. (^l). This method involves deforming the original integration contour

to a path which passes through the saddle points of the integral in such a

way that Re(.lJ) is constant and that ImC4i has a minimum on the path.

We shall now l i s t some properties of the phase function Tjft̂ O that are

needed in the evaluation of the integral. The points of stationary phase are

the roots of o a QL. H^CX*1) = Q • Ehe roots of 2,'C^"0— ©t — O

are branch points of the function ^JtX) , and the roots of jf C^'O — O

are simple poles of the integrand in Eq. (^l). These equations have a

denumerable infinity of roots which lie Just beneath a l£ne making a ^5° angle

with the real axis. The roots converge rapidly on this line to a limit point

at the origin. The first four roots of these equations are listed in table

(l) for several values of Ot To determine the behavior of ^ in the

- 2 3 -



neighborhood of these; critical points, we use a Taylor's series expansion of

and find that

for ^OC-^c^j,! ^. ^X-s,^ where 3£.S,JL is a saddle point, and that

( 4 4 )

for ^Ot-^w^Jtl »̂ P̂ V»,̂ -\ where 0̂ j,£. is a branch point. The deriv-

atives in the Taylor series expansion have been rewritten using the identity

"2' — — 20 + 4>Z:) . The path of stationary phase, R e ^ ) = const, is

determined from Eq. (43) in the neighborhood of 31$ x • A w a v ^ r o m "tlie saddle

point the path was followed numerically and was found to loop around the ^.u .

branch point as shown schematically in Fig. (4). The stationary phase curves

obtained by numerical integration are shown more precisely in Fig. (5), for

Ot = .01, .1 and .5, The topology of the curves of steepest descent changes

for oC £,.15 and thus the method of evaluation described below fails for this

case. However, we shall restrict ourselves to the more important case where

the waves are not too strongly damped in the main part of the plasma so that

Ot, 4. .15. The paths approach the origin above the 45 line where the phase

varies as "^ C? ~ i - for small X ; therefore, the integrand vanishes on

these paths as y^-^0 , In determining the paths of stationary phase the

branch lines are chosen as shown in Fig. (4). The discontinuity in ^ across

the branch point Xfc,̂  is 2TTi X\, a.

Returning to the evaluation of the integral in Eq. (41), we deform the

path of integration to the paths of stationary phase plus the paths that run from

- 24 -



to a distance £, from the origin and a 45° circular arc of radius £ thatg
begins on the real axis and terminates on the L steepest descent curve. The

distorted contour is schematically shown in Fig. (4), Explicitly, we have

where Ct, is a steepest descent contour, Co goes from >(_* «>{.(. "«•) to the

origin and Co is the 45° arc connecting C» arid C\_ .

The integrals on the path Cj. are evaluated by the method of stationary

phase if *\ V^S/M •*" \ • If this inequality is not satisfied, then the

stationary phase method fails since the phase is not yet large when higher

order terms of the Taylor expansion about Ô sfl. compete with the quadratic

term. First we will evaluate the contribution on the paths Cj. when \ \ W j ^ \ ^

and later we will obtain the contribution from the region

Factoring out the phase evaluated at Dl%% » the sum of terms in

Eq. (45) has the form

co

where &JL represents the residual integral. Note that the exponential order

of magnitude is now given even without (X$> evaluated. Fort *̂  ^ s ^ V

we find from the stationary phase method that Qj, is given by

2 17- -

For the first two terms in Eq. (45) we find that the phase on CQ is
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given by
.•X.

- i if
X

The increment in the phase on the small arc around the origin vanishes for

arg (pO ^ ^VA ' T1IUSJ the contribution from the first two terms in .Eq. (45)

becomes

^ e (46)

where A *il*-'— J pc--£' ~~5^ • Since V k x *s rapidly varying along

its contour of integration, (except near the origin) the first term tends to

annihilate itself and thus can be neglected compared to the second term, which

is the contribution from the circular arc. However, as fc-spo > 2 ' — ^ >£*

and hence the first term has a logarithmic divergence that can only be cancelled

from the contribution of the stationary phase integrals near the origin. Note

that A"^(_30 can be considered real if V « \ s since ^fCX-1)^ I*2"

and ?Ll-") & {** .

We now discuss the convergence of the infinite sum in Eq. (45) and the

logarithmic divergence at the upper limit in Eq. (46). The infinite sum diverges

and cancels the divergence in Eq. (46) as we know it must, since the original

integral is finite. To show the cancellation, we must calculate that part of

0.£ which gives the singularity. We note that in the limit 2{.j - ^ O the dis-

continuity in the phase vanishes. This suggests that for small J(x w e shrink

the contour Cj, to encircle the pole and the branch line. The integral around

the branch point vanishes for "X. lyva C^t^jO ^. | > and the integral along

26 -



the branch line is easily bounded and found to be less than the integral around

the pole by a factor *K!Hb,> which is taken to be small. The residue from

the pole is obtained from

which gives for the infinite sum from the Lth term

:0 U *M!

where IX« JL is the root of "H.'( ̂ "0 ^="0 and L is such that

\ * X ^ . & L \ ^ ^ • The spacing of the infinite roots can be found from

the asymptotic form of "•£ and gives

IT.

for l̂ K-f/A.̂  ̂  * • Using Eq. (47) to convert the infinite sum into an integral,

we find that

Thus, the sum AYo-f^Wo is f i n i t e» it: is equal to the integral
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SSz. g on o path like C around the origin at a finite

distance from the origin.

To recapitulate, the reflection coefficient reduces to a form where

the exponential dependence of the terms is explicit; that is

+ / OL, e
jlrt (49)

Al'°) is real in the approximation that y((.o) is real, CJjL has an explicit

algebraic dependence on the parameters V and fC for X not too large, and

*7\- V^$;U \ C ? \ • *n ^^e following, we assume that the magnitude of the

terms in f is dominated by their exponential dependence ^ , and

that Y* is characterized by the largest term in the series.

The exponential dependence of the first term in Eq. (49) has the form

(so)

This is the reflection coefficient obtained by solving the problem in the fluid

approximation, that is, by solving the differential equation

where "^ WC-OJ) =? y^ •££- . The evaluation of the phase ^ C ^ ^ j ^ y for

finite Xs,JL is> in general, a numerical problem and the results for 0< = .01,

and .1 are given in table 2. However, after determining the location of the

saddle points numerically, an estimate of j£l$>s &5 *3 obtained by using the

- 28



approximations ^'(t) £ t"7* an^ 2. (f)*-2.T The error made in

using this approximation appears to be less than lOPo for oi <, .10. Using

the approximation the integral for the phase can be performed and the reflec

tion coefficient becomes

(51)

whore the real part of the phase has been absorbed in

If we consider a sequence of O^t a o n the 45° ray, we find that the

function in the exponent has a minimum for V^i &\ ~ N^-I^X7** an<^

2 ̂  \ ( O
a term of the form Q which is similar to the

fluid term but is slightly larger. For §1 ̂  .OOP. the saddle points which

lie appreciably below the 45° ray begin to uuî i .n.-.n. u, ami rapidly the saddle

point 0(t 4-1 j which has a smaller imaginary part than the neighboring

points, dominates. The contribution from this saddle point gives

r ^ £' ~V^ (52)

This is a new type of dependence which arises from the thermal properties of

Thus, in this example, the formalism establishes th.e transition between

the reflection due to the fluid behavior given by Eq. (49) which dominates at

long wavelengths and the thermal behavior given by Eq. (51) which dominates at

short wavelengths. For the unstable plasma, which will be analyzed in a later

paper, it is the short wavelength regime, ^ ^ ^V^+L that appears to

give the largest reflection.
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POSITION OF SADDLE POJfriTS AND ITS PHASES

= . 0 1 % = . 1 0 = .5

(.0992, .0000)

(.3172, .1526)

(.2230, .1430)

(.1793, .1291)

(.1533, .1178)

Itn

,250

.27 9

.281

.280

= (.2923}> .001)

= (.2997, .1530)

= (.2127, .1445)

= (.1723, .1306)

,668

,818

.864

,885

(.4937, .0535)

(.2805, .17 93)

(.2040, .1555)

(.167 0, .137 0)

(.1445, .1235)

Roots of !) = 0

v = (.3188, .1534)

t « = (.2257, .1437)

?t3 = (.1803, .1296)

? A = (.1517, .1183)

Roots of = 0

l = (.2920, .1131)

z = (.2175, .1185)

j = (.1786, ,1126)

^ . = (.1542, .1057)

TABLE I.



APPENDIX A. Consent on Analytic Continuation Prescription

In the text we found that the response to a step function perturbation

is of the form

where ^o is a real frequency, -R lu>«i is the wave number for the forward wave

determined by the equation, QClPo.-il) — O and S<X>o * s P r oPo r-

tional to the amplitude of the incident wave,

I t has been observed that if the system is unstable, •XluJey i s i Q t n e

lower half plane. If we believe Eq. (A.l) in i t s present form we see that for

an unstable system we have a reflected wave to the right of the discontinuity

and a transmitted wave to the left; a result that violates our boundary condi-

tions.

In order to obtain the correct results, we should remember that a problem

must be posed with ini t ia l conditions present. If, for example, we assume we

have a dipole source at the point Xo ^.0 whose time behavior is of the form

0 l"O £, > then after transients have died, waves with wave

number *x(W«) propagate to the right and left of the source. The wave

propagating to the right can be taken as

I t can then be shown that the perturbed field due to the step function at x = 0

has the form
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where Q^ i s a contour in the upper half plane above any roots

determined by £ ( ^ «•) ~ O for real Tt. . Since the C& contour is

chosen above the zeros of £lu>j.U) > i - t follows that the roots -ttlto) for

60 on Cu> can be chosen in the upper half plane. Thus, for X>0 where we

can enclose the "yv, contour in the upper T< -plane, WG find that the poles

Tt-sTilufl are encircled, while for X<0 we can enclose the •&. contour in

the lower \ . plane where the poles -i^=---Hlu3j are encircled. Now, if

^ in the upper half 6) plane, the only contribution

that persists after a long time in the final 60 integral is from the pole at

(O = Ui0 . Hence we may now replace GO by 10* treating M (&o) in the upper

half plane, as prescribed in the text. The condition Z$ [w ; \lLP» ?- O

Ik
in the upper half plane guarantees that any instability present i s convective

i . e . , disturbances propagate away from i t s source.

APPENDIX B. Reduction of Reflection Coefficient

We would like to show how Eq. (31) can be reduced to Eq. (24), We f i rs t

evaluate the x-integral in Eq. (31) approximately by integrating by parts and

neglecting the remainder term since i t i s higher order in the parameter

\(&Ui " ^AJ") ^- J • ^ u s °nly '*;ne e n (* point contributions are important and i t

turns out that the end points at X"=Xo vanish. We then find that r i s given by,
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4- 7

We now integrate the X integral by parts and neglect terms of

We then obtain,

+ 09

V = 2 U>r *
2;

(B.2)

It is now shown that this expression reduces to our desired result,

(B.3)

- 0 0

The reduction of Eq. (B-3) to Eq. (B.2) requires a fair amount of algebraic

manipulation. For compactness we suppress the last term in Eq. (B.2). We then

focus our attention on the quantity

o»

(B.10



If we dhow that XX is given by J £= ' — p ^ §

we have our desired result. In the work below, i t is convenient to rewrite

the dielectric function in the form,

\

"" I— - £* • v$ \

(B.5c)

Now we note that X c a n be rewritten as

CO

? i ~ 8F

9V A

{_

1

Here the first term vanishes because it is even in 60 and thug is can-

celled by one of the suppressed terms. The second and third terms can be

- 35 -
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Bhown to cancel with use of the relation

CD

i * •'

•VI Ti (W-<A)X (B.7)

Thus, only the last term remains. This term can be reduced to the form,,

O>
r = H

$,$<">

from Eq. (B.5a)

r-

Hence

4

can Tbe written as

= 4

»•-«»

J

4

(B.9)
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where we have used V" «g^- — ~ ~j^ <J> (*) Using 6 t « ) ^ <£) = O

and Eq. (B.^b), we see that the first two terms cancel, and we have from the

last term,

J (B.n)

Finally, using Eq. (B.5c) and €(W, ̂ ) = 0 , we have

r _

Q. E . D.

APPENDIX C Solution for "9" Distribution Function

For the special" case in which the equilibrium distribution function is a

function, p - -L B t ^ - E ' j where E - \ V\j£ X(4 and eCx)-{ ^ X<°

the Vlasov-Poisson equations can be reduced to a differential equation. The

solution to this problem enables us to test the general expression derived in

the text.

Although one can proceed directly from the Vlasov-Poisson equations, the
\

equations of the system are more quickly derived by observing that if the

init ial state is a Q -function, the distribution function can only change at

i ts points of discontinuity V = V4, since

a

- 3T -



Hence, only the width of the O -function changes in time and space.

The density of particles is then given by tt(x,t) s C ( VV(x,t) - V~(«/t))

where C is determined from the equilibrium to be C = - ^ ^ , Y\e is the

particle density at X-w — co , and V+ and V" are the points of dis-

continuity. Now n(x,t) can be related to the electric field by Poisson's

equation and ve need only solve the linearized equations for \ / ~ C*i"t).

Th.t/3 we

(c.3)

where M U) = - £ " |_Z^ t " "^ *£ txV 1 is the density

of neutralizing background.

The equilibrium solution is V j =. — V o — \_ZCE"--^5W

If we now add and subtract the equations for the perturbed velocities}

\ 6 / we find,

(C5)

Combining (C.^) and (C.5) and (C.3), we find the differential equation

governing
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The reflection and transmission coefficients for this equation can be

obtained by the same type of perturbation theory used in the text, and the

results are given in Eq. (36).
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FIGURE CAPTIONS

Fig. 1. Smooth Potential 5 K * ) and Step Potential Approximation

Pig. 2. Step Discontinuity

Fig. 3. Comparison of Bremmer Integral with Exact Solution. The exact

reflection coefficient to the equation S-I +. \^ O + \ + £'»-/ ' "

is given by r 5i\ t ^ U £

This exact answer is compared with the Bremmer integral

\

For the parameters in the area below the solid curve the agreement

between the two expressions is better than 5$. 0 n the solid curve

r varies from r = .1 to r = .k . In the cross hatched areas

the asymptotic form of r is indicated.

Fig. h. Schematic Drawing of Contour of Integration in X Plane. The solid

line indicates the contour of integration C in the H plane. The

dotted line indicates how this contour is distorted. The contours

C-j, CJJ.-.CJ^ are the curves of steepest descent passing through the

saddle points X

Fig. 5. Numerically Evaluated Curves of Steepest Descent. Steepest descent

curves for various parameters of = 2. "x X
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