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ABSTRACT 
13 

 
14 

Plasmids play a major role facilitating the spread of antimicrobial resistance between bacteria. 15 

Understanding the host range and dissemination trajectories of plasmids is critical for surveillance 16 

and prevention of antimicrobial resistance. Identification of plasmid host ranges could be improved 17 

using automated pattern detection methods, compared to homology-based methods due to the 18 

diversity and genetic plasticity of plasmids. In this study, we developed a method for predicting the 19 

host range of plasmids based on the random forest machine learning method. We trained the models 20 

with 8,519 plasmids from 359 different bacterial species per taxonomic level, where the models 21 

achieved 0.662 and 0.867 Matthews correlation coefficients at the species and order levels, 22 

respectively. Our results suggest that despite the diverse nature and genetic plasticity of plasmids, 23 

our random forest model can accurately distinguish between plasmid hosts. This tool can be used 24 

online through Center for Genomic Epidemiology 25 

(https://cge.cbs.dtu.dk/services/PlasmidHostFinder/).  26 

 
27 

Importance: 28 

 29 

Antimicrobial resistance is a global health threat to humans and animals causing high mortality and 30 

morbidity, and effectively ending decades of success in fighting against bacterial infections. 31 

Plasmids confer extra genetic capabilities to the host organisms through accessory genes, which can 32 

encode antimicrobial resistance and virulence factors. In addition to lateral inheritance, plasmids 33 

can be transferred horizontally between bacterial taxa. Therefore, detecting the host range of 34 

plasmids is crucial for understanding and predicting the dissemination trajectories of 35 
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extrachromosomal genes and bacterial evolution, as well as for taking effective counter measures 36 

against antimicrobial resistance.  37 

38 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.462084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.462084
http://creativecommons.org/licenses/by-nc/4.0/


4 

 

INTRODUCTION 39 

 40 

Plasmids are extra-chromosomal DNA sequences that have crucial roles in bacterial ecology, 41 

evolution and the spread of antimicrobial resistance (AMR) (1). They are typically circular, self-42 

replicating, transferable and tend to obtain, lose or re-arrange their genetic content rapidly which 43 

make them extremely mosaic, diverse and plastic. Plasmids are generally composed of backbone 44 

and accessory genes. The backbone includes replication (rep) and mobility (mob) genes which are 45 

relatively conserved amongst the plasmids of the same family (2). These features have also been 46 

used to type and compare plasmids that are isolated from different hosts using the replicon and 47 

MOB typing (3-5). The accessory genes generally confer selective advantages to the host such as 48 

AMR, virulence and metal resistance, increasing host survival under stress conditions despite the 49 

metabolic costs that plasmids cause to the host (6). Plasmids also harbor toxin-antitoxin systems 50 

and act as parasitic entities (7). Plasmids are often competent horizontal gene transfer vectors, and 51 

are able to move from one bacterium to another via conjugation, transduction or transformation 52 

causing persistent genetic exchange between bacterial hosts (1, 8). 53 

 54 

Plasmids vary in the number and range of taxa they can transfer to, replicate in and be maintained 55 

in. They can be roughly categorized as having narrow or broad host ranges (9). The features that 56 

determine the host range capacity of plasmids are not  fully understood yet, but origin of 57 

replication, replication initiation dependencies, and origin of transfer are known to be important for 58 

host range (9).  59 

 60 

Plasmid host ranges can be determined empirically by testing potential hosts in vitro (10, 11). 61 

However, sequence-based approaches can be used for plasmid host range prediction, which is more 62 
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practical compared to the empirical methods in terms of turn-around times and usage of  laboratory 63 

resources (11). Previous studies have attempted to predict plasmid host ranges by comparing 64 

oligonucleotide composition of plasmids and chromosomes (1, 9, 10, 12-14). Narrow host range 65 

plasmids are expected to have similar oligonucleotide compositions with the host organism due to 66 

plasmid sequence amelioration e.g. adaptation to a preferred host codon usage (12). However, this 67 

method falls short when predicting broad host range plasmids because of plasmids can often 68 

transfer to distantly related hosts (9, 12).  69 

 70 

Previously developed plasmid identification tools such as PlasmidFinder and PlasFlow have been 71 

developed to determine plasmid hosts (3, 15). PlasmidFinder identifies plasmids in whole genome 72 

sequences by searching against plasmid replicon sequences from the Enterobacteriaceae and Gram-73 

positive species. This alignment-based tool identifies plasmids from these taxa with high accuracy 74 

by indicating a source organism based on the best matching replicon. PlasFlow was developed 75 

using deep neural network and trained by the k-mer counts of fragments at least 1,000 nucleotides 76 

in length, and it can detect plasmid hosts at the phylum level. To our knowledge PlasFlow tool is 77 

not currently maintained. Recently, Redondo-Salvo et al. (16) developed an automated plasmid 78 

classification tool by assigning plasmid taxonomic units (PTUs) using total average nucleotide 79 

identity.  80 

 81 

Machine learning, a form of artificial intelligence, has been utilized in recent years to understand 82 

various biological systems by detecting the linear and non-linear correlations between input and 83 

output data (17). It has been used to predict phenotypes and structures in nature, and it has the 84 

potential to discover unknown features such as novel AMR genes (18-20). In this study, in order to 85 
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better predict plasmid hosts and infer plasmid host ranges, we developed a set of random forest-86 

based machine learning models for predicting plasmid hosts at several bacterial taxonomic levels.  87 

 88 

MATERIAL AND METHODS 89 

 90 

Data set 91 

 92 

We downloaded all of the available (10,863) plasmids and corresponding metadata from the 93 

Pathosystems Resource Integration Center (PATRIC) (21) in September of 2020. Metadata for each 94 

plasmid included the origin of the plasmid and other relevant information such as different database 95 

accession numbers, collection date and place, genomic length and features. Four plasmids did not 96 

have host information and were removed. The remaining plasmid host information was reported 97 

from genus to strain level by the PATRIC database. In total, 1,662 different genus and species level 98 

hosts were detected in the plasmid metadata. When fewer than five plasmids had a given host at a 99 

given taxonomic level, they were removed. In total, 1,296 under-represented hosts and 100 

corresponding plasmids were removed from the dataset to improve the robustness of the models. 101 

From the remaining 366 hosts, seven were removed for lacking species annotation. Therefore, we 102 

generated machine learning models with 8,519 plasmids and 359 corresponding hosts with species 103 

level taxonomy information. The species-level plasmid hosts were assigned to the higher taxonomy 104 

levels such as genus, family and order using the NCBI Taxonomy information by the Python ete2 105 

package (version:2.3.10) (22, 23). 106 

 107 

Distance tree 108 

 109 
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The diversity of the plasmids was measured using an oligonucleotide k-mer-based distance tree. 110 

The plasmid sequences were indexed using the KMA tool (version: 1.3.9) (24) with the following 111 

parameters: -NI -Sparse TG. Next, the 16-mer Hamming distances were calculated. The distance 112 

tree was generated using the CCPhylo tool (version: 0.2.2) using the Neighbor-Joining method (25). 113 

The distance tree was visualized using iTOL (version: 4) (26).   114 

 115 

K-mer counts  116 

 117 

The plasmid genomes were sub-sampled using overlapping k-length nucleotides (k-mers) and 118 

counting the occurrence of every sub-sequence. K-mer counting is a well-studied method for 119 

analyzing sequence data (27). The sub-sequence size k is a critical parameter as the sub-sequences 120 

yield various information depending on the size. While short k-mers provide information regarding 121 

the sequence content, long k-mers are informative in detection of unique sequence patterns. We 122 

analyzed plasmid genomes using three different k-mer sizes: 5, 8 and 10 nucleotides.  Counts were 123 

calculated using KMC (version: 3.0.0) (28) with the following parameters -fm, -ci1, -cs1677215. 124 

These parameters inform the tool regarding the input data format and the minimum and maximum 125 

thresholds for the k-mer occurrences.  126 

 127 

Detection of duplicates 128 

 129 

To eliminate possible duplicates from the plasmid collections, we compared the 8-mer counts of the 130 

plasmids to each other. Plasmid pairs with identical 8-mer counts were treated as duplicates and 131 

merged in the dataset. When the pairs had differing host information, the additional hosts were 132 

incorporated in the metadata.  133 
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 134 

Sequence length, GC content and codon usage calculation 135 

 136 

To capture the plasmid genome characteristics, we calculated the total length of the sequence, GC 137 

content and codon usage. Sequence length was calculated by taking all nucleotides into 138 

consideration, including ambiguous bases. GC content was calculated by taking the ratio of the total 139 

number of cytosine and guanine nucleotides to all nucleotides. Codon usage was determined as the 140 

relative frequencies of codons in a coding region which was detected using Prodigal (version: 2.6.3) 141 

with default parameters (29). 142 

 143 

Model generation and cross validation 144 

 145 

For each k-mer size, a matrix was generated from k-mer counts where the rows represent each 146 

plasmid, the columns represent each k-mer and the entries represent the k-mer counts. Additionally, 147 

a merged matrix was generated by combining the 8-mer count matrix with the genome length, GC 148 

content and codon usage information.  149 

 150 

In this study, we generated multi-label models that are able to predict multiple hosts per plasmid. 151 

Each label corresponds to a plasmid host and encodes a binary value, with “1” corresponding to 152 

being a host. These plasmid hosts were predicted at different taxonomy levels such as species, 153 

genus, family and order, where we built separate models per taxonomic level. We used random 154 

forest to build the classifiers, which provides robust and interpretable predictions based on decision 155 

trees and has been explored in many other classification studies (18, 30-32). 156 

 157 
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Model parameter tuning and validation was performed using the plasmid data, where the data were 158 

split into training, testing and hold-out datasets. The training and testing datasets were used for 159 

parameter tuning, and the hold-out dataset used for monitoring possible overfitting. Random forest 160 

was implemented using ensemble.RandomForestClassifier from the Python Scikit-learn package 161 

(version: 0.20.4) (33). The model parameters were tuned in the five-fold cross validation loop using 162 

the random grid search method from Scikit-learn that iterated 100 times; n_estimators, 163 

max_features, max_depth, min_samples_split, min_samples_leaf and bootstrap were the parameters 164 

tuned (Table S1). These parameters were responsible for the number of trees in the forest, the 165 

number of features required for the split, the maximum depth of the tree, the minimum number of 166 

samples for splitting, the minimum number of samples required for the leaf, and bootstrapping of 167 

samples, respectively. Tuning was conducted using an 8-mer matrix at the genus level and then 168 

applied to the other taxonomic levels and k-mer sizes. The detected optimal parameters were 169 

n_estimators = 1,000, max_features = "auto" which is square root of the number of features, 170 

max_depth = 50, min_samples_split = 2, min_samples_leaf = 1, and bootstrap = False. The 171 

class_weight parameter was set to “balanced” to weight the inputs based on the class frequencies to 172 

prevent the biased predictions due to the imbalanced classes. The random forest model was utilized 173 

with the multiclass.OneVsRestClassifier from the Python Scikit-learn (version: 0.20.4) package (33) 174 

which fits one label at a time and improves the interpretability of the models.  175 

 176 

Using the tuned parameters, the random forest model was trained and tested five times using the k-177 

fold cross-validation method, where different datasets were tested each time. The ensembled cross-178 

validation model was applied on the hold-out dataset which was not part of the training or testing. 179 

Model performances were measured using the area under curve (AUC), macro F1 score, Matthews 180 

correlation coefficient (MCC), and the confusion matrix using Scikit-learn (33). Sensitivity and 181 
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specificity were also calculated from confusion metrices to measure the ability of model to identify 182 

hosts. The class probability threshold of 0.5 was applied to calculate the performances of macro F1, 183 

MCC, and confusion matrix. Since it is a multi-label problem, all of the predictions for all possible 184 

labels were collected into one data container, and one prediction performance was calculated per 185 

model instead of the number of labels. The test and hold-out dataset performances were reported. 186 

The test performances were calculated by averaging five model performances from the cross-187 

validation, and reported with standard deviations. The hold-out performances were the ensemble 188 

model performances from averaging the cross-validation model predictions.  189 

 190 

To test whether the plasmid host model predictions were significantly different, a t-test was 191 

performed using stats.ttest_ind from SciPy (version: 1.2.2) (34). Moreover, possible correlations 192 

were detected using Spearman’s correlation coefficient using stats.spearmanr from SciPy (version: 193 

1.2.2).  194 

 195 

Clustering plasmids  196 

 197 

Since similar plasmids are likely to be hosted by the same organisms, we clustered the plasmids 198 

based on k-mer sequence similarity using KMA index (version: 1.3.9) with the following 199 

parameters: -k16, -Sparse and -NI (24). KMA clusters the sequence for a given similarity threshold 200 

using 16-mers and the Hobohm-1 algorithm (35). We clustered the plasmids using three different k-201 

mer query and template similarity thresholds at 90%, 80% and 50%. By dividing the clusters into 202 

training, testing and hold-out sets; similar plasmids were kept in the same partitions. This forced the 203 

models to learn sequence characteristics spanning larger genetic distances and was intended to help 204 

improve the generalizability of the models.  205 
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 206 

Random fragments 207 

 208 

Partial sequences might be informative for predicting hosts and better reflect actual data in 209 

incomplete plasmid assemblies. Therefore, random fragments of 500, 1,000, and 1,500 nucleotides 210 

were sub-sampled from each plasmid sequence to build prediction models from the partial 211 

sequences. The sub-sampling process was repeated randomly ten times for each plasmid. Plasmids 212 

shorter than the given fragment size were excluded from the study and separate models were built 213 

per fragment size. Matrix files and models were constructed as described above, using k-mers that 214 

were 5 and 8 nucleotides in length. 10-mers were not utilized due to the heavy computational 215 

requirements.  216 

 217 

Validation of the plasmid host prediction models 218 

 219 

The plasmid host models that were trained with the PATRIC plasmids at four different taxonomic 220 

levels were validated using plasmids from the National Center for Biotechnology Information 221 

(NCBI) Reference Sequence database (RefSeq) (36). A total set of 30,349 NCBI plasmids were 222 

downloaded from the NCBI RefSeq database and filtered. NCBI offers a larger plasmid collection 223 

than PATRIC, yet some of the plasmids are identical. Therefore, only the plasmids that had not yet 224 

been integrated into PATRIC as of January 2021, i.e., plasmids that are only present in the NCBI 225 

RefSeq database were included. Further, we eliminated duplicates from the NCBI validation dataset 226 

by comparing k-mer counts, and filtered based on the source organism, completeness and NCBI’s 227 

automatic taxonomy check. Moreover, plasmids with labels that are not included in the PATRIC 228 

training data were further removed from the NCBI validation data. The remaining plasmids with 229 
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species level host information recognized by NCBI Taxonomy were tested against the plasmid host 230 

models that were trained on the PATRIC collection. The validation performances were reported in 231 

AUC, macro F1, MCC and the confusion matrix. The class probability threshold of 0.5 was applied 232 

to calculate the performances of macro F1, MCC and confusion matrix.  233 

 234 

Comparison to PlasmidFinder  235 

 236 

We compared our species model performance to PlasmidFinder for the Enterobacteriaceae species 237 

that are present in the PATRIC hold-out dataset (3, 37). Moreover, the hold-out plasmids that 238 

present in the PlasmidFinder database were excluded from this comparison. The PlasmidFinder tool 239 

(version: 2.1.1) was performed with the default parameters using the PlasmidFinder database 240 

downloaded in July 2021.  241 

 242 

RESULTS 243 

 244 

Plasmid host prediction performances for the PATRIC hold-out dataset 245 

 246 

In order to develop models for predicting the host organisms of plasmids, a total of 8,519 plasmids 247 

with at least species level host information were downloaded and curated from the PATRIC 248 

database and included in this study (Table S2). These plasmids originate from 359 species 249 

belonging to 174 genera, 93 families, and 50 orders (Figure S1, Table S3).  Most of the plasmids in 250 

the collection come from the orders Enterobacterales, Bacillales, and Lactobacillales, which 251 

comprise 55.6% of the hosts in the data set (Figure 1).  252 

 253 
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To predict the taxonomic label of the host organism, machine learning models were trained using 254 

nucleotide k-mer counts from the plasmids. The predictions were carried out using 5, 8 and 10-255 

mers, since the short and long k-mers might provide different types of information to the models. 256 

For example, 5-mers do not usually appear in the plasmid genome uniquely, and instead provide the 257 

models with information regarding the profile of oligonucleotide frequencies for each plasmid. On 258 

the other hand, the longer k-mers, such as 8- and 10-mers, usually occur uniquely in a given 259 

plasmid, and offer counts of unique sub-sequences. Moreover, k-mer distributions are subject to 260 

changes based on the sequence size. 261 

 262 

Using each k-mer size, random forest-based classifiers were built to predict host taxonomy from 263 

order to species levels. The model based on the 5-mer counts has 0.655 MCC for predicting the 264 

plasmid host species, and this was moderately higher, 0.662 and 0.680 MCC, for 8-mers and 10-265 

mers, respectively (Figure 2, Table S4-S6). At the order level, the model performances achieved 266 

0.899 MCC for 5-mers, 0.867 MCC for 10-mers and 8-mers (Figure 2, Table S4-S6).  267 

 268 

By increasing the k-mer size from five to ten, the prediction performances increased 3.8% in MCC 269 

at the species level but decreased 3.6% at the order level. Although the fluctuations in the 270 

performances are not significant according to the paired t-test (p-values [0.404, 0.883] > 271 

significance threshold 0.05). To limit computational needs, we used the 8-mers, but not 10-mers, to 272 

build input matrices for all sub-sequent analyses. Overall, the plasmid host prediction models have 273 

low sensitivity (true positive rate) and high specificity (true negative rate) where the lowest 274 

sensitivity was detected at the species level compared to other taxonomy levels where sensitivity 275 

falls into the range between 0.493 and 0.761.  276 

 277 
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The number of the false negative predictions increased inversely with the presence of the hosts in 278 

the input data (Figure 3). Moreover, this correlation was significant at the species level (Spearman’s 279 

correlation coefficient of 0.545, p-value 0.00 < significance threshold 0.05). These findings suggest 280 

that the host classification becomes more challenging at the species level, and the model 281 

performances improve proportionally to the host representations in the training data. In addition to 282 

the false negatives, false positive predictions made by the model (Figure S3-S4) were frequently 283 

phylogenetically close to the actual hosts. For instance, the model frequently predicted Escherichia 284 

coli hosts instead of the Salmonella enterica and Klebsiella pneumoniae, where all of them belong 285 

to the Enterobacteriaceae. 286 

 287 

In an attempt to improve the 8-mer model performances, we combined the k-mer frequencies with 288 

the information in nucleotide compositions of plasmid sequences including, plasmid size, GC 289 

content and codon usage. These additional features yielded an approximately 0.6%-1.6% increase in 290 

the MCCs of the models (Figure S2, Table S7); however, this improvement was not significant 291 

according to the paired t-test (p-value 0.892 > significance threshold 0.05). Therefore, the following 292 

analyses were carried out without these additional features.  293 

 294 

To understand the impact of plasmid sequence similarity on the model performances, the plasmid 295 

genomes were clustered based on the k-mer similarity using KMA. The plasmids belonging to the 296 

same cluster at a given k-mer similarity threshold were kept in the same training, testing or hold-out 297 

dataset. When the k-mer similarity decreased to 80%, thus making the clusters more diverse, the 298 

model performances decreased in MCC between 7.7% to 29.8% depending on the taxonomic level 299 

(Figure 4, Table S8). The performance decrease shows that the similarity between the training and 300 
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testing data has an effect on the host predictions, especially at the lower taxonomic levels, although, 301 

the model can still be generalized to distant sequences.  302 

 303 

Plasmid host predictions with random fragments 304 

 305 

Due to the fragmented nature of plasmid assemblies that results from the difficulty in assembling 306 

plasmids from the short reads, we wanted to develop random forest models that can make 307 

predictions from incomplete sequences. To do that, we trained and tested our plasmid host 308 

prediction models with random fragments of plasmid sequences.  Fragments of 500, 1,000 or 1,500 309 

nucleotides were randomly sampled from each assembled plasmid sequence over ten rounds. By 310 

sampling multiple times, we attempted to introduce various regions of the plasmid sequences to the 311 

models. The fragment model that was trained with the 500 nucleotide fragments using 5-mers 312 

reached 0.426 MCC for the species model and 0.674 for the order model (Figure 5, Table S9). 313 

When the same fragments were sub-sampled into 8-mers, the species level model had MCCs of 314 

0.489 and 0.686 MCC for the species and order levels, respectively (Figure 5, Table S10). By 315 

increasing the fragment size from 500 to 1,000 nucleotides, the model performances increased 316 

8.2%-10.7% in MCC with the 5-mers and 6.3%-10.1% in MCC with the 8-mers (Figure 5, Table 317 

S9-S10). When the fragment size increased from 1,000 nucleotides to 1,500 nucleotides, the model 318 

performances increased 4.8%-5.1% in MCC with the 5-mers and 3.3%-1.7% in MCC with the 8-319 

mers (Figure 5, Table S9-S10). The fragment models reached their highest performances using 320 

1,500 nucleotide fragments and 8-mers as the features, where the MCCs were 0.537 and 0.768 for 321 

the order and species model, respectively (Figure 5, Table S10).  322 

 323 

Validation of the plasmid host prediction model with the NCBI validation dataset 324 
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 325 

To validate the plasmid host prediction models, we used plasmids in the NCBI RefSeq collection 326 

that are not present in our training, test or hold-out datasets. Overall, 7,670 bacterial plasmid 327 

sequences with taxonomic metadata were included in this analysis (Table S11-S12). As in the 328 

PATRIC database, the NCBI validation data is also dominated by the few major orders such as 329 

Enterobacterales, Lactobacillales and Pseudomonadales, which make up approximately 76% of the 330 

data set (Figure 6).  331 

 332 

When the whole model (trained with 8-mers of the PATRIC training set) was tested with the NCBI 333 

validation data, the ratio of the correct and wrong predictions was shown in Figure 7. Our plasmid 334 

host prediction model has relatively low sensitivity (0.483) and a high specificity (1.0) at the 335 

species level (Table S13), similar to the results shown above. Moreover, when the NCBI validation 336 

data were tested with the random model generated by shuffled labels, the model performance 337 

dropped to 0.028 MCC at the species level. This suggests even though the sensitivity is low, the 338 

model has adequate generalizability which is far from being random. 339 

 340 

Because the NCBI collection contained many short plasmid sequences, we filtered it based on the 341 

sequence size. Overall, plasmid sequences equal or greater than 5,000 bp performed 43% better 342 

than plasmid sequences less than 5,000 bp in terms of MCC at the species level. However, this 343 

performance gap reduced to 1% at the order level (data not shown). This means that the plasmid 344 

host range model accuracy improves with longer plasmid sequence length at lower taxonomic 345 

levels. 346 

 347 
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Similarly to the predictions for the hold-out dataset, the plasmid host prediction model predicted 348 

additional hosts for 499 plasmids in the NCBI validation dataset (Figure S5). Furthermore, the 349 

model frequently erroneously predicted Escherichia coli as being the host instead of its close 350 

relatives, Salmonella enterica and Klebsiella pneumonia, both in the hold-out and the validation 351 

results.  352 

 353 

The fragment-based models were also validated using the NCBI dataset. The 7,670 NCBI plasmids 354 

were randomly sub-sampled into 500, 1,000, and 1,500 nucleotide fragments, and each plasmid was 355 

randomly sampled ten times per fragment size. Similar to the PATRIC results, the fragment models 356 

reached the best performances (0.485 MCC at the species level and 0.778 MCC at the order level) 357 

for the NCBI validation data with the 1,500 nucleotides fragment size and 8-mers (Figure 8, Table 358 

S14-S15). 359 

 360 

Comparison to PlasmidFinder 361 

 362 

The PlasmidFinder tool uses an alignment-based strategy to identify plasmid sequences, and can 363 

often provide host information when it is available. We used 391 Enterobacteriaceae plasmids in 364 

the PATRIC validation data that were not already part of the PlasmidFinder database to compare 365 

the output of PlasmidFinder and our machine learning models. Overall, PlasmidFinder correctly 366 

identified 304 of the sequences and did not predict anything for 87 sequences. Our whole-plasmid-367 

based 8-mer model successfully classified 229 of the plasmid hosts, nothing predicted 121 and 368 

falsely predicted 41 of them at the species level. We then randomly sampled the 391 plasmids into 369 

1,500 nucleotide fragments and compared PlasmidFinder with our 8-mer based model based on 370 

1,500 nucleotide fragments. Overall, PlasmidFinder is able to identify 228 out of 3,910 fragmented 371 
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plasmid sequences. However, none of the returned matches contained plasmid host information. 372 

Our fragment-based model predicted a host for 1,927 of the fragmented plasmid sequences 373 

correctly, nothing predicted 1,309 and falsely predicted 674 of them. Compared to our machine 374 

learning model, the alignment-based PlasmidFinder tool provides accurate predictions for the 375 

Enterobacteriaceae species when a sequence match is available and plasmids sequences are mostly 376 

complete. When the plasmids are fragmented, the machine learning strategy becomes more 377 

advantageous. 378 

 379 

The web-server  380 

 381 

The plasmid host prediction models that were trained using 8-mers from whole plasmid sequences 382 

can be used online on the Center for Genomic Epidemiology 383 

(https://cge.cbs.dtu.dk/services/PlasmidHostFinder/). This web-server tool accepts one FASTA file 384 

at a time and provides an output file containing the predicted plasmid host range at the selected 385 

taxonomic level from species to order. The web-server tool enables two model options, fast and 386 

slow, with various class thresholds. The slow model uses all five cross-validation models to make a 387 

final decision on the plasmid host range. The fast mode uses only the first cross-validation model 388 

out of five to predict the plasmid host range. Therefore, one can expect to obtain more confident 389 

predictions with the slow model.  390 

 391 

DISCUSSION 392 

 393 

In this study, we built random forest models that can predict plasmid hosts and host-ranges at 394 

taxonomic levels between species and order; these models achieved accuracies from 0.662 to 0.867 395 
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MCC. The model performs better at higher taxonomic levels, with ‘order’ level being the best. We 396 

observed that the k-mer size does not have a significant influence on the prediction performances. 397 

Among the three k-mer sizes, we chose to build our prediction models with 8-mers since it provides 398 

robust predictions at all taxonomic levels with less computational effort than 10-mers. Moreover, 399 

we tried to improve the host range predictions with the additional genome features such as plasmid 400 

size, GC content and codon usage but the increase in the prediction performances was negligible. 401 

We validated our models using an independent dataset from the NCBI RefSeq. These performances 402 

were comparable with our previous test and validation results. In addition, to assess the utility of 403 

this approach with partially assembled plasmid sequences, we generated models for 500, 1,000, and 404 

1,500 nucleotide fragments, and even the smallest fragments of 500 nucleotides have sufficient 405 

information for the identification of plasmid hosts.  406 

 407 

Machine learning  408 

 409 

We observe that the robustness of the models is dependent on the quantity, quality and accuracy of 410 

the input and output data. In this study, the plasmid host prediction models might suffer from 411 

incomplete metadata despite our best efforts. The plasmid data and corresponding plasmid hosts 412 

were retrieved from the PATRIC database. However, the PATRIC dataset is likely to contain some 413 

plasmids with incomplete host range information. This issue might have an effect on robustness of 414 

the models, but is most likely to have a minor impact due to the relatively large input dataset. 415 

Nevertheless, some of the false positive predictions might be the consequence of incomplete 416 

metadata. Some of the other false positives might potentially be new discoveries relating to plasmid 417 

transmission in diverse hosts, although this theory should be validated experimentally. 418 

 419 
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Plasmid genomes are extremely plastic (38). Accessory genes vary in their presence or absent from 420 

the plasmids, which makes plasmid host prediction a complicated task. In order to understand the 421 

impact of the genome similarity on the plasmid host model learning, we clustered the plasmids for a 422 

given similarity threshold. By keeping the similar plasmids in the same training, test or hold-out 423 

datasets, the learning from the sequence similarity was minimized since the similar plasmids tend to 424 

have the same hosts. This clustering approach caused less accurate results than the baseline model. 425 

These results suggest that sequence similarity has an impact on the model learning. Therefore, to 426 

boost the model performances, the training data should be updated regularly to increase the input 427 

diversity when more plasmid data is available. In addition to the sequence similarity, host related 428 

signals from the relatively conserved regions of the plasmid sequences such as rep or mob genes are 429 

likely learned from the model. Further analysis of the top model features may help to validate or 430 

elucidate genetic features involved in transmission, especially in less studied taxonomic groups. 431 

 432 

The model performances were evaluated using several performance measurements including AUC, 433 

MCC, and macro F1. The AUC and MCC performances were not always correlated and caused 434 

different conclusions in some cases such as in the random forest model with the clustered plasmids. 435 

The reason for this discrepancy may be the applied class thresholds. AUC uses a range of thresholds 436 

to measure the model performances and does not require a defined class threshold. In contrast to 437 

AUC, the MCC and macro F1 calculation require predictions instead of probabilities. Therefore, a 438 

defined class probability threshold is needed for converting probabilities to predictions. This 439 

threshold was set to 0.5 for all the models. But, this threshold might not be the ideal threshold for 440 

some of the models, particularly for the imbalanced classes (39). For instance, the species level 441 

prediction model has a lower sensitivity (0.493) compared to its specificity (1.0). In other words, 442 

the model failed to predict some of the hosts (Figure 3,7), and the majority of the failed predictions 443 
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were the result of having no positive class predicted for the tested plasmid due to no predictions 444 

being above or equal to the class probability threshold of 0.5. Therefore, adjusting the class 445 

probability threshold could be a way to improve the model.  446 

 447 

False positives or unknown hosts 448 

 449 

The machine learning models have the potential for discovery of unknown correlations between the 450 

input features and predicted phenotypes. For example, in previous studies, novel AMR genes were 451 

reported using the machine learning models (18, 19). In our case, machine learning might be useful 452 

for discovering unknown plasmid hosts. We explored the false positives as in: 1) the model was not 453 

able to predict the actual hosts, but predicted false positives (Figure S3), 2) the model predicted 454 

multiple hosts including the actual hosts and false positives (Figure S4). These cases should be 455 

investigated further as these could happen due to two reasons: the model might pick up noise, or the 456 

falsely predicted host might actually be a host in nature. Thus, a portion of the false positives might 457 

be the actual hosts which are not discovered before, but machine learning gives the opportunity for 458 

it in silico. To prove that they are potential hosts would require in vitro experiments to test the 459 

stability of the plasmid in these bacteria.  460 

 461 

Fragments  462 

 463 

The fragment-based model performances vary based on the fragment and k-mer sizes. We obtained 464 

the best performances for the hold-out dataset with the 1,500 nucleotide fragments using 8-mers. 465 

The fragment size and model performances changed proportionally because the longer fragments 466 

are providing more information to the models. This correlation between the model performances 467 
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and fragment size might be the consequence of the mosaic nature of plasmids. Genes located on 468 

plasmids could originate from different organisms and random sampling of these acquired genes 469 

might cause false predictions. Moreover, as the plasmids were not aligned prior to the 470 

fragmentation, the genetic content of fragments that sub-sampled from different plasmids did not 471 

match. Therefore, we expect the model learning the fragment structures instead of the unique 472 

patterns.  473 

 474 

Conclusion  475 

 476 

We built random forest models and incorporated them in PlasmidHostFinder tool to detect plasmid 477 

hosts and host-ranges at various taxonomic levels from species to order with the performance of 478 

0.662 MCC to 0.867 MCC. PlasmidHostFinder can detect a diverse range of hosts for 359 species, 479 

174 genera, 93 families and 50 orders with high accuracy in spite of the mosaic, diverse nature and 480 

genetic plasticity of plasmids. The approach described in this study helps to fill a gap in our ability 481 

to predict plasmid hosts, particularly in understudied taxa, or when plasmid sequences are 482 

fragmented. 483 

 484 
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647 

Figure-1: The plasmid host distribution at the order level in the PATRIC dataset. The PATRIC 648 

plasmid collection was dominated by the Enterobacterales, Bacillales and Lactobacillales orders 649 

which make up 55.6% of the plasmid hosts.  650 
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 651 

Figure-2: Host prediction performances by k-mer size for the test and hold-out data sets. Each bar 652 

represents the model performance per taxonomic level. While the test performances were reported 653 

with standard deviations, the hold-out performances do not have standard deviations as the five 654 

models were combined and a single performance was calculated. The plots show that the prediction 655 

performances vary when using different k-mer sizes. 5-mers yield the highest MCC at higher 656 

taxonomies, while 10-mers yield the highest MCC at lower taxonomies. The model performances 657 

generally increased from the species to order level for all the k-mer sizes. 658 
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 659 

Figure-3: Model accuracy for the PATRIC plasmids tested with the whole model. Each bar shows 660 

the number of bacterial orders in the hold-out data and corresponding model accuracy was color 661 

coded. The percentage on the top of each bars shows the percentage of bacterial orders in the 662 

training data.  663 
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 665 

Figure-4: The effects of clustering plasmids at different k-mer similarity thresholds on the plasmid 666 

host predictions using 8-mers and different taxonomic levels. Each bar represents the model 667 

performance per taxonomic level and each error bar represents standard deviations across folds. The 668 

plot shows the influence of plasmid sequence similarity on prediction performances in MCC from 669 

the species to order level. The plots suggested that the prediction models pick up sequence 670 

similarity mostly at lower taxonomic levels. When the dissimilarity was increased between the 671 

training, test and hold-out datasets by applying the 80% k-mer similarity threshold; 7.7%-29.8% in 672 

MCC performance loss were observed for the hold-out data. 673 

 674 
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  675 

Figure-5: The fragment model performances for the 5-mer and 8-mer models. The fragment 676 

models were trained with either 500, 1,000, or 1,500 nucleotide (nt) fragments that were sub-677 

sampled from the PATRIC plasmids. The bar plots show the test and hold-out performances for the 678 

5-mers and 8-mers in MCC. The error bars represent standard deviations. The best performing 679 

model was trained with the 1,500 nucleotide fragments using 8-mers.  680 
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 681 

Figure-6: The plasmid host distribution in NCBI validation dataset. The validation dataset was 682 

dominated by the Enterobacterales, Lactobacillales and Pseudomonadales, which make up 76% of 683 

the NCBI plasmid hosts.   684 

 685 
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686 

Figure-7: Model accuracy for the NCBI plasmids tested with the whole model that was trained with 687 

the PATRIC dataset. Each bar shows the number of bacterial orders in the validation data and 688 

corresponding model accuracy was color coded. The plot showed that the accuracy of the models 689 

changed roughly according to the availability of the host organisms in the training data which was 690 

indicated on top of the bars.  691 

 692 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.462084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.462084
http://creativecommons.org/licenses/by-nc/4.0/


37 

 

 693 

Figure-8: The fragment models were validated with the NCBI plasmids. The fragments models that 694 

trained with the 500, 1,000 and 1,500 nucleotide (nt) fragments from the PATRIC plasmids were 695 

validated with the fragments that sub-sampled from the NCBI plasmids. Similar to the hold-out 696 

results, the best performance was obtained with the 1,500 nucleotide fragments and 8-mers.  697 
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