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Resistance to quinolones and fluoroquinolones is being increasingly reported among
human but also veterinary isolates during the last two to three decades, very likely as a con-
sequence of the large clinical usage of those antibiotics. Even if the principle mechanisms
of resistance to quinolones are chromosome-encoded, due to modifications of molecu-
lar targets (DNA gyrase and topoisomerase IV), decreased outer-membrane permeability
(porin defect), and overexpression of naturally occurring efflux, the emergence of plasmid-
mediated quinolone resistance (PMQR) has been reported since 1998. Although these
PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones,
they are a favorable background for selection of additional chromosome-encoded quinolone
resistance mechanisms. Different transferable mechanisms have been identified, cor-
responding to the production of Qnr proteins, of the aminoglycoside acetyltransferase
AAC(6′)-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target
enzymes (DNA gyrase and type IV topoisomerase) from quinolone inhibition. The AAC(6′)-
Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin.
Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell.
A series of studies have identified the environment to be a reservoir of PMQR genes, with
farm animals and aquatic habitats being significantly involved. In addition, the origin of the
qnr genes has been identified, corresponding to the waterborne species Shewanella sp.
Altogether, the recent observations suggest that the aquatic environment might constitute
the original source of PMQR genes, that would secondly spread among animal or human
isolates.
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INTRODUCTION
Quinolones are fully synthetic and bactericidal antibacterial agents
used widely in both human and veterinary medicine. The clinically
available quinolones have been classified into several generations
based of their spectrum of activity (Ball, 2000). The first gen-
eration quinolone (Q1G), nalidixic acid, has been discovered in
1962 (Lesher et al., 1962). Other Q1G, such as pipemidic acid
and oxolinic acid, had been developed, the latter being used for
in veterinary medicine. The quinolones of the second genera-
tion are made of addition of a fluorine atom at position C-6
to the quinolone nucleus, yielding to the fluoroquinolones (FQ;
Paton and Reeves, 1988). The early FQ (e.g., norfloxacin, ofloxacin,
pefloxacin, ciprofloxacin, or enrofloxacin) achieved higher serum
levels and showed potent activity against Gram-negative bacteria,
several Gram-positive bacteria (such as Staphylococcus aureus),
and intracellular bacteria. In addition, ciprofloxacin is active
against Pseudomonas aeruginosa. Newer FQ (third generation
quinolones) were subsequently developed and presented increased
activity toward Gram-positive bacteria, in particularly to Strep-
tococcus pneumoniae (e.g., sparfloxacin, levofloxacin, or moxi-
floxacin), and potent activity against anaerobic bacteria (e.g.,

trovafloxacin, gatifloxacin, or gemifloxacin; Van Bambeke et al.,
2005).

Even if the main factors leading to resistance to quinolones and
FQ related to chromosomal mutations in the drug target genes, the
discovery during the last decade of a series of plasmid-encoded
resistance mechanisms has contributed to speculate about the
origin and enhancing factors of that transferable resistance. In par-
ticular, the interplay between an environmental and animal source
on one side, and the human clinical pathogens on the other side
(in which the emergence of resistance to quinolones is a matter of
fact) remains to be further explored and understood.

That review aims to present some of the current available data
from which speculations can be established.

MECHANISM OF QUINOLONE ACTION
The targets of quinolone molecules are the type II topoiso-
merases: DNA gyrase (topoisomerase II) and DNA topoisomerase
IV (Drlica and Zhao, 1997). As opposed to type I topoisomerases
that transiently cleave one strand of the DNA double helix, type
II topoisomerases break transiently both strands of a duplex and
pass another double-helical segment through the break by ATP
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hydrolysis (Drlica and Zhao, 1997; Hawkey, 2003). The DNA
gyrase introduces negative supercoils into DNA whereas topoiso-
merase IV exhibits a potent decatenation activity. Those enzymes
are essential for bacterial growth by controlling the topological
status of the chromosomal DNA to facilitate replication, tran-
scription, recombination, and DNA repair (Drlica and Zhao, 1997;
Hawkey, 2003). The DNA gyrase and the DNA topoisomerase IV
are the main targets of quinolones in Gram-negatives and Gram-
positives, respectively. Quinolones inhibit the activity of type II
topoisomerases by trapping these enzymes on DNA as drug-
enzyme-DNA complexes. Ternary complex formation is responsi-
ble for inhibition of bacterial growth (bacteriostatic action) by a
rapid inhibition of DNA synthesis and a slower inhibition of RNA
synthesis (Drlica and Zhao, 1997; Hawkey, 2003). Eventhough
these drug–enzyme–DNA complexes block cell growth, they are
not directly responsible for the lethal effect of quinolones. Indeed,
bactericidal activity is due to the releasing of double-stranded
DNA breaks from those complexes, but the detailed mechanism
of action of quinolones still needs to be fully understood.

CHROMOSOME-ENCODED RESISTANCE
Resistance to quinolones in Enterobacteriaceae most commonly
results from the accumulation of mutations primarily in DNA
gyrase (GyrA) then in topoisomerase IV (ParC; Hooper, 2000;
Ruiz, 2003; Hopkins et al., 2005; Jacoby, 2005). Alterations in
GyrA of E. coli predominantly occur within the N-terminus of the
protein in the so-called quinolone resistance determining region
(QRDR) located between amino acids Ala67 and Gln106. Muta-
tions appear most frequently at codons Ser83 and Asp87, which
are located near the active sites of enzyme (Tyr122). In addition,
quinolone resistance can be associated with a decreased membrane
permeability and/or an overexpression of efflux pump systems
(Hooper, 2000; Hopkins et al., 2005).

PLASMID-MEDIATED RESISTANCE
Although considered as impossible due to the plasmid curing effect
of quinolones (Courvalin, 1990), plasmid-mediated quinolone
resistance (PMQR) was first reported in 1998 from a Klebsiella
pneumoniae isolate in the USA (Munshi et al., 1987). Indeed, a
plasmid-mediated resistance to nalidixic acid in Shigella dysente-
riae has been reported previously in 1987 (Munshi et al., 1987),
but the reality of this phenomenon was later rejected (Courvalin,
1990). To date, several PMQR mechanisms have been identified:
Qnr proteins, the aminoglycoside acetyltransferase AAC(6′)-Ib-cr,
and the efflux pumps QepA and OqxAB.

Qnr PROTEINS
Qnr structure and nomenclature
The first identified PMQR determinant corresponded to the Qnr
protein, lately termed QnrA1 (Martinez-Martinez et al., 1998).
The corresponding gene was identified on a broad-host range
conjugative plasmid recovered from a ciprofloxacin-resistant K.
pneumoniae isolate (Martinez-Martinez et al., 1998). QnrA1 is a
218-amino-acid protein that belongs to the pentapeptide repeat
family, of which more than 500 members are known, distributed
in prokaryotics and eukaryotics (Vetting et al., 2006). Those pro-
teins are made of tandemly repeated amino acid sequences with a

consensus sequence [S, T, A, or V] [D or N] [L or F] [S, T, or R] [G]
(Vetting et al., 2006). Six other QnrA variants (QnrA2 to QnrA7)
have been identified, and differ from QnrA1 by a few amino acid
substitutions (Jacoby et al., 2008).

Four distantly related Qnr-like determinants belonging to the
pentapeptide repeat family have also been identified in Enter-
obacteriaceae: QnrB, QnrC, QnrD, and QnrS (Hata et al., 2005;
Jacoby et al., 2006; Cavaco et al., 2009; Wang et al., 2009). To
date, there are 42 QnrB variants, 1 QnrC, 1 QnrD, and 5 QnrS
(http://www.lahey.org/qnrStudies/). QnrB1, QnrC1, and QnrS1
share 40, 60, 47, and 59% amino acid identity with QnrA1,
respectively.

In addition, QnrVC-like proteins have been identified in Vibrio
cholerae, sharing 57% amino acid identity with QnrA1 (Fonseca
et al., 2008). Even if the qnrVC genes have been identified as
acquired resistance genes, they are not plasmid-located, thus not
considered as PMQR genes.

Mechanism of action
QnrA1 shares 20 and 19% amino acid identity with McbG and
MfpA, respectively, two other members of the pentapeptide repeat
family both involved in resistance to gyrase inhibitors (Cattoir
and Nordmann, 2009). Qnr proteins may supplement resistance to
quinolones due to altered quinolone target enzymes, efflux pump
activation, or deficiencies in outer-membrane porins (Martinez-
Martinez et al., 2003; Jeong et al., 2008). In addition, Qnr proteins
facilitate selection of quinolone resistance mutants by raising the
level at which they can be selected with a frequency more than
100-fold higher (Martinez-Martinez et al., 1998). The presence
of Qnr determinants facilitates the selection of low-level of resis-
tance to quinolones due to chromosome-encoded mechanisms.
From a clinical point of view, Qnr determinants may increase the
mutant prevention concentration (MPC) of ciprofloxacin by more
than 10-fold, facilitating recovery of mutants with higher level of
resistance to quinolones (Rodriguez-Martinez et al., 2007). There-
fore, Qnr-positive isolates may be a favorable background for an
in vivo-selection of additional chromosome-borne mechanism(s)
of resistance to quinolones after treatment by fluoroquinolones
(Poirel et al., 2006).

Epidemiology of Qnr determinants
Qnr in human clinical isolates. All types of Qnr determinants
have been identified worldwide in many different enterobacter-
ial species but mostly in K. pneumoniae, Enterobacter spp., E. coli,
and Salmonella enterica from community and nosocomial isolates
(Rodríguez-Martínez et al., 2011). Their overall prevalence may
range from 0.2 to up to 94% depending on selection criteria of
studied strains (resistance to ceftazidime, nalidixic acid, FQs,. . .;
Strahilevitz et al., 2009; Rodríguez-Martínez et al., 2011). The
prevalence of qnrB genes seems to be overall higher than that of the
other qnr genes. However, the qnrS genes are very frequently iden-
tified in Salmonella sp., suggesting that they could represent a sig-
nificant resistance trait along the food chain. For instance, a recent
international survey (13 European countries) identified a qnrS
gene in 10% of the Salmonella sp. collection (Veldman et al., 2011).

Very few studies have been performed to evaluate the prevalence
of the qnrC and qnrD genes since those genes have been recently
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identified. However, the qnrC has been identified from a Proteus
mirabilis isolate from China, and its prevalence seems to be very
low, at least in China (Wang et al., 2009). The qnrD gene has been
identified in 22 out of 1215 Salmonella isolates obtained from
different European countries, being either of human or animal
isolates (Veldman et al., 2011).

Qnr in animal isolates. QnrS1 was first identified from a trans-
ferable plasmid carried by a clinical isolate of Shigella flexneri 2b as
a source of a foodborne outbreak in Aichi prefecture, Japan (Hata
et al., 2005). As described for the qnrA1 gene, the qnrS1 gene has
been identified from several enterobacterial isolates (particularly
in Salmonella spp.) in many countries. It has been identified in
porcine E. coli (Szmolka et al., 2011) in Hungary, in equine E. coli
in Czech Republic (Dolejska et al., 2011), and in poultry E. coli in
China (Yue et al., 2011). The qnrS2 gene was identified in a single
non-Typhi Salmonella clinical isolate from the USA (Gay et al.,
2006). Finally, the qnrS3 variant has been identified in a single
veterinary clinical E. coli isolate from China (GenBank accession
no. EU077611).

In an interesting study including 1215 Salmonella and 333 E. coli
isolates, six variants of qnrB were identified from 138 qnrB-positive
isolates, most of them being obtained from turkeys (Veldman et al.,
2011). The qnrD gene was identified in 22 Salmonella of eight
different serovars, being mostly identified in Spain but also in
Italy.

Whereas there is so far no report of qnrA-like genes in non-
enterobacterial species, qnrB- and qnrS-like genes have been iden-
tified for instance in Pseudomonas fluorescens and Aeromonas spp.
isolates, respectively (Ahmed et al., 2007; Cattoir et al., 2008b;
Sanchez-Cespedes et al., 2008). Interestingly, qnrS and mostly qnrB
genes were identified from zoo animals, mostly including reptiles
(Ahmed et al., 2007).

Qnr determinants in aquatic environments. Overall, the qnrS-
type genes seem to be the most commonly identified acquired
qnr genes in the environment. They have been mainly identified
from waterborne species, and in particular Aeromonas spp. The
qnrS2 gene was identified from a mobilizable IncQ-related plasmid
(pGNB2) isolated from an activated sludge bacterial community
of a wastewater treatment plant in Germany (Bonemann et al.,
2006), in two strains of Aeromonas spp. (Aeromonas punctata and
A. media) isolates from the Seine river in France (Cattoir et al.,
2007b), and lately in a single clinical Aeromonas veronii isolate
from Spain (Sanchez-Cespedes et al., 2008). In Italy, a Citrobac-
ter freundii strain producing the ESBL TEM-116 was recovered
from a sewage effluent (Forcella et al., 2010). This ESBL gene
was encoded on a plasmid that co-harbored the qnrB9 gene. This
constitutes one of the few example showing the occurrence of
a qnr gene from an enterobacterial isolate recovered from the
environment.

The environmental species that have been found to carry qnr
genes were mainly Aeromonas spp. or Vibrio spp. In China, an A.
punctata strain recovered from a wastewater sample in the Shan-
dong province carried the qnrVC4 gene on a plasmid (Xia et al.,
2010). That strain was resistant to nalidixic acid but susceptible to
fluoroquinolones.

Mobile genetic vehicles
All the qnr genes have been identified on plasmids that vary
in size ranging from ca. 7 to 320 kb (Cattoir and Nordmann,
2009; Strahilevitz et al., 2009) Those plasmids, and especially the
qnrA- and qnrB-positive ones, often harbor other antibiotic resis-
tance genes conferring resistance to β-lactams, aminoglycosides,
chloramphenicol, tetracycline, sulfonamides, trimethoprim, and
rifampin.

The qnrA-like genes are usually dentified as part of complex
sul1-type class 1 integrons, that exhibit duplicated 3′-conserved
sequences (3′-CS) containing the qacEΔ1 and sul1 genes. Imme-
diately upstream of qnrA genes, the orf513 gene which constitutes
the transposase gene of insertion sequence ISCR1 is systematically
identified (Toleman et al., 2006). The qnrB-like genes have been
associated with either the orf1005 gene encoding a putative trans-
posase for qnrB1 (Jacoby et al., 2006), the ISCR1 element for qnrB2
(Garnier et al., 2006; Jacoby et al., 2006; Minarini et al., 2008),
qnrB4 (Cattoir et al., 2007b; Hu et al., 2008),qnrB10 (Quiroga et al.,
2007), and qnrB12 (Kehrenberg et al., 2008), or an ISEcp1 element
for qnrB19 (Cattoir et al., 2008a). Although qnrS-like genes are not
embedded in sul1-type integrons, two different genetic environ-
ments have been described, with the qnrS1 genes being identified
in association with Tn3-like transposon structures or the insertion
sequence ISEcl2 (Poirel et al., 2007), and the qnrS2 gene being part
of a transposon-like structure, named mobile insertion cassette
(MIC), and inserted in an ORF coding for a zinc metalloprotease
(MpR) in Aeromonas spp. (Cattoir et al., 2008b; Sanchez-Cespedes
et al., 2008).

The qnr genes originate from environmental species
By screening for a collection of 48 Gram-negative clinical and
environmental bacterial species (Enterobacteriaceae, Aeromon-
adaceae, Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae,
and Shewanellaceae), the origin of the qnrA gene was identi-
fied as being the chromosome of Shewanella algae (Poirel et al.,
2005b). Indeed, three QnrA-like determinants (termed QnrA3,
QnrA4, and QnrA5) have been identified in S. algae, and dif-
fer by a few amino acid substitutions from QnrA1. S. algae is
widely distributed in aquatic environments and rarely involved in
human infections. As opposed to what it has been described for the
plasmid-mediated qnrA1 gene, the chromosomal qnrA-like genes
were not associated with the ISCR1 element in the chromosome
of S. algae (Poirel et al., 2005b). Finally, The G + C content (52%)
of the qnrA-like of S. algae matched exactly that of the genome of
S. algae (Poirel et al., 2005b).

It has been shown that Vibrio splendidus is a source of QnrS-
like determinants since chromosomal-encoded Qnr-like proteins
shared about 84 and 88% amino acid identity with the plasmid-
mediated determinants QnrS1 and QnrS2, respectively (Cat-
toir et al., 2007a). In addition, the G + C contents of qnrS-like
genes from V. splendidus (ca. 45%) are close to those of qnrS1
and qnrS2 (ca. 44%). Although the exact progenitor species of
the plasmid-encoded QnrS determinant remains unknown, the
bacterial species should be closely related to V. splendidus and
likely waterborne.

Recently, the progenitor of the qnrB-like genes was identified
to be Citrobacter spp. which are enterobacterial species known to
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be widely present in the aquatic environment, being either human
commensal bacteria or opportunistic pathogens depending on the
species (Jacoby et al., 2011).

Noteworthy, it has been shown that some bacterial species
belonging to the Vibrionaceae family (such as Vibrio vulnifi-
cus, Vibrio parahaemolyticus, or Photobacterium profundum) also
possess intrinsically chromosome-encoded Qnr-like determinants
(sharing 40–67% identity with the plasmid-mediated Qnr deter-
minants) and conferring resistance to quinolones (Poirel et al.,
2005a). That means that those waterborne species may also
constitute potential sources of emerging PMQR genes.

Several Qnr-like pentapeptide repeat proteins have been iden-
tified in the chromosome of Gram-positive bacteria (Enterococcus
faecalis, Enterococcus faecium, Listeria monocytogenes, Clostridium
perfringens, Clostridium difficile, Bacillus cereus, and Bacillus sub-
tilis; Arsene and Leclercq, 2007; Rodriguez-Martinez et al., 2008).
Amino acid sequences of these Qnr-like proteins are identical
from 16 to 22% with the PMQR determinants QnrA1, QnrB1,
and QnrS1 (Rodriguez-Martinez et al., 2008). Similarly, those
Gram-positive species could also constitute a reservoir for Qnr-
like although none of these genes has been yet identified as
plasmid-located determinants.

AMINOGLYCOSIDE ACETYLTRANSFERASE AAC(6′)-Ib-cr
The AAC(6′)-Ib-cr enzyme is a PMQR determinant that has
been discovered from qnrA-positive E. coli from Shanghai, China
(Robicsek et al., 2006). The aac(6 ′)-Ib-cr (for c iprofloxacin
resistance) gene encodes a variant of the widespread amino-
glycoside acetyltransferase AAC(6′)-Ib usually responsible for
resistance to kanamycin, tobramycin, and amikacin (Strahile-
vitz et al., 2009). This variant possesses two substitutions at
codons 102 (Trp → Arg) and 179 (Asp → Tyr) compared to the
wild-type AAC(6′)-Ib, both mutations seem to be required to
confer reduced susceptibility to several FQ molecules (Robic-
sek et al., 2006). The protein AAC(6′)-Ib-cr is able to acetylate
kanamycin, tobramycin, and amikacin, but also ciprofloxacin con-
ferring slightly higher MIC values (twofold to fourfold increase).
Nevertheless, it acetylates more efficiently aminoglycosides than
ciprofloxacin. Since acetylation occurs at the amino nitrogen
on the piperazinyl substituent, only FQs harboring an unsubsti-
tuted piperazinyl group (such as ciprofloxacin and norfloxacin)
are substrates of AAC(6′)-Ib-cr (Robicsek et al., 2006). Although
the aac(6 ′)-Ib-cr gene by itself confers low-level resistance to
certain FQs, it may facilitate survival of target-site mutants
with a 10-fold increase of their MPC (Cattoir and Nordmann,
2009).

The overall prevalence of aac(6 ′)-Ib-cr may range from 0.4
to up to 34% depending on the studied human clinical strains
(Robicsek et al., 2006). This gene has been reported mostly from
E. coli and K. pneumoniae clinical isolates. However, it has also
been identified in Aeromonas spp. collected in 2006 from feces of
zoo animals in Japan (Ahmed et al., 2007). Recently, it has been
identified in Salmonella spp. recovered from chickens in Japan,
and in E. coli of poultry origin in Spain or of pig origin in China
(Liu et al., 2011; Soufi et al., 2011; Du et al., 2012). Since this
gene seems to be geographically widespread, stable over the time,
and equally prevalent in ciprofloxacin-susceptible and -resistant
strains (Park et al., 2006), its significance remains debatable. Its

occurrence could also result from human contamination, as sug-
gested with a study from Gibson et al. (2010) identifying this gene
in companion animals.

The aac(6 ′)-Ib-cr gene has been identified as a form a gene cas-
sette into sul1-type class 1 integrons, and has been identified both
among ESBL-positive and ESBL-negative enterobacterial isolates
(Cattoir and Nordmann, 2009). Its occurrence in animals and
in the environment is likely frequent, but extensive surveys are
still required to better evaluate their prevalence in environmental
habitats.

EFFLUX PUMP QepA
Whereas efflux pumps are chromosome-encoded, a novel PMQR
determinant, qepA (for quinolone efflux pump), has been iden-
tified in E. coli human clinical isolates from Japan and Belgium
(Perichon et al., 2007; Yamane et al., 2007). This gene encodes
a 511-amino-acid deduced protein (53 kDa) that shares signifi-
cant identity with various 14-transmembrane-segment (14-TMS)
putative efflux pump belonging to the major facilitator superfam-
ily (MFS) of proton-dependent transporters (Perichon et al., 2007;
Yamane et al., 2007). This protein confers significant decreased
susceptibility to the hydrophilic quinolones (e.g., norfloxacin,
ciprofloxacin, and enrofloxacin) with an 8- to 32-fold increase of
MICs as compared to a wild-type susceptibility profile (Yamane
et al., 2007). On the opposite, QepA protein does not signifi-
cantly modify MICs of moderately hydrophilic (e.g., pefloxacin,
sparfloxacin, levofloxacin, moxifloxacin) and hydrophobic (e.g.,
nalidixic acid) quinolones (Perichon et al., 2007; Yamane et al.,
2007).

The occurrence of QepA among human clinical isolates seems
to be quite limited according to the few studies that have been
conducted on this subject worldwide. However, its occurrence
in animals might be significant. A study performed on E. coli
isolates from pigs in China showed that 28 (58.3%) out of 48
16S rRNA methylase RmtB-producing E. coli isolates were qepA-
positive suggesting a strong linkage between qepA and rmtB genes
(Liu et al., 2008). RmtB confers resistance to all aminoglycosides
(except streptomycin) by decreasing the affinity of the ribosome
for the antibiotic after N7-methylation at the G1405 within the
16S rRNA (Perichon et al., 2007).

Other E. coli isolates from pigs in China have been reported
as co-expressing the qepA, qnrS2, and aac(6 ′)-Ib-cr genes (Liu
et al., 2008). This co-expression of several PMQR determinants
may facilitate the selection of mutants under selective pressure
of antimicrobial agents. QepA-producing enterobacterial isolates
were also identified from pets in China (Deng et al., 2011). In
Nigeria, an E. coli strain recovered from chicken co-harbored a
qepA and a qnrB gene (Fortini et al., 2011).

The natural reservoir of qepA remains unknown. However, it
may be Actinomycetales species since QepA had significant amino
acid identity with likely membrane transporters of the members
of the order of Actinomycetales (such as Streptomyces globisporus,
Streptomyces coelicolor, Nocardia farcinica, or Polaromonas spp.),
and its high GC% content (72%) is compatible with this origin.

EFFLUX PUMP OqxAB
The OqxAB multidrug resistance mechanism was initially iden-
tified from E. coli strains recovered from swine manure (Hansen
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et al., 2004). The identified plasmid harbored the oqxA and oqxB
genes that are similar to genes encoding resistance–nodulation–
cell-division efflux systems. That plasmid conferred resistance to
olaquindox that is a veterinary growth promoter. Then, it was
shown to mediate resistance to other molecules, such as chloram-
phenicol, nalidixic acid, and ciprofloxacin (Hansen et al., 2007). In
Denmark, a retrospective study showed that nine out of 156 E. coli
strains isolated from pigs were positive for the oqxA gene (Hansen
et al., 2005). Recently, a Chinese study showed that 39% of the E.
coli isolates recovered from sows, piglets, weaners, and boars in
swine farms, and chicken in chicken farms harbored the oqxAB
gene (Zhao et al., 2010). An OqxAB-positive E. coli strain was also
identified from a liver sample of a diseased chicken in China (Liu
et al., 2008). Interestingly, another Chinese study reported a series
of K. pneumoniae isolates in which the oqxAB genes were actually
chromosomally located (Kim et al., 2009).

DISCUSSION
The discovery of a series of PMQR determinants within the last
10 years further raised out a novel issue regarding resistance to
quinolones. Indeed, whereas such resistance was supposed to
be only vertically transmitted, the occurrence of those PMQR
encoding genes show that it may be also horizontally mediated.
Noteworthy, and even if the first research interests focused on the
impact and relevance of PMQR genes among human clinical iso-
lates, subsequent studies rapidly showed that they were also of
main concern in animal and environmental strains. Such observa-
tion raises out several questions: are there relationships between

quinolones in the environment that are poorly biodegraded and
the prevalence of those resistance mechanisms? Are those resis-
tance mechanisms really new and emerging? Which is the extend
of the interplay between the situation observed in the environment
and the current clinical concerns?

The heavy use of quinolones in animals and in particular in fish
farming might likely have played a role in the selection of some
resistance mechanisms. This may have impacted the fauna itself,
and as a consequence the environment through contamination of
aquatic habitats, but that speculation remains debatable. A recent
study showed that there was no correlation between the occurrence
of FQ-resistant bacteria in aquatic environments and the FQ cont-
amination inVietnam and Thailand (Takasu et al., 2011). However,
the authors designed their study by selecting FQ-resistant bacteria
with high level of resistance (more than 16 mg/l), that is not a cor-
rect criteria when focusing on PMQR only conferring decreased
susceptibility to FQ.

The fact that most if not all PMQR encoding genes originate
from bacterial species that are naturally present in the environ-
ment, and in particular in the aquatic one, likely suggests that
this latter may represent the main source of the problem. This is
indeed probable that genetic events leading to the mobilization of
the resistance gene from the natural reservoir (the progenitor or
the donor) to the recipient (the target plasmid or the target strain)
occur in those environments where the donor is numerous.
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