
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 25, 2022

Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes
– Divide and Conquer

Rask, Thomas Salhøj; Hansen, Daniel Aaen; Theander, Thor G.; Pedersen, Anders Gorm; Lavstsen,
Thomas

Published in:
P L o S Computational Biology (Online)

Link to article, DOI:
10.1371/journal.pcbi.1000933

Publication date:
2010

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Rask, T. S., Hansen, D. A., Theander, T. G., Pedersen, A. G., & Lavstsen, T. (2010). Plasmodium falciparum
Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer. P L o S Computational
Biology (Online), 6(9). https://doi.org/10.1371/journal.pcbi.1000933

https://doi.org/10.1371/journal.pcbi.1000933
https://orbit.dtu.dk/en/publications/02e55adc-79e2-412b-ae08-f61ce01cd15a
https://doi.org/10.1371/journal.pcbi.1000933


Plasmodium falciparum Erythrocyte Membrane Protein 1
Diversity in Seven Genomes – Divide and Conquer

Thomas S. Rask1,2*, Daniel A. Hansen1, Thor G. Theander2, Anders Gorm Pedersen1, Thomas Lavstsen2*

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark, 2Centre for Medical Parasitology,

Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark

Abstract

The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates
cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators
of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural
acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation
against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven
genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes,
and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated
with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied,
allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence.
Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were
found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered
between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and
homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found,
including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2)
potential integrin binding sites in DBLa domains, (3) an acylation motif conserved in group A var genes suggesting N-
terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several
conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for
future studies on var/PfEMP1 expression and function.
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Introduction

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)

mediates adhesion of infected erythrocytes (IE) to various host cells

on the vascular lining, during the blood stage of malaria infection

[1–2]. Naturally acquired protective antibodies in malaria-exposed

individuals target PfEMP1, suggesting it is possible to develop

PfEMP1 based vaccines [3–9].

The majority of the parasite’s ,60 PfEMP1-encoding var genes

are situated in subtelomeric regions close to other variant antigen-

encoding genes such as the rif and stevor gene families, while the

remaining ,40% are found centrally in the chromosomes. Based

on sequence similarity, var 59 UTR sequences can be divided into

upstream sequence (UPS) classes A, B, C or E. These UPS classes

correlate with chromosomal position of the genes, as well as

domain complexity of the encoded PfEMP1 [10–11]. Subtelo-

meric UPSA and UPSB genes are oriented tail to tail (39 to 39),

while central UPSC genes are oriented head to tail in a tandem

repeat manner [12], which has lead to the definition of group A, B

and C var/PfEMP1, and two intermediate groups B/A and B/C,

that contain var/PfEMP1 with chromosomal position or domain

composition different from that predicted from their UPS class.

The hyper-variable var gene repertoire is to a large extent

generated by frequent meiotic ectopic recombination in the

mosquito abdomen, probably facilitated by alignment of var genes

in the nuclear periphery [13–14]. There is also evidence suggesting

that mitotic recombination occur, and that this allows further

diversification of the var gene repertoire during human infection

[15]. Comparison of the clones 3D7, IT4 and HB3 revealed only

two var genes, var1 and var2csa, that were conserved in all three

genomes, and a semi-conserved gene, var3, found in IT4 and 3D7.

The three conserved var genes are more than 75% identical over

multiple domains, whereas most other PfEMP1 (even proteins with

the same domain architecture) display less than 50% amino acid

sequence identity between individual domains [16]. Var2csa is

particularly unique as it has a unique UPSE, encodes unique Duffy

binding-like (DBL) domains, as well as a distinct acidic terminal

segment (ATS) [17].
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Thus, parasite genomes appear to harbor essentially similar var

repertoires, each reflecting the worldwide var diversity that has

ensured the optimal survival of the parasite population. The

clinical significance of the described var groups has been

demonstrated in several studies, and indicates the existence of

underlying functional differences in adhesion characteristics of the

expressed PfEMP1 variants. This relationship is best illustrated by

the malaria syndrome occurring in pregnant women, which is

precipitated by the accumulation, in the placenta, of parasites

expressing VAR2CSA that mediates binding to proteoglycans on

syncytiotrophoblasts [17–21]. Several lines of evidence indicate

that the relatively rapid development of immunity to severe

childhood malaria is mediated through antibodies directed against

a restricted semi-conserved subset of parasite antigens [22–23] that

are associated with the development of severe disease [24–25]. In

particular group A and to some extent group B var genes have

been linked to disease severity in studies of expression of these

variants in patients with symptomatic and asymptomatic infections

[26–33]. A recent study has corroborated these findings and

qualified which group A and B PfEMP1 variants may be

associated with severe malaria disease, by demonstrating a

sequential and ordered acquisition of antibodies to PfEMP1

domains in Tanzanian plasma donors [34].

In contrast to pregnancy malaria, it is still unclear which

human receptor binding, if any particular, is linked to severe

forms of childhood malaria. Parasite adhesion has been

demonstrated to endothelial cells, immune system cells, unin-

fected erythrocytes and platelets. Several human cell receptors,

including the extensively studied CD36 and intercellular

adhesion molecule 1 (ICAM-1), have been implicated in adhe-

sion, although no consensus on association between receptor

binding and severe malaria has been reached (reviewed in [35]).

PfEMP1 is responsible for parasite adhesion, as several single

domains of the large multi-domain PfEMP1 molecules have been

shown to bind human receptors. From N- to C-terminal,

PfEMP1 has previously been described as composed of an N-

terminal segment (NTS), Duffy binding-like (DBL) domains, Cys

rich inter-domain regions (CIDR), C2 domains, one transmem-

brane region (TM) and the acidic terminal segment (ATS)

(Figure 1A). Six major classes of DBL domains have been

proposed based on amino acid sequence similarity: DBLa, b, c,

d, f, and e. DBL domains have been further characterized by

definition of 10 semi-conserved homology blocks (HBa-j)

interspersed by hyper-variable regions [36], and by definition

of three structural subdomains (S1–3) [37] (Figure 1D). It has

been shown that various DBLb domains have affinity for ICAM-

1 [38–40], whereas DBLd adheres to platelet-endothelial cell

adhesion molecule 1 (PECAM-1) and DBLa has been associated

with binding to heparin sulfate (HS), blood group A antigen

and complement receptor 1 (CR1) [41–42]. CR1 binding is

associated with IE adhesion to uninfected erythrocytes, a

phenomenon known as rosetting, which appears to be mediated

to some degree by group A PfEMP1 [42–44].

CIDR domains have been divided into three classes: CIDRa, b,

and c [2,10,16,36], and described as consisting of three regions,

those being the minimal CD36 binding region denoted M2,

flanked by less conserved M1 and M3 regions [36,45]. Several

CIDRa class domains have been found to mediate binding to the

human CD36 receptor [1,45–46], however, such binding is limited

to group B and C PfEMP1, indicating that group A variants have

a distinct function [47]. Furthermore, CIDRa domains have been

found to bind immunoglobulin M and PECAM-1 [41].

Although it is evident that the organization of PfEMP1

sequence diversity is of relevance for malaria pathogenicity, the

vast sequence variation of the protein family continues to impede

experimental procedures and interpretations. In order to better

understand and determine the potential targets for a PfEMP1-

based vaccine against severe malaria, it is therefore essential to

establish a rigorous classification and solid reference frame of

PfEMP1 diversity.

In this work, PfEMP1 repertoires from seven genomes are

annotated with updated domain boundary definitions. The data

includes four thoroughly sequenced P. falciparum genomes that

have not previously been classified: DD2 from Indochina (9.556

coverage), RAJ116 from India (7.36 coverage), IGH-CR14 from

India (10.196 coverage), and the Ghanaian isolate PFCLIN (86

coverage). Domain architectures of 399 PfEMP1 are aligned,

revealing conserved domain architectural features. The homology

block concept, first described by Smith et al. (2000) [36], is

extended from DBL domains to the entire PfEMP1 by application

of a novel iterative homology search technique, defining 628

homology blocks covering on average 83% of any PfEMP1 with

only 4% self-overlap. The homology blocks describe relations

between sequences in finer detail than domains, revealing that

domain subclasses often consist of fragments from different

domain super-classes, probably as a result of extensive recombi-

nation. Evidence for a recombination hotspot is also found. The

definition of conserved blocks in PfEMP1 allows identification of

conserved functional elements, such as predicted sites for post-

translational modifications, which may significantly affect both

substrate binding and immune evasion.

Results/Discussion

The var gene sequence analysis was based on two different

bioinformatics approaches. First, phylogenetic trees were con-

structed using re-assessed PfEMP1 domain borders, with the aim

of reclassifying and annotating the main PfEMP1 features UPS,

NTS, DBL, CIDR and ATS. Secondly, a novel iterative homology

detection method, defining a set of homology blocks, was used to

describe domain similarities and to guide var gene recombination

site and functional predictions.

Author Summary

About one million African children die from malaria every
year. The severity of malaria infections in part depends on
which type of the parasitic protein PfEMP1 is expressed on
the surface of the infected red blood cells. Natural
immunity to malaria is mediated through antibodies to
PfEMP1. Therefore hopes for a malaria vaccine based on
PfEMP1 proteins have been raised. However, the large
sequence variation among PfEMP1 molecules has caused
great difficulties in executing and interpreting studies on
PfEMP1. Here, we present an extensive sequence analysis
of all currently available PfEMP1 sequences and show that
PfEMP1 variation is ordered and can be categorized at
different levels. In this way, PfEMP1 belong to group A–E
and are composed of up to four components, each
component containing specific DBL or CIDR domain
subclasses, which in some cases form entire conserved
domain combinations. Finally, each PfEMP1 can be
described in high detail as a combination of 628 homology
blocks. This dissection of PfEMP1 diversity also enables
predictions of several functional sequence motifs relevant
to the fold of PfEMP1 proteins and their ability to bind
human receptors. We therefore believe that this descrip-
tion of PfEMP1 diversity is necessary and helpful for the
design and interpretation of future PfEMP1 studies.

PfEMP1 Diversity in Seven Genomes
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Grouping and componential composition of PfEMP1
In total 399 PfEMP1 sequences were annotated and their domains

aligned. The alignments confirmed what recent studies of the DBL fold

[48–49] and binding affinities [38] have implied; that the domain

borders, by which PfEMP1 domain subclasses have been classified

[36], needed revision. The redefined domain borders introduced by

this study are specified in Text S1, and lead to two fundamental

nomenclature changes: omitting the term ‘‘C2’’ from DBLb domains,

as also suggested in [39]; and the separation of M3 sequences from

CIDR domains. Distance tree analysis of all DBL domains confirmed

the expected phylogenetic grouping of DBL into six major classes

(DBLa, b, c, d, e, and f), as well as five smaller distinct classes (the four

N-terminal DBL domains of VAR2CSA [10], and the DBLa of VAR3

which grouped in a separate cluster between DBLa and DBLf). Five

major CIDR domain classes were defined: CIDRa, b, c, d, and pam

(Figure S1). The CIDRd class has not previously been identified,

probably due to the difference in sequence depth between this and

previous CIDR classification (655 vs. 36) [36]. The inter-domain 2

(ID2) of VAR2CSA is partially homologous to CIDR domains [50],

and was therefore included here as CIDRpam, although particularly

different from other CIDR domains. NTS sequences were divided into

three classes, NTSA, NTSB, and NTSpam (Figure S2L and Figure

S3Y), while ATS sequences were divided into ATSA, ATSB,

ATSpam, ATSvar1, and ATSvar3 (Figure S2M).

The 59 upstream sequences of var genes were analyzed by two

different methods: Markov clustering (MCL) [51–53], and

neighbor joining (NJ) clustering (based on multiple sequence

alignments). The two analyses yielded congruent trees, although

additional subclusters could be identified in the NJ tree (Figure

S2N and O). All previously suggested UPS subgroups [16]

(UPSA1–2, UPSB1–4, UPSC1–2 and UPSE) could be identified,

although with some modifications and four additional subgroups

(UPSA3 and UPSB5–7).

Although the number of available var sequences varied between

the seven studied genomes (39 to 63), the genomes contained

similar var UPS distributions (Figure 1), and as expected, UPSE

Figure 1. PfEMP1 annotation overview. (A) Schematic of the var gene locus. (B) 399 var exon1 annotated with UPS class and encoded major NTS,
DBL and CIDR domain classes and their arrangement in four components. Color code for UPS column: Green: UPSA; Red: UPSB; Orange: UPSC; Pink:
UPSE. Color code for NTS column: Green NTSA, Red: NTSB, Cream: NTSpam. Color code for DBL and CIDR domains (D columns): Bright Green: DBLa;
Orange: DBLb; Yellow: DBLc; Olive green: DBLd; Pink: DBLe; Blue: DBLf; Blue stripes: DBLa of VAR3. Grey: CIDRa; Red: CIDRb; Light purple: CIDRc; Dark
purple: CIDRd. (C) Average distribution (% +/2 95% confidence intervals) of UPSA–E flanked and component 1–4 containing genes in the seven
sequenced genomes 3D7, HB3, DD2, IT4, PFCLIN, RAJ116 and IGH. (D) Schematic presentation of DBL and CIDR subdomains and homology blocks.
The numbered blocks represent the core homology blocks found in all DBL domains (HB2, 3, 4 and 5), all CIDR domains (HB8 and 10) or both domain
types (HB1), further described in Figure 5.
doi:10.1371/journal.pcbi.1000933.g001

PfEMP1 Diversity in Seven Genomes
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flanked var2csa, NTSA and ATSA were exclusively encoded by

UPSA flanked genes, whereas other NTS and ATS classes were

found in UPSB and C flanked genes. The general observation that

UPSA and UPSB genes are located head to head in the telomeres

was also confirmed (data not shown), although only limited

information on chromosomal location was available. Based on

domain annotation of the extracellular part of PfEMP1 (Figure 1

and Figure S4), these could be described as consisting of four

components: component 1 (present in ,95% of all PfEMP1)

containing the N-terminal NTS-DBLa-CIDR domains, compo-

nent 2 (present in ,43% of all PfEMP1) containing one to three

DBLb and DBLc domains, component 3 (present in ,80% of all

PfEMP1) containing DBLd-CIDRb/c domains, and component 4

containing C-terminal domain combinations of DBLf and DBLe
domains (present in ,28% of all PfEMP1) or single DBLb or

DBLc domains (present in ,8% of all PfEMP1). The complexity

of domain structure followed the UPS classification, in agreement

with established group A, B and C PfEMP1 nomenclature

[10–11]. There was an overrepresentation of component 2

encoding genes in group A compared to group B or C var

(p,0.0001; X2 test of component 2 prevalence in group A–C), and

component 4 was found in both group A and B but rarely C.

PfEMP1 inter-domain (ID) sequences were also aligned and

classified. Most ID sequences were found to flank component 3,

and characteristic for these sequences were long Pro-rich stretches,

charged polyAsp/Glu stretches, and an amino acid composition

biased towards Ala, Asp, Glu, Pro, Lys, and Val. The sequences

downstream of component 3 could be classified, and were either of

a M3A type if flanked by component 4, or M3AB if flanked by

TM-ATS (Figure S3Z and Figure S4). Due to less functional

constraints, ID sequences may have more relaxed requirements to

the position of recombination break points, compared to within

domains. The ID sequence variation supports the division of

PfEMP1 into the four components, which suggest that the low-

complexity ID sequence may act as recombination break points.

Inter-domain elasticity. The function of the ID sequences is

unknown, although one possibility is that these regions confer

elasticity to the PfEMP1 proteins, as suggested for similar sequence

in the PEVK region of the human striated muscle protein titin

(also known as connectin). The PEVK region of titin contains

several PPAK domains, a 26–28 residue repeat consisting of low-

complexity sequence biased towards Pro, Ala, Val, Lys, and Glu,

and these domains are interspersed by polyGlu regions. The

PEVK region length is correlated with elongation ability of

sarcomeres in striated muscle [54], and the secondary structure

has been found to be disordered [55].

The PfEMP1 ID regions are found in lengths up to,200 residues,

and the amino acid composition is very similar to the one found in

titin PEVK. Hits to the Pfam PPAK domain definition [56] in four

PfEMP1 supports the sequence similarity (E,0.1 in DD2var52,

IT4var64, HB3var34 and PFCLINvar47). The acidic and basic

residues can potentially form random structures based on polar

interactions, mixed with Pro which introduces kinks in the protein

backbone, together forming a structure with spring-like properties.

Elasticity could enhance the ability of infected erythrocytes to adhere

to endothelial cells by providing a smooth deceleration, as well as

extend the time given to establish strong molecular interactions with

targets. It is likely that the variant disordered structure of the inter-

domain regions impede antibody targeting.

PfEMP1 groups contain specific subclasses of DBL and
CIDR domains
The redefinition of domain borders, and the large increase in

sequence data, called for a detailed subclassification of PfEMP1

domains. This was done by a distance tree analysis described in

detail in Text S1, summarized for DBL and CIDR domains in

Figure 2. The sequence diversity of the major DBL and CIDR

domain classes differed both with respect to homogeneity (i.e.

shared AA %-identity), and the degree to which subclasses could

be distinguished. The previously observed division of DBLa into

DBLa1 and DBLa0 [10–11] was confirmed, however a third

distinct class of sequences, DBLa2, was also identified. Sequences

of DBLa1 grouped relatively evenly into eight subclasses,

including the particularly distinct DBLa1.3 of VAR3 (note

description of nomenclature usage in Text S1), whereas the

DBLa0 sequences spread more unevenly into 24 subclasses (Figure

S2A,B and Figure S3I–K). The homology block analysis of VAR3

(described in the homology block section below) revealed that the

N-terminal part of DBLa1.3 is similar to other DBLa domains,

but interestingly, the C-terminal half of the domain is essentially a

DBLf3 domain. All DBLe and DBLf domains grouped evenly

into distinct subclasses, while DBLb and DBLc domains were

divided into less distinct subclasses of varying sizes, and most

(,90%) of DBLd sequences could not be subclassified. The

homogeneity of the six major classes differed with DBLb domains

being the most (45%) and DBLe the least (31%) homogenous

classes. In particular subclasses DBLe1/2/11/13 were distinctively
different from the majority of DBLe domains (Figure S2E and

Figure S3N–Q). Similar to DBL domains, the level of subclassi-

fication of major CIDR domain types varied. Most members of

CIDRa3.1 and CIDRb subclasses could not be separated, whereas

other CIDR domains grouped in evenly sized subclasses. The

homogeneity of CIDR classes varied with CIDRa1 and CIDRd
domains exhibiting higher sequence similarities than the other

CIDR classes. Sequence conservation logos for all large CIDR

classes can be found in Figure S3A–H.

Annotation of the PfEMP1 using detailed DBL and CIDR

subclassification (Figure S4) showed that most classes could be

linked to a specific UPS class (Figure 2). When domain classes

were found frequently in genes of more than one group, they were

most often shared between group A and B or group B and C, but

rarely A and C. These observations support the validity of the

subclassification, and the notion that group A–C var genes

predominantly recombine separately.

In conclusion, the phylogenetic domain analysis allowed

classification of all PfEMP1 domains, and defined several novel

domain classes. In addition, PfEMP1 domain variation was

described in an unprecedented level of detail, by the allocation

of the DBL and CIDR domains into subclasses. This classification

is based on domain similarities averaged over the whole domains,

opposed to local similarities which may vary across the length of

the domains, as described in the homology block analysis below.

The validity of the classification must be experimentally tested, but

the association between domain and UPS class suggests, that at

least some of the domain subclasses confer specialized cytoadhe-

sion properties.

Identification of conserved PfEMP1 domain cassettes
Conserved domain compositional features in PfEMP1 mole-

cules were studied in alignments of annotated PfEMP1 sequences.

Alignments guided by conserved C-terminal and N-terminal

domain architectures are given in Figure S4A and B, respectively.

In particular the alignments were investigated to identify domain

cassettes, which were defined as two or more consecutive domains

belonging to particular subclasses and present in three or more of

the 7 genomes (summarized in Figure 3).

The three conserved var genes var1, var2csa and var3 (Figure 3,

cassettes 1–3), all encoding unique DBL domains, were present in

PfEMP1 Diversity in Seven Genomes

PLoS Computational Biology | www.ploscompbiol.org 4 September 2010 | Volume 6 | Issue 9 | e1000933



all seven P. falciparum genomes, except var3 which was not present

in HB3 and IGH. As previously reported, fragments of var1 and

var2csa, but not var3, were found in P. reichenowi [57]. Some

variation in domain composition was observed within the three

conserved gene families. Thus, in RAJ116, var2csa encoded an

extra C-terminal DBLe domain, and in DD2, the var1 gene

encoded C-terminal domains different from the other var1 genes.

Var1 of 3D7 and IT4 appeared to lack an exon2 sequence,

whereas five var1 genes had a premature stop codon at similar

positions in their exon2. Domain pairs characteristic for var1

(DBLc1/15-DBLe1 and DBLf1/2-DBLe) were found in other

group A var genes (IT4var9, IGHvar32, DD2var23 and

HB3var06). Taken together, this indicates that var1 often is found

as truncated gene, and that the particular functional properties of

VAR1 may have moved to other PfEMP1 variants. Similarly, a

VAR3 sequence corresponding to 80% of the exon1 as well as

Figure 2. DBL and CIDR domain class characteristics. Number of observations (#obs) of CIDR and DBL domain classes in 399 PfEMP1 (Figure
S5), number of genomes represented in the classes (#genomes) (of the seven genomes 3D7, HB3, DD2, IT4, PFCLIN, RAJ116 and IGH), and the
average shared sequence identity of major and minor subclasses (%ID). A color was added under domain classes where at least 25% of the observed
domains were found in UPSA (green), UPSB (red), UPSC (yellow) or UPSE (pink).
doi:10.1371/journal.pcbi.1000933.g002

PfEMP1 Diversity in Seven Genomes
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exon2 was found in the 39 end of RAJ116var03, consistent with

how DBLf and DBLe domains are positioned in other PfEMP1.

The domain composition variation within the three most

conserved var genes highlight the importance of ectopic recombi-

nation of large single or multi domain elements for the generation

of PfEMP1 diversity.

Among the novel domain composition phenomena, domain

cassette 5 (Figure 3) was the most prominent. This four domain C-

terminal cassette was found exclusively in ten group A PfEMP1,

and in six of the seven P. falciparum genomes as well as in P.

reichenowi.

Interestingly, nearly all DBLf and DBLe domains were found in

C-terminal domain cassettes (domain cassettes 1,3,6,7 and 9–12) and

often occurred in genes encoding CIDRc1/2/9 domains (approx.

three of four CIDRc1/2/9 domains flank DBLf and DBLe
domains). The unambiguous partition of DBLe subclasses and the

positional and compositional similarities between different DBLe,
could suggest that specialized functions reside in these structures.

In the PfEMP1 N-terminal, DBLa subclasses correlated well

with the subclasses of their neighboring CIDR domain (Figure

S4B). As expected, all group A PfEMP1 except VAR3 exclusively

contained the domains DBLa1-CIDRa1/b2/d/c3, but further-

more, group A PfEMP1 appeared to be divided into those

harboring either DBLa1.5/6/8-CIDRb2/c3/d (includes cassettes

11 and 16 in Figure 3; Figure S4, frame 15) or DBLa1-CIDRa1.
Within group B and C PfEMP1 two major groups were observed,

those encoding DBLa0 domains associated with CIDRa2, and
those encoding DBLa0 domains associated with CIDRa3. In

addition, eight distinct CIDRa containing cassettes were found,

including domain cassette 8 which is particularly noteworthy, as it

is associated with UPSB2 (7 of 12 domain cassette 8 encoding

genes are flanked by 7 of 11 UPSB2) and contains DBLa2, which
formed a separate cluster from DBLa0 and a1 in the DBLa tree.

Domain cassette 8 may be expanded further in a less well defined

form with two domains (DBLb12-DBLc4 or DBLc6) (Figure S4A,
frame 10).

Several more elusive domain architectural constraints were

observed, which may crystallize into domain cassettes if higher

sequence depth is acquired. These included the group A specific

domain combinations DBLa1.4-CIDRa1.6/7-DBLb3, which

both could represent the core of what have been proposed as

VAR4 (represented by PFD1235w; Figure S4A, frame 9) as well as

DBLb7-DBLc-DBLc (Figure S4A, frame 9).

The present description of PfEMP1 diversity was based on analysis

of seven near complete genome sequences: four Asian, two African

[58], and one Central American isolate. None of the described

domain architectural constraints were found exclusively in the

African or Asian isolates, which strongly imply that there is no basic

difference between the PfEMP1 repertoires of P. falciparum around the

world. However, more P. falciparum genome sequences are desirable

to gain a better resolution of conserved domain cassettes.

In general there were no correlation between occurrences of N-

terminal and C-terminal domain cassettes, and whereas group A

PfEMP1 shared no N-terminal domain cassettes with group B or C

PfEMP1, C-terminal domain cassettes were more often shared

among PfEMP1 groups. The three conserved var genes have

already attracted warranted attention, but while the binding

specificity of VAR2CSA and its relevance in pregnancy malaria is

well established, no function or clinical importance has been

assigned to VAR1 and VAR3. Several studies have aimed to

Figure 3. Overview of distinct PfEMP1 domain cassettes. A PfEMP1 domain cassette was defined as a var gene sequence encoding two or
more DBL or CIDR domains with subclasses that could be predicted from each other. In a few cases domain cassettes (filled frames) could be
expanded with additional domains but in limited number of genes or genomes (punctured frames). A cassette was given an association score
calculated as the average of all domain pair associations of a domain cassette. Each domain pair association (A–B) was calculated by dividing the
number of times the domain combination was observed in the dataset by the least number of times either A or B was found in the dataset. The
association score does not include the UPS association. Associated UPS classes are colored according to the UPS class most often observed flanking
the cassette. Less frequent flanking UPS classes are in brackets. The number of times a given domain cassette was observed (count) and the number
of genomes in which it is present (genomes) within the seven genomes, 3D7, HB3, DD2, IT4, IGH, RAJ116 and PFCLIN are given. The frame number in
Figure S4, detailing the genetic context of the domain cassette is also given.
doi:10.1371/journal.pcbi.1000933.g003
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define the PfEMP1 molecular background for severe malaria in

children. Most ex vivo studies [27,29–31] have relied on relating

phenotypic or clinical data to the phylogeny of partial DBLa tags

amplified from parasite cDNA, or direct quantitative PCR

measurements of group A, B and C var genes. Although these

approaches target some of the best conserved PfEMP1 phenom-

ena, both methods disregard the structures unlinked to the

PfEMP1 N-terminal, and fail to reflect some of the most evident of

the conserved N-terminal domain cassettes. Nevertheless, the

consensus drawn from these studies and in vitro studies of model

parasite lines [28] emphasize the importance of group A PfEMP1

in severe malaria, and interestingly, often the particularly distinct

group A domain cassette 5 [9,28,34].

Although several of the domain classes and PfEMP1 structural

constraints presented here are vaguely defined and by themselves

difficult to rank according to clinical relevance, the PfEMP1

diversity described by groups, components, domain classes and

cassettes offers an operational model for design and interpretations

of future experimental studies.

PfEMP1 homology blocks
DBL domains consist of hyper-variable and conserved regions, as

previously described [2,36,59], and in a comparison of DBL

similarity, Smith et al. (2000) were able to define a set of ten

homology blocks with an average length of 21 amino acids, conserved

in all DBL domain classes [36]. To describe in detail these frequent

shifts in conservation level across PfEMP1, an iterative method was

developed that automatically defines a set of homology blocks in a set

of unaligned protein sequences. The method is especially appropriate

for the frequently recombining var genes, as the short homology

blocks are less inclined to group unrelated sequences which may be

forced together in longer domain alignments.

The term homology block (HB) refers to a sequence profile defined

from a multiple sequence alignment, here described by a hidden

Markov model (HMM) [60]. Sequences with similarity above a

threshold to the sequence profile are termed members, hits or

occurrences of the homology block, and the members of a homology

block can be defined in a sequence by searching with the HMM.

Starting from a full sequence database, homology blocks were

one after one first defined and then excluded from the database.

Each homology block was defined to be the sequence profile with

the highest number of occurrences in the database, i.e. the most

conserved sequence, with boundaries optimized to match this

criterion. Sequence similarity was assessed with HMM log-odds

scores, and a significance threshold of S$9.97 bits was used for all

homology blocks, to ensure that each member of a homology block

was at least 1000 times more likely to be related to the sequence

profile, than to a random sequence with amino acid frequencies as

in the database. Thus, a set of homology blocks was defined, where

each homology block comprises all related sequence stretches in the

database. The method is described in detail in Text S2.

The analysis was performed on a database with 311 PfEMP1

sequences containing information on the entire molecule or a full

exon1. Twenty DBL containing paralogs were also included to

enable estimates of evolutionary relationships. The minimal length

of the homology blocks was set to seven amino acids, as this is

approximately the length required to reach the sequence similarity

significance threshold. Sequences with less than five homologs in

the database were not included in the homology block set, since

PfEMP1 from more than seven P. falciparum genomes were in the

dataset, and the main interest was to determine sequence features

conserved in most of these genomes.

Characteristics for the resulting 628 homology blocks are shown

in Figure 4. On average 83.5% of a PfEMP1 sequence was

Figure 4. Characteristics for 628 PfEMP1 homology blocks. (A) Length corresponds to the alignment length of the multiple sequence
alignment defining the HB. Sequence identity in the table is given as mean and SD for the distribution of all homology block avg. pairwise identities.
HB coverage and overlap were calculated per PfEMP1 and mean and SD are given for these distributions. (B) Length distribution for HBs. The most
frequent length was 10 residues. (C) Scatter plot showing avg. pairwise sequence identity for HBs of differing length. (D) Histogram showing number
of HBs with same prevalences in the database. The bin size of the histogram is 10 hits. One HB was found with a prevalence of 1605 hits in the
PfEMP1 database, representing a HB present in nearly all DBL and CIDR domains. Similarly, a number of homology blocks were found specifically in
each of the domains DBL, CIDR, NTS and ATS. Most homology blocks had between 5 and 15 hits.
doi:10.1371/journal.pcbi.1000933.g004
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described by homology blocks, and the remaining fragments were

either shorter than seven residues, or had fewer than five

homologous sequences. Overlap between homology blocks were

mainly concentrated in areas with low complexity sequence, such

as the inter-domain regions, and amounted to an average of 4.2%

of HB occurrences in a PfEMP1 sequence (Figure 4A). The most

frequent HB length was 10 residues, while the average was 19

residues (Figure 4B). HB average sequence identity was between

19–100%, and as might be expected for the shortest sequences,

only similarities with high identity could be detected within the

significance threshold (Figure 4C). The analyzed PfEMP1

sequences contained 311 NTS, 199 ATS, 1043 DBL and 552

CIDR domains, while the paralogs contained 30 DBL domains.

One homology block occurred 1605 times in the database and was

found in all DBL and CIDR domains, except 20 (not present in

DBLpam2, DBLe7 and DBLe12), while four other blocks were

found in all DBL domains and six blocks were strongly correlated

with CIDR (Figure 4D). The homology blocks were numbered

according to their frequency in the database, with the most

frequent being HB number one.

88 PfEMP1 were not in the HB definition sequence set, and

when the 628 defined homology blocks were predicted in these

proteins, 82.5% (SD 64.9%) of each PfEMP1 were on average

covered by HBs, similar to the coverage in the definition sequences

(Figure 4A), showing that the homology blocks describe universal

PfEMP1 sequence features.

The VarDom server was developed to provide an interactive

graphical interface to analyze information on domain classes,

homology blocks and their distribution in PfEMP1 sequences.

Alignments and other related files can be downloaded, and it is

possible to submit new sequences to annotate them with domains

and homology blocks, to classify them and relate them to other

sequence groups in the seven genomes: http://www.cbs.dtu.dk/

services/VarDom/ In the following, the HB distribution in

PfEMP1 is presented, and several references are made to specific

homology blocks. These blocks as well as the sequences they occur

in can be inspected using the VarDom server.

Homology blocks describe the conserved core of DBL
and CIDR domains
The five most prevalent homology blocks in PfEMP1 (HB1–5)

were present in nearly all DBL domains. The relative positions of

these five HBs in DBL domains were conserved (Figure 5A), and

within the HBs several amino acid positions were strongly

conserved in all DBL domains. Figure 5B shows occurrences of

HB1–5 in DBL1 (a.k.a. F1) of the paralog PfEBA-175 and

DBLpam3 (previously DBL3X) of VAR2CSA. The DBL structure

consists of subdomain 1 (S1) with mixed helix-sheet structure, and

two helix bundles (S2 and S3) [37,49]. Disulfide bonds between

conserved Cys residues mainly serve to hold together each

individual subdomain, demanding other types of interactions to

hold a stable domain structure [37,50,61–62]. HB1, which was

also found in CIDR domains, described a complete a-helix with

one side conserved, giving a pattern of conserved residues spaced

by 3 residues for each helix-turn (Figure 5A). The conserved side

of HB1 faced HB2, which was found to be the most conserved

sequence in DBL domains, with a mean amino acid sequence

identity of 56%. HB2 was part of a longer helical structure and

interfacing with HB1, HB3 from the other helix bundle, and HB4

which formed the non-surface exposed part of S1 (Figure 5B and

C). All these interactions probably constitute the main selection

pressure, keeping HB2 relatively conserved. HB3 in S2 corre-

sponded to HB2 in S3, with interactions to HB2, HB5 and HB4,

and with mean sequence identity of 47% it was found to be the

second most conserved part of DBL domains. HB5 was mainly

conserved on one side of the helix like HB1, suggesting for both

that they may be frequently exposed on the surface of PfEMP1.

Side chains in conserved amino acid positions were mainly

directed towards other conserved parts, although some were

pointing outwards probably to interact with other less conserved

domain parts (Figure 5B and C). Functions for some of the

conserved amino acids in HB1–5 were identical in both structures

(Figure 5A and D), where they formed polar and hydrophobic

interactions between the three subdomains. Besides from the

conserved polar interactions shown, the conserved Pro on position

4 in HB4, which introduced a kink in the b-sheet structure of S1,

was in a position allowing it to interact hydrophobically with the

also conserved Trp on position 8 in HB2. It may thus contribute to

hold the b-sheet in place. In general the conserved positions of

HB1–5 described a set of residues, which in the known DBL

domain structures interact to hold together the three DBL

subdomains, so they can be said to constitute the conserved core

structures and interactions of DBL domains.

HB1–5 were found among the 10 homology blocks defined by

Smith et al. (2000) [36], where HB4=HBb, HB3=HBd,

HB5=HBf, HB2=HBh and HB1=HBj. The remaining homol-

ogy blocks, defined in that paper, were not found to be conserved

in all DBL classes, based on the chosen similarity significance

threshold.

Homology blocks specific for all CIDR domains were also

found, and they were present in the most conserved part of CIDR,

the designated minimal CD36 binding region or M2 [36,45], for

which the structure is known [48] (Figure 5E and F). HB8, HB1

and HB10 were found to correspond to helix 1, 2 and 3

respectively in the three-helix bundle, and the similarity of this

bundle to subdomain 3 of DBL was confirmed by the presence of

HB1 in all CIDR and DBL domains. The conservation of these

three helices suggests that this structure is common to all CIDR

domains. Interestingly, four HBs (HB12, 7, 9 and 6) situated in

subdomain S3 of DBLa and DBLd domains, were exclusively

found flanking all CIDR domains, strongly supporting the link

between CIDR and DBL domains.

Side chains of conserved residues in HB1, 8 and 10 were mainly

directed towards the center of the CIDR three-helix bundle

(Figure 5F), where they interacted to keep the structure together.

Some parts of the structure have not been solved, including the C-

terminal end of HB8 with several conserved basic residues and a

Cys likely to form a disulfide bridge to position 1 in HB1. A few

conserved residues in HB8 were directed away from the helix

bundle core. Among these were the basic position 24 and possibly

also 28 as the distance fits with a helix turn. These residues may

thus be involved in interactions with surrounding parts of the

PfEMP1 such as the helix-loop of CIDR, or even substrate

binding, and they may be target for the cross-reactive antibodies

inhibiting CD36 binding described by Mo et al. (2008) [63].

Alignment of DBL homology blocks
Just as PfEMP1 can be represented as strings of amino acid

symbols or strings of domain names, they can be represented at an

intermediate level as a string of homology blocks. To study

similarities between DBL domains, the homology block sequences

of 1043 DBL domains, consisting of 378 different HBs, were

studied (Figure 6). Occurrences of the same homology block were

vertically aligned (Figure 6, center), and rows in the alignment

were sorted according to a NJ-tree (Figure 6, left) built based on

differences in HB composition of the DBL sequences. The five

core homology blocks divides DBL domains into six regions, and
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sequence conservation logos are shown for representative

homology blocks in each region (Figure 6, top and bottom).

Many of the domain classes derived from trees based on amino

acid alignments (Figure 2 and Figure S2), were also found by the

tree based purely on the absence or presence of homology blocks

(Figure 6), and these groups can thus be described by a specific

homology block combination. Most major classes formed

monophyletic groups, with the exception of DBLc and DBLe,

Figure 5. Conserved domain cores. (A–D) Five most conserved PfEMP1 homology blocks form DBL-core structure. (A) Schematic showing relative
positions in DBL domains of HB one to five (S1–3 indicate subdomains) and sequence conservation logos for each homology block alignment. The
height of each position in the logos indicate the amino acid conservation level, and the height of the individual amino acids reflect their relative
frequencies on the position and thus their contribution to the conservation. A small sample bias correction has been subtracted in the logos, on
alignment positions containing few (,40) amino acids, and error bar height is 26 the correction. Polar amino acids are green, neutrally charged are
purple, basic are blue, acidic are red, and hydrophobic amino acids are black. HB numbering is based on level of conservation in PfEMP1 and related
sequences. (B) HBs shown on PfEBA-175 DBL1 structure, and (C) on VAR2CSA DBLpam3 structure. Side chains are shown for conserved positions with
conservation level higher than 50% of maximum, corresponding to 2.16 bits. DBL areas which are not part of HB1–5 are shown as lightgray in rightmost
column, while left side shows only HB1–5, color coding as in panel A. Coloring intensity in the structure is proportional to conservation level in the HBs.
(D) Polar interactions between conserved positions in EBA-175 and DBLpam3. The conserved pink residues are underlined in Figure 5A. (E–F) Conserved
sequence blocks in CIDR domains. Relative homology block positions, and sequence logos (E). HB12, 7, 9 and 6 are all strongly correlated with CIDR
domains. (F) HBs shown on the structure of the M2 part of MC179 CIDRa domain. Disulfide bridges are shown in orange.
doi:10.1371/journal.pcbi.1000933.g005
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which formed one big cluster with several well-defined subgroups.

Minor subgroups were mainly found in DBLf, c and e (Figure 6,

tree group a–u), and many correlated well with domain classes

based on amino acid alignments. Most subgroups of DBLa, b, and
d were too subtle to be distinguished. The DBLa0-DBLa1 division

was not clearly found, although HB36 may approximately

describe the difference, by being present in 205 of 230 DBLa0
domains, and in none of the 61 DBLa1. HB36 was absent in all

cys2 sequences but present in all cys4 sequences, thus describing

the division between group 1–3 and 4–6 in the DBLa sequence tag

classification [64].

Domain subclasses (Figure 2) could often be described by

subclass specific homology blocks. For instance DBLf4 was

described by HB283 and HB284. Other subclasses were

characterized by HBs shared exclusively with other major domain

classes, examples being DBLf1, which shared HB19 with DBLa

(Figure 6e S1, blue), and DBLc2/9 domains, which were

characterized by having a DBLb S3 subdomain (Figure 6 S3,

green pointers). Similarly, the S3 subdomain of VAR1 DBLe1 was

very similar to the one present in a number of DBLc sequences

(Figure 6 S3, tree group u). Cassettes could also be identified,

exemplified by HB331, which occurred exclusively in the N-

terminal of DBLb domains in domain cassette 5 (Figure 3).

DBLa1.3 of VAR3 contained HB17 and HB19 which were

characteristic for DBLa domains (Figure 6 S1), but S2c and S3 in

DBLa1.3 were very characteristic for DBLf, sharing several DBLf
specific homology blocks: HB92, HB99, HB592, HB93, and

HB18. Thus, homology block analysis of VAR3 suggests that

DBLa1.3 is a DBLa-f hybrid, and it will be interesting to see if the

function of this domain is similar to any of the two combined

classes alone. The finding of DBLf elements in VAR3 associates

this PfEMP1 with the domain combination DBLf-DBLe, often
found in component 4 cassettes (Figure 3, Component 4), which

could imply functional analogies between VAR3 and these

cassettes.

DBLpam1 and 2 shared homology blocks with DBLa/b/f,
while DBLpam4 and to a high degree DBLpam5 and 6 shared

blocks with DBLc/d/e (Figure 6). Interestingly, DBLpam1

contained HB65 (Figure 6 S1, pink), a sequence that was mainly

found in DBLb. However, in the C-terminal end DBLpam1

shared HB60 with DBLa (Figure 6 S2c, yellow) and HB115 with

DBLf1/5/6 (Figure 6 S3b, green, tree group b, c and e). Thus,

DBLpam1 appeared to contain elements from all of DBLa, b and

f. The shared homology blocks, as well as the fact that the hybrid

domains DBLa1.3 and DBLpam1 appears to be functional,

suggests a more recent common ancestry and possibly related

functions of DBLa, b, f, pam1 and pam2 domains.

Similarities between major DBL classes also varied considerably

across the length of the domains (Figure 6), and a major homology

break point, where similarities differed on each side, was observed

for many sequences around HB2, the most conserved DBL

homology block.

In the N-terminal, a clear division was found between DBLa/
b/f and DBLc/d/e, best defined by HB11 and HB13, respectively

(Figure 6, S2a). At this end of DBL domains, only the core

homology blocks HB1–5 occurred in both groups, indicating low

levels of recombination between these groups, and possibly

different functions. Within these groups, DBLf had high similarity

to DBLb, most significantly in the S1 subdomain, and DBLd was

very reminiscent of the DBLc in the N-terminal, some sequences

were even identical on the homology block level (Figure 6g, h, j,

and k).

The C-terminal of DBL domains could also be divided into two

major groups, consisting of the S3 subdomains of DBLa/d and

DBLf/b/c/e, respectively (Figure 6, S3). DBLa and d shared four

homology blocks connecting to the downstream CIDR domains. S3

homology blocks in DBLf and b were uniform and specific to each

class, whereas DBLc and e S3 were more diverse (Figure 6, S3).

N- and C-terminal ends of several major DBL domain classes

thus appear to have different sequence similarities, most likely

reflecting that the sequences have been joined through recombi-

nation, often with a break point around HB2, and they therefore

have different evolutionary histories. Phylogenetic classification

based on whole domain sequence alignments will tend to be an

average of such different histories.

Evolutionary relationships among DBL subdomain se-

quences suggest intra-DBL recombination break point.

Identification of adjacent genetic regions with different

evolutionary histories is a widely used method for detecting

recombination break points in distantly related sequences [65–

66]. To get a complete picture of evolutionary relations among

subdomain sequences, with the aim to determine if recombination

has occurred with break point between S2 and S3, phylogenetic

trees based on amino acid alignments were built for the three DBL

subdomains (Figure 7). Trees in Figure 7 are included as Figure S6

with labels and bootstrap values.

Relations among sequences of the S3 DBL subdomain clearly

differed from those of S1 and S2 (Figure 7). DBLa and DBLd S3

subdomains were found to be closely related, separated from the

remaining sequences in all 1000 bootstraps, whereas in S2, DBLa
was most closely related to DBLb and f, supported by 99% of the

bootstraps. Similarly, DBLc and DBLe S3 subdomains were

closely related, while S2 sequences of DBLc were closely related to

DBLd, separated from DBLe by several highly supported

branches. This strongly indicates that the evolutionary histories

for S2 and S3 subdomains are different, as also suggested by the

homology block analysis (Figure 6), and that recombination most

likely has occurred with break point between these subdomains.

In agreement with the homology block analysis, the division

between DBLa/b/f and DBLc/d/e was well supported by

bootstrap values in both S1 and S2, as was the separation of

each of the domain classes DBLa, b, and f (Figure 7, S1 and S2).

For S1 and S2, DBLd and DBLc sequences were clustered

together with low bootstrap support for separation within this

group, although a specific set of DBLd sequences had particularly

close relations to DBLc (Figure 7, S1 and S2). The relationship

was most pronounced in the S2 subdomain, where 46 DBLd
sequences represented in all seven genomes, and including all non-

Figure 6. DBL homology block alignment. HBs in 1043 DBL sequences aligned, and sorted by NJ-clustering based on differences in HB
composition. Tree distances show the number of different HBs in the DBL domains. The sequences are divided into 6 segments by the conserved core
HB1–5 (Figure 5), and the corresponding subdomain parts are noted below the alignment. Only the 80 most frequent of 378 HBs are colored.
Sequence conservation logos as described in Figure 5 are shown for selected HBs, where number tabs indicate the HB number. Logos are when
possible placed in order of appearance in the alignment. Letters next to the tree identifies groups marked by dots in the tree, matching domain
subclassification based on amino acid alignments: (a) f3, (b) f5, (c) f6, (d) f4, (e) f1, (f) f2, (g) d5, (h) d4/8/9, (i) c7, (j) c11/15, (k) c1, (l) c2/9, (m) c8,
(n) c5/6/12/16/17, (o) e2, (p) e7, (q) e4, (r) pam6/e3, (s) pam5/e5/e12, (t) e6/9, (u) e1/11/13. The green pointers mark products of recombination
between DBLc and DBLb domains, with break point around HB2. Additional information for all HBs can be found by querying the VarDom server with
the HB numbers, as given in the legend or on the logos. Labeled homology block alignments can be found in Figure S7.
doi:10.1371/journal.pcbi.1000933.g006
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DBLd1 subclasses, were found closer to the DBLc clade. The 3D7

genes containing these DBLd sequences were MAL6P1.4,

PF11_0521, PF13_0003 and PF11_0008. The latter var gene has

been found to be the target for protective antibodies [9,34], and

together with PF13_0003 contains cassette 5 (Figure 3).

DBLa1 S3 sequences flanked by CIDRa1 domains were well

supported as a subgroup (Figure 7 S3-1). Interestingly, all those

DBLa domains that were not followed by CIDRa (DBLa1.5/6/8

domains), had an S3 subdomain which clustered with DBLd S3

sequences (Figure 7 S3-2), indicating recombination between

DBLa and DBLd. Similarly, DBLd clusters were found for DBLd

domains followed by CIDRc (Figure 7 S3-3), and CIDRb (Figure 7

S3-4). These associations between S3 and CIDR indicate that the

recombination break point occurs within the DBL domain when

CIDR domains are exchanged, and further supports a functional

dependency between CIDR and their upstream DBL domains.

DBLc and DBLe S3 subdomains were found mixed in one

cluster with low bootstrap support (Figure 7 S3-5, 6, 7, 8), although

the subgroups were to some degree specific for either DBLc or

DBLe. One DBLc clade was composed of S3 subdomains of

DBLc5/6/12/16/17 (Figure 7 S3-7), captured by HB136

(Figure 6n) and found in a set of 36 PfEMP1 nearly void of

DBLe and f domains. Two small DBLc subgroups, DBLc1/15 of

VAR1, and a group comprising DBLc2/9 domains, were found

separately, and the latter group was closely related to DBLb S3

sequences (Figure 7-S3-9), as expected from the homology block

alignment (Figure 6k and l). These DBLc-b hybrid domains

appeared in 16 PfEMP1, found in 6 of 7 genomes (not HB3), the

3D7 gene being PF07_0050.

DBLe S3 sequences were dichotomized with a bootstrap

support of 80%. One clade contained all DBLpam5, two

DBLpam6, as well as DBLe5/7/12 (Figure 7 S3-8). The S3-8

cluster was characterized well by HB97 (Figure 6p and s), which

was also present in several paralogs, such as PFA0665w DBL2 and

PFD1155w DBL2, indicating that HB97 describes an ancient

conserved domain element, a notion supported by its presence in

the conserved genes var1 and var2csa. The presence of HB97 in

paralogs and many DBLe domains, suggests that of all PfEMP1

domain classes, DBLe may bear the highest resemblance to a

common ancestral DBL domain.

The subdomain sequence comparison thus corroborates

observations on homology block and domain level. The relations

found between S3 subdomain sequences differ markedly from

relations between S1 and S2 sequences, which supports the theory

of a recombination hotspot between subdomain S2 and S3. The

homology block analysis further suggests that the break point often

occurs around HB2.

The subdomains S1 and S2 of DBLc and DBLd domains

appear to be closely related, whereas the S3 subdomain sequences

are distantly related, indicating recombination with break point

around HB2. Furthermore, HB2 recombination products have

been identified with 59 DBLc and 39 DBLb/e sequences, as well as

with 59 DBLa and 39 DBLd sequences.

The area around HB2 is a hotspot in the sense that

recombination has occurred at this position more frequently than

at other sites during the history of the var genes. It is however

difficult to say if this area has an especially elevated recombination

frequency, or if the high number of observed recombination events

is purely due to functional selection, i.e. there has been

recombination all over the gene, but mainly recombinants with

break points near HB2 have been retained due to better

functionality. Recombination between DBLb and DBLc appears

Figure 7. Evolutionary relatedness of DBL subdomain sequences. A cladogram is shown for each of the three DBL subdomains S1–3, where
boundaries for the subdomains were chosen at the edges of HB4 and HB2, as shown in Figure 6. Colors indicate major DBL domain classes estimated
from alignment of the whole domains: Green: DBLa; Orange: DBLb; Blue: DBLc; Red: DBLd; Magenta: DBLe; Cyan: DBLf. VAR2CSA sequences are black.
Blue dots indicate major bipartitions supported by at least 50% of 1000 bootstraps. The green dot in S1 marks a bipartition with bootsrap value 0.39.
Subdomain clade correlation with whole domain classes is indicated around the trees in black; Clades were split if supported by 50% of the bootstraps.
doi:10.1371/journal.pcbi.1000933.g007
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to be rare, judging from the fact that DBLc-b hybrid domains are

represented in 6 of 7 genomes (Figure 7-S3-9, Figure S6), and that

these sequences form a cluster in the HB61 tree. This is suggestive

of a common ancestral sequence dating back before geographic

separation of the genomes. Recombination between DBLa and

DBLd with break point in the HB2 area, resulting in S3 and CIDR

domain exchange, may be a more frequent event, judging from

the fact that all four combinations of DBLa/d-CIDRb/c occur,

which are likely to be the product of at least two recombination

events. Corroborating this, S3 subdomains followed by CIDR1b
and CIDR2b clustered together, separate from a cluster of S3

sequences followed by CIDR1c and CIDR2c (Figure 7 S3-2).

These sequence relations were also found in the phylogeny for

HB7, indicating that the break point of these recombination events

occurred upstream of HB7, and thus near HB2.

Frequent recombination around HB2 could suggest indepen-

dent functions for S1+S2 and S3, as proposed for VAR2CSA

domains where S3 generally was found to be less surface-exposed

[50]. This may be particularly true for DBLc/d S1+S2 sequences,

as they apparently can be combined successfully with very diverse

downstream sequences, including DBLb S3 subdomains and

CIDR domains.

Recombination is also likely to occur between more closely

related domains, e.g. within a domain class. This will probably

occur more frequently due to higher sequence similarity, but will

result in more subtle changes. DNA must be analyzed to detect

such subtle changes optimally, and this could be done by studying

the phylogenetic trees built for each homology block. This

comprehensive task is however not within the scope of the current

study. A recombination analysis has previously been performed on

sequences encoding DBLpam3 domains [59], and interestingly the

most significant recombination hotspot in this DBL class was also

found near HB2.

Potential integrin binding of DBLa0 domains. Integrins

are a family of cell surface membrane receptors, mediating binding

to the extracellular matrix, as well as interacting with plasma

proteins and counter receptors on other cells, thereby involving

them in basic processes such as cell adhesion, cell migration and

cell-cell communication. Integrins are heterodimers composed of

two membrane anchored subunits, a and b of which the human

genome encodes 18 and 8 variants respectively, combining into 24

known, human receptors [67]. Integrin subunit homologs are

found in both complex and simple metazoan organisms including

sponges and corals [68], and the wide distribution, both in species

and across tissue types, makes the receptors an attractive target for

pathogens, such as various bacteria, viruses, fungi, and parasites,

which use these receptors for adhesion or internalization in the

host [69–72]. Disintegrin domains in snake venom toxins, as well

as ornatin from leech toxins, bind integrins to inhibit their function

in platelet aggregation [73]. It has previously been shown that IE

adhesion to human dermal microvascular endothelial cells

(HDMEC) can be inhibited by anti-av antibodies (i.e. antibodies

targeting the v variant of integrin a subunits), suggesting that IE

can bind to avb3 integrins [74].

The amino acid trimer motif Arg-Gly-Asp (RGD) is commonly

found in integrin binding proteins, including disintegrins, ornatin,

and many extracellular matrix proteins. The RGD motif

mediates binding to several integrin receptor variants, a binding

which often can be out-competed by synthetic RGD peptides,

confirming the surprising simplicity of this adhesive interaction

[75]. RGD as well as other integrin binding motifs are often

found in loops bounded by Cys residues, and the motif together

with the flanking residues may determine the integrin type

specificity [76–77].

The 3D7 proteome was searched for occurrences of the RGD

motif, and a high number of motifs was found to be present in

PfEMP1 (23 out of 244 motifs, P=5.8*1026, cumulative binomial

distribution with x=23motifs, p(RGD)= (244motifs / 4099411 AA),

n=138055 AA). PfEMP1 domains from seven genomes were then

searched, and significantly higher numbers of RGDmotifs than what

should be expected for random reasons (taking the skewed PfEMP1

amino acid distribution into account) were found in DBLa0 (56

motifs in 229 domains, P=5.2*10214, cum. binom. distrib. with

x=56 motifs, p(RGD)=1.77*1024, n=98157 AA) and to a lesser

degree in NTS (12 motifs in 311 domains, P=1.1*1024, cum. binom.

distrib. with x=12 motifs, p(RGD)=1.77*1024, n= 20511 AA).

Only one motif was found per DBLa0 domain, and all seven

genomes had RGD-containing DBLa0 domains. Interestingly all

RGD motifs were evenly distributed in three fixed positions in

DBLa0: (1) HB19 position 6–8, (2) HB12 position 14–16 and (3) HB7

position 15–17.

The three RGD sites in DBLa0 were predicted to be situated in

loop regions by domain structure homology modeling (data not

shown), and especially RGD position 2 and 3 were exposed on a

loop in subdomain S3, between the helices covered by HB1 and

HB2, held in place by several Cys residues.

PfEMP1 similarity to disintegrin and ornatin was found by

searching 311 PfEMP1 against the Pfam domain database [56],

resulting in six hits to the disintegrin domain, and five hits to

ornatin (E,1 for all hits). 10 of these 11 hits were situated in

DBLa0, overlapping the second RGD position mentioned above,

and not all of the hit sequences contained an RGD motif.

The finding of two independent significant sequence features

pointing towards integrin binding, and on top of this, the co-

localization of these features in DBLa0, suggests that some

DBLa0 domains are likely to mediate integrin binding, which

may also be the phenomenon observed by Siano et al. (1998)

[74].

In relation to this, pentamidine is an RGD analogue used for

treatment of many pathogen-caused diseases including malaria

[78], and it is possible that this drug may work partly as integrin

antagonist, thus to some extent inhibiting IE binding to

endothelial cells.

CIDR homology block alignment
158 homology blocks found in 552 CIDR domains were

aligned and clustered by HB composition (Figure 8). CIDR

domains could be divided into two major groups, CIDRb/c/d
containing HB22, and CIDRa with HB23 (Figure 8 M1). No

significant homology block similarities were observed between

CIDRa and CIDRb/c/d, except the core homology blocks.

The CIDRb, c and d domain classes could each be

distinguished by class-specific homology blocks, as could each

of the CIDRa1 and CIDRa3 subclasses (Figure 8). HB148

described a distinct subgroup of CIDRc sequences with high

similarity to CIDRb (Figure 8 M1, purple). HB148 was present

in 32 PfEMP1 including amongst other PF11_0008 and

MAL6P1.4 associated with severe disease [34] and IT4var60

expressed on rosetting IE [16]. Two other interesting CIDR

homology blocks, HB450 and HB451, were strongly associated

with the previously mentioned conserved domain cassette 8

(Figure 3).

In M2, which for some CIDRa has been proven to mediate

CD36 binding [45–46], four types of sequences were found to fill

the helix loop between the conserved core HBs (Figure 8 M2).

CIDRa1 domains, which have been shown not to bind CD36

[47], shared HB121 in the M2 helix loop, which was markedly

different from HB32 shared by the remaining CIDRa in this

PfEMP1 Diversity in Seven Genomes

PLoS Computational Biology | www.ploscompbiol.org 13 September 2010 | Volume 6 | Issue 9 | e1000933



region. CIDRb/d/c domains were characterized by HB24 in M2,

except CIDRc6/8 domains with a differing helix loop defined by

HB212 (Figure 8 M2).

Using the VarDom server, two HBs were found in the helix-

loop of the MC179 CIDRa structure: HB32 covering helix a and

b (see logo in Figure 8 M2), and HB372 covering the small helix c,

Figure 8. CIDR and M3 homology block alignment. Homology blocks in CIDR domains and M3 regions were aligned, and clustered based on
differences in HB composition. The cladogram is colored according to amino acid level domain classification. Only the 54 most frequent HBs are
colored, out of a total 158 HBs. Sequence conservation logos are shown for selected HBs in the regions M1–3. Core homology blocks HB1, 8 and 10
are described in Figure 5, while HB6 is the C-terminal of the upstream DBLa/d domain (Figure 6). Alignments and logos for all HBs can be found by
querying the VarDom server with the HB numbers.
doi:10.1371/journal.pcbi.1000933.g008
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a sequence which is mainly present in CIDRa2 domains (Figure 9).

Though the structure appeared twisted in the crystal so helix a and

b were slightly separated, it was found likely that semi-conserved

HB32 hydrophobic positions 17, 18 and 21 in helix a, under

monomeric circumstances interact with conserved HB32 hydro-

phobic positions 45, 48, 51 and 52 in helix b to keep the helices

together (logo in Figure 8 M2; Figure 9, green residues). Similarly,

the highly conserved HB32 positions 8 and 12 in helix a binds

helix c through conserved hydrophobic interactions (Figure 9,

green residues). The Asp-Ile-Glu (DIE) motif at HB32 position 44–

46 supports CD36 binding, as binding ability has been found to be

disrupted when the motif is substituted with the motif Gly-His-Arg

[46]. This substitution of a conserved hydrophobic Ile with a

charged His residue in helix b, is likely to result in a different

conformation of these helices, emphasizing the importance of this

helix pairing in CD36 binding. HB32 position 33–41 shows that in

a subset of CIDRa (28% of the HB32 sequences), an insertion

containing several acidic residues appears at the apex between

helix a and b. In the majority of CIDRa, this apex contains a semi-

conserved Tyr-Gly-Asn (YGN) motif on position 25 to 28 in

HB32, which may also be surface-exposed in the monomeric

structure. Phosphorylation sites are predicted in all HB32

sequences, and when present, the Tyr in YGN is also predicted

as target for this modification. Phosphorylation is involved in

CD36 binding, though only phosphorylation of the CD36 receptor

has been shown [79–80].

A summary of homology block combinations specific for major

DBL and CIDR classes can be found in Table S1. Most major

classes can be distinguished by a few homology blocks, the

exception being the mixed groups DBLc and DBLe. Table S1

only shows combinations involving presence of homology blocks,

and CIDRc is hard to describe in this way, though it can easily be

described by the presence of HB22, combined with the absence of

HB50 and HB202 (Figure 8). These domain class specific

homology blocks should be useful when analyzing functional

differences, as well as for oligonucleotide array and recombinant

protein design.

PfEMP1 DBL domain relations to CIDR and paralog domains

were also studied by means of the homology blocks, and the results

are described in Text S3, including: PFA0665w containing

distantly related DBL and ATS elements, PfDBLMSP with

DBLe-like domains, paralog specific homology blocks, and support

for the association between the CIDRpam and other CIDR

domains.

NTS homology blocks
NTS homology blocks were aligned and sorted according to HB

composition (Figure 10 NTS). Two homology blocks, HB20 and

HB17, were found in the NTS of all PfEMP1 except VAR2CSA.

HB20 described the pentameric motif [KR]xLx[EQD] known as

the Plasmodium export element (PEXEL), which is required for

protein transport to the host erythrocyte [81]. The motif

constituted part of a longer motif with conserved positions every

3–4 amino acids, suggesting a conserved side of a structure

predicted to be helical [36]. Even more highly conserved were the

initial positions of HB17, the LkGxLxxA motif (Figure 10 NTS),

which may be an extension of the PEXEL structure or of the

downstream DBLa domain. NTSpam lacks the typical PEXEL

motif despite of being present on the IE surface, which could be

explained by a unique PEXEL motif in HB309 or HB65, both

having three conserved hydrophobic positions with a basic and

acidic residue conserved on each side of the middle position

(HB309 position 7–15, HB65 position 5–9), like PEXEL in HB20

position 4–11.

Possible N-terminal N-myristoylation of group A PfEMP1

may anchor N-terminal in membrane and cause alternate

transportation to IE membrane. HB155 and HB264 were

found in the N-terminal of group A PfEMP1, containing the

characteristic motif MGxxx[S/T] required for the lipid modifica-

tion N-myristoylation (Figure 10 NTS). N-terminal N-myristoyla-

tion is the covalent attachment of a 14-carbon myristate group to N-

terminal Gly through an amide bond, after removal of the start Met

residue [82]. This reaction generally takes place in the cytoplasm

during protein synthesis and entails transfer of the lipid chain from

myristoyl-CoA, catalyzed by N-myristoyltransferase [83] (reviewed

by Resh 2006 [84]). Myristate is able to insert hydrophobically into

a lipid-bilayer, and thus create an unstable binding to a membrane

[85]. Attachment of an N-myristoylated protein to the membrane

can be stabilized by the presence of basic residues interacting with

negatively charged membrane phospholipids [86], or by further

acylation of the protein [87]. Two important roles for N-myristoyla-

tion are in membrane anchoring and protein trafficking [88].

N-myristoylation is conserved across eukaryotic species [89],

and several experimentally confirmed N-terminally myristoylated

proteins in P. falciparum share the common eukaryotic motif

MGxxx[S/T] [90–94]. The myristoylation predictor NMT, which

is trained on several eukaryotic species including protozoans

[95–96], correctly predicts that the terminals of these five

experimentally analyzed P. falciparum proteins are N-myristoylated.

The two homology blocks, HB155 and HB264 were present in 41

PfEMP1 N-terminals (Figure 10 NTS) that were all predicted to be

N-myristoylated by the NMT predictor. Prediction results for 311

PfEMP1 sequences are summarized in Figure 11A, which shows

that the N-myristoylation motif was found predominantly in group

A PfEMP1. Remarkably, all seven P. falciparum genomes had a set

of PfEMP1 with conserved N-myristoylation motifs (Figure 11A).

N-myristoylation may act as a localization signal and affect

trafficking of PfEMP1, like PfGRASP which is dependent on a

functional myristoylation motif for localization to the golgi

Figure 9. Helix-loop of MC179 CIDRa. HB32 (red) covering helix a
and b, and HB372 (blue) covering helix c. Side chains conserved by
more than 2.16 bits are shown. Green side chains are conserved
hydrophobic residues. The arrow indicates Asn in the possibly surface
exposed semi-conserved motif YGN at the apex of helix a and b. The
conservation of residues in HB372 with 9 sequences has a high margin
of error.
doi:10.1371/journal.pcbi.1000933.g009
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apparatus through a brefeldin A independent pathway [94,97].

PfGRASP has a terminal sequence (MGAGQTK) which is

very similar to IT4var08 (MGAGQST) and RAJ116var05

(MGASQSK), the latter getting the highest score of all PfEMP1

by the NMT predictor.

It is still unknown if the PEXEL motif is cleaved and acetylated

in PfEMP1, like in some other exported proteins [98–99]. If NTS

is not removed by PEXEL cleavage, then the N-myristoylated N-

terminal can be translocated across the membrane [100–101], and

exposed on the IE surface. The unstable membrane binding

caused by N-terminal N-myristoylation could by itself play a major

role in mediating adherence of IE to host cell membranes. The

unspecific binding of several acylated PfEMP1 to any part of a host

cell (e.g. endothelial cell) membrane, possibly combined with

receptor binding mediated by other parts of PfEMP1, could

together form a strong interaction. A mechanism known as

myristoyl switching has been found in some acylated proteins,

where ligand binding induces a conformational change, regulating

if the fatty acid is hidden in a hydrophobic pocket within the

protein or if it is exposed for membrane interactions [102].

Stable membrane anchoring is also possible, as the N-

terminals of some PfEMP1 possess several basic residues that

can act in synergy with the lipid chain to bind the membrane.

Generally UPSA have a higher pI (i.e. are more basic) than

other PfEMP1 N-terminals (Figure 11B). Other types of less

site-specific acylation, such as S-acylation at some of the many

Cys residues, may also help tether the protein to the membrane

[87].

The potentially affected group A PfEMP1 have been associated

with severe malaria [9,28]. Considering the implications for

vaccine design, it should therefore be thoroughly investigated if

any of the PfEMP1 variants are indeed myristoylated in vivo.

Inter-domain homology blocks
52 homology blocks had more than 50% of their occurrences in

inter-domain regions, i.e. outside defined domains. Three of the

most frequent inter-domain homology blocks are shown in

Figure 10-ID. The 52 inter-domain homology blocks were mainly

low complexity sequences, occurring in repeats and overlapping

each other. To determine the distribution of these homology

Figure 10. NTS, ID and ATS homology blocks. (NTS) Above the HB alignment, sequence conservation logos are shown for the two most
conserved NTS homology blocks. The lower pair were found in NTS of VAR2CSA, and HB65 was also found in several DBLb domains (Figure 6). The
proposed PEXEL motif is noted above the HB20 logo, which together with several downstream positions was conserved in all PfEMP1 except
VAR2CSA. On the right side of the alignment, logos covering the N-terminal methionine are shown. A conserved N-terminal N-myristoylation motif
was found in NTSA HB155 and HB264. (ATS) Sequence logos for conserved ATS homology blocks marked by black dots in the alignment. The
cladogram is colored according to ATS annotation based on amino acid alignment. Three conserved homology blocks were absent in VAR1 and
VAR2CSA ATS. (ID) Inter-domain HBs were defined as HBs which occur with a frequency .50% outside other defined regions. Logos for three of the
most conserved ID homology blocks are shown, with number of occurrences in the database with 311 PfEMP1 sequences. The phylogram is based on
PfEMP1 differences in ID HB composition, where four interesting groups were distinguished: (1) VAR1, (2) VAR2CSA and PfEMP1 with C-terminal
similarities to VAR2CSA defined by HB206, (3) group with UPSA flanked var including PFD1235w defined by HB295 and HB341 (4) UPSB flanked var
defined by HB280. The tree is colored according to UPS type, where UPSA is green, UPSB is red, UPSC is blue and UPSE is black. Homology block
sequence logos specific for group 3 and 4 in the phylogram are shown.
doi:10.1371/journal.pcbi.1000933.g010
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blocks in PfEMP1 sequences, a NJ-tree was constructed based on

ID homology block composition of the PfEMP1 (Figure 10 ID). In

general the homology blocks were uniformly scattered amongst

PfEMP1 sequences, although four groups were distinguished with

representatives in at least 6 of the 7 genomes. VAR1 and

VAR2CSA had unique conserved inter-domain sequences with

low amounts of the low-complexity sequence found in many other

PfEMP1, and therefore, they formed separate groups (Figure 10

ID, tree group 1 and 2). Interestingly, one cluster was defined by

two unique inter-domain homology blocks, HB341 and HB295

(Figure 10 ID, group 3). This cluster of 11 group A PfEMP1 with

similar DBLb/c containing domain composition (part of frame 9

in Figure S4A) captured all occurrences of double DBLb domains,

was represented in 6 of 7 genomes (not RAJ116), and the 3D7

genes were PFD1235w and PF11_0521, which have been linked to

severe malaria and ICAM-1 binding respectively [28,38]. The

fourth distinct group was defined by HB280 (Figure 10 ID, group

4), conserved in 5 of 7 genomes (not 3D7 and HB3) and comprised

11 proteins, including among others the ICAM-1 binding

associated IT4var14 (A4var) [40]. All members in the fourth

group lacked other ID HBs, most were flanked by UPSB1, and 10

of 11 had the same C-terminal domain combination ending with

DBLc-DBLf4 (Figure 3, cassette 9; Figure S4A, frame 7). The

conservation of an ID region together with the semi-conserved

domain architecture and UPS sequences, suggests a more recent

common ancestor for genes in these groups. It will be interesting to

see if the members of these groups share receptor-binding

properties.

The Cys-containing M3 regions (M3A and M3AB) were found

to be positionally linked to the upstream CIDR domain, while the

amino acid composition correlated more highly with the

downstream domain architecture. Two homology blocks were

able to capture most occurrences of the two Cys-residues found

after CIDRb and c, despite of the surrounding low-complexity

sequence, seeing that a few other positions besides the Cys were

conserved (Figure 8 M3).

ATS homology blocks
Homology blocks of the conserved ATS were aligned and sorted

according to domain composition, to describe variation in the

intracellular part of PfEMP1 (Figure 10 ATS). ATS starts N-

terminally with the transmembrane region, which was captured by

HB21. The intron splice site between exon 1 and exon 2 lies

immediately downstream of the transmembrane part, so the short

basic stretch which follows transmembrane regions, and interacts

with the negatively charged membrane phospholipids, was found

in the following HB41. ATSA, which is associated with UPSA, was

distinguished as sequences where HB69 and HB112 occurred

simultaneously.

ATSvar1, ATSB17, and the ATS of VAR2CSA, were charac-

terized by lacking the final three homology blocks conserved in all

other ATS (Figure 10 ATS, HB46/47/51, Figure S7D).

ATSB17 was found in six group C PfEMP1, distributed in six

genomes (not IT4), and containing several DBLb/c domains. The

two var2csa genes in the HB3 genome had an ATSB14 more

similar to the ATS of non-VAR2CSA PfEMP1, however these

were truncated before the final three homology blocks. Other

VAR2CSA ATS had normal length but contained unique

sequences instead of the three conserved homology blocks. The

five var1 genes possessing an exon 2, were all flanked by a 39UTR

encoding the three missing homology blocks. Compared to a

common ATS, ATSvar1 was missing ,150 AA, ATSB17 was

lacking ,100 AA, whereas the ATS of VAR2CSA was missing or

differed from the final 100–130 AA.

The finding that VAR1 and VAR2CSA both have a shortened

ATS, could suggest that ATSvar1 is functional despite of

truncation, and question the hypothesis that VAR1 exclusively

exists as a pseudogene.

The final three ATS homology blocks could be a non-essential

functional element in PfEMP1, for example acting as signal

peptide during transport to the erythrocyte membrane, which

would result in differences for VAR1, VAR2CSA, and ATSB17

PfEMP1, compared to other PfEMP1.

Conserved homology block residues may comprise
phosphorylation sites
Phosphorylation occurs mainly at three types of residues: Ser,

Thr and Tyr, and all three residues were markedly conserved in

several homology blocks. Phosphorylation is a common modifica-

tion of proteins expressed during the erythrocyte stages, and has

been associated with differences in IE adhesion properties [103].

Ser/Thr phosphorylation of the PfEMP1 ATS was recently shown

to alter its association with parasite-encoded knob-associated His-

rich protein (KAHRP), and to regulate cytoadherence of IE [104].

Judging from phosphorylation site predictions and conservation

levels in the homology blocks, some examples of conserved

potential phosphorylation sites were, in DBL domains (Figure 6):

HB19 position 28 (DBLa S1), HB82 position 11 (DBLa S2b),

HB36 position 8 (DBLa0 S2c), and Tyr in HB29 (DBLd and c
S2c). In CIDR one of many examples is the mentioned YGN motif

in CIDRa HB32 (Figure 8). Several sites of all three types are

conserved in the ATS HB41, HB43, and HB69 (Figure 10 ATS).

Figure 11. N-terminal N-myristoylation predictions. (A) 48
positive NMT predictions in 311 PfEMP1 N-terminals. All except three
were group A PfEMP1. According to the predictions, the post-
translational modification was well conserved in all seven genomes.
(B) Average pI of NTS in 311 PfEMP1. Three groups (basic, neutral and
acidic) can be clearly distinguished.
doi:10.1371/journal.pcbi.1000933.g011
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Phosphorylation sites have been predicted for all PfEMP1

sequences, and the conservation of these can be inspected for

each homology block on the VarDom server.

It will be interesting to see if some of these sites are surface-

exposed and thus accessible to kinases, as the introduction of large,

negatively charged phosphate groups could result in conforma-

tional changes, or contribute to charged binding surfaces, and thus

result in functional and antigenic variation.

Overall PfEMP1 homology block architecture
Homology block sequences of full-length PfEMP1 were aligned,

to determine HB associations with specific positions in the whole

proteins, as well as to find groups of PfEMP1 with similar HB

compositions. Sequences were sorted according to NJ-clustering

based on Manhattan distances between feature vectors consisting

of exon 1 HB counts. The homology block alignment shown in

Figure 12 gives a detailed overview of the diversity and structure in

the PfEMP1 family. A labeled version of the alignment and the

tree can be found in Figure S7E and Figure S8, respectively.

The differences between UPSA, B, and C flanked var genes were

not clear enough to form separate clades in the tree, though

homology blocks specific for UPSA-flanked var were observed in

both ends of the alignment (Figure 12a comp.1 and Figure 12b

ATS). The three conserved genes were all clearly distinguished

(Figure 12,clade A, B, and E), as well as many small PfEMP1

groups, generally with low bootstrap support, as expected from

uncorrelated domains in N- and C-terminal (Figure S4).

A list of homology blocks specific for each of the four

components are summarized in Table S2. These specific

homology blocks may be helpful for functional analysis of the

PfEMP1, as well as for genotyping purposes.

Conclusion
The reclassification of PfEMP1 domains by alignment and

distance tree analysis introduced a few larger and several smaller

new subclasses. Although the classification is a result of a

phylogenetic approximation of the different evolutionary histories

of the domain sequence blocks, identification of conserved

PfEMP1 domain architectures was possible. These structures

represent a novel perspective on the PfEMP1 architecture. DBL

and CIDR domains appear to be inherited in conserved domain

structures that to a large extent fall within four major components.

Figure 12. PfEMP1 homology block alignment. (a) and (b) are the same alignment, with HB1–55 colored in (a), and HB56–165 colored in (b).
The sequences are sorted according to HB composition, and the tree is colored according to UPS class. The division of PfEMP1 into four components
is indicated at the top of the figure. Between (a) and (b) is noted the most prevalent major domain class for that area in the alignment. The five core
homology blocks should be distinguishable in (a), as well as less frequent homology blocks especially in (b). The alignment with all details can be
found in Figure S7E, and the labeled tree in Figure S8. Alignment features (red arrows): (1) DBLc-b hybrid domains; (2) The light orange column is
HB78, present in both DBLc and DBLe (Figure 6n, r, and t) and associated with C-terminal of comp. 2 and 4; (3) HB74 in DBLc-like DBLd domains, as in
Figure 6g, h and Figure 7-S1, S2; (4) HB82 in DBLc8 of VAR1, also found in DBLd domains; and (5) M3 homology blocks. Notable clades in the tree: (A)
VAR2CSA; (B) VAR3; (C) bootstrap 28%, 4 genomes, UPSA3, includes IT4var60 (rosetting); (D) bootstrap 25%, 3 genomes, incl. PFL0020w and
PF08_0141; (E) VAR1; (F) 6 genomes, incl. MAL6P1.4; (G) 5 genomes, incl. PFD1235w and PF11_0521 (ICAM-1); (H) 5 genomes, incl. PF11_0008 and
PF13_0003; (I) 4 genomes, incl. PF07_0050 and IT4var31 (CD36, ICAM-1); (J) 4 genomes, incl. IT4var14 (CD36, ICAM-1); (K) bootstrap 27%, 5 genomes,
UPSB2, incl. PF08_0140 and IT4var06; (L) bootstrap 26%, 3 genomes, incl. IT4var16 (CD36, ICAM-1) and IT4var27 (rosetting); (M) bootstrap 18%, all
genomes incl. MAL6P1.252 and PFL1950w; (N) bootstrap 68%, 5 genomes, UPSB; (O) bootstrap 49%, 5 genomes, UPSC1, incl. IT4var01 (rosetting) and
TM284S2var1 (rosetting, IgG); and (P) Comp.1-Comp.3-ATS architecture (a.k.a. Type 1 var), UPSB and UPSC.
doi:10.1371/journal.pcbi.1000933.g012
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These conserved domain structures although large and complex

may well represent functional units of the whole PfEMP1

molecule.

Apart from the known conserved var genes, var1, var2csa, and

var3, 18 domain cassettes and several less well-defined structural

phenomena were observed for the seven sequenced genomes. The

established division of group A, B and C was confirmed although

importantly, N- and C-terminal conserved domain structures

occurred independently of each other, with distinct C-terminal

DBLe-containing structures transcending the three conserved

genes, as well as group A, B, and C.

Homology blocks covering on average 83.5% of a PfEMP1

sequence were defined, describing the PfEMP1 family on a more

detailed level than domains, yet more simplified than the amino

acid level. Local similarities between domain classes were thus

described, and homology blocks specific for PfEMP1 domain

classes, components, and cassettes, were found. The HB analysis

also revealed a recombination hotspot between subdomain S2 and

S3 in DBL domains, which has helped shape the antigen

repertoire. Thus, several DBL domains are hybrids of different

major classes - an observation important for functional studies as

well as antibody cross-reactivity and vaccine design.

Several conserved elements were described by the homology

blocks, including: (1) DBL domain core interactions conserved in

all DBL domains, holding the subdomains together, (2) an

acylation motif found to be conserved in group A var genes,

suggesting N-terminal N-myristoylation of a subset of PfEMP1, (3)

conserved residues predicted to be phosphorylation sites, and (4)

PfEMP1 inter-domain regions, which are proposed to be elastic

disordered structures.

The novel iterative homology block detection method is

potentially applicable to any protein dataset, and would be

especially suitable for compositional analysis of other frequently

recombining gene families.

The VarDom server was introduced, where all presented

information on domain classes and homology blocks can be

retrieved, and new sequences can be classified and related to other

PfEMP1 proteins in the seven genomes. Ideally, the server will

allow better interpretation and facilitate the development of new

approaches in PfEMP1 research. For example analysis of var

expression data from microarrays and short high through-put

sequence reads or the design of recombinant proteins for

immunizations or functional studies could all benefit from this

detailed account of PfEMP1 diversity and ultimately aid the

development of PfEMP1 based malaria interventions.

Methods

Datasets
Annotated var genes and var gene containing contigs were

retrieved using BLAST, from NCBI nucleotide database and from

genome assemblies of P. falciparum clones 3D7, HB3, DD2, IT4/

FCR3, PFCLIN, RAJ116, IGH and P. Reichenowi clone PREICH

at PlasmoDB, Broad and Sanger Institute servers, querying 3D7

var sequences. For all var genes with intact N-terminal segments,

2000 bp 59 UTRs were also retrieved where possible. In total 399

annotated genes and open reading frames spanning over the

length of at least two DBL/CIDR domains were kept for the

sequence alignment and distance tree analysis, whereas the

homology block dataset consisted of the 311 full length or exon1

sequences, as well as 20 DBL-containing paralogs from Plasmodium

falciparum, vivax, yoelii and knowlesi. For meaningful interpretations,

the first approach required sequence lengths spanning at least two

PfEMP1 features, whereas the latter, was based on whole or exon1

sequences to avoid generating false homology block break-points.

Nucleotide sequences of all var genes analyzed in this study are

available in Dataset S1.

Domain alignment and phylogeny
Large phylogenies comprising all DBL or CIDR sequences were

inferred by multiple sequence alignment using MUSCLE (version

3.7) followed by application of the neighbor-joining algorithm

implemented in MEGA (version 4.0.2) [105]. Major domain

classes were deduced and named according to previously defined

classes [10].

Major domain-class sequences were further subclassified

through a recursive process involving: (1) re-alignment of

sequences, (2) construction of a maximum likelihood tree, and

(3) split of sequences into two clusters at a tree bipartition validated

by at least 50% of the bootstraps. If a suitable bipartition was

found, the process would be repeated for each of the two formed

clusters. If the sequences on the other hand were not divided, they

were all assigned to the same subclass and given a number. In

addition to bootstrap support, two other properties were used to

evaluate bipartitions and determine if and where the trees should

be split: the number of genomes represented in each cluster, and

the within-cluster average distance (WCAD), which was used as a

measure for the relatedness of clustered sequences. See Text S1 for

details on domain border and distance tree cluster definitions.

Multiple sequence alignments of PfEMP1 domains were per-

formed with AQUA [106], which optimizes alignments generated by

MUSCLE (version 3.7) [107] and MAFFT (version 6.611b) [108],

using refinement and evaluation implemented in RASCAL (version

1.34) [109] and NORMD (version 1.3) [110], respectively.

Maximum likelihood trees were built using the multithreaded

version (pthreads) of RAxML (version 7.2.5) [111–112]. The gamma

model for substitution rate heterogeneity was used together with the

WAG [113] amino acid substitution model with empirically

determined amino acid frequencies. WAG and JTT [114] were

found to be the most likely substitution models by fitting of models

implemented in RAxML to fixed trees built from the different

domain alignments and subsequent ML comparison. Within-cluster

average distances were based on distances calculated using the JTT

model implemented in Protdist from the PHYLIP package (version

3.69) [115].

Upstream sequences
Sequences were aligned with MAFFT (version 6.240) using the

L-INS-i algorithm for multiple sequence alignment [108]. A

neighbor-joining tree was generated and bootstrapped using

Clustalw (version 2.0.9 for tree construction and version 1.83 for

bootstrapping because version 2.0.9 crashed during bootstrap)

[116].

Sequences were clustered using the Markov clustering algorithm

(version 08-312) [51–53]. The Markov clustering algorithm is a

graph-theoretical clustering method, which uses an all-against-all

pairwise sequence alignment as input, generated with the blastn

algorithm implemented in blastall (version 2.2.18) [117]. The

inflation parameter of the Markov Cluster Algorithm was varied in

steps of 0.2 from 1.2 to 5.0, and resource scheme 7 (most accurate)

was used. A distinct clustering was generated for each value of the

inflation parameter, and all the clusters were summarized in a

consensus clustering. Briefly, each clustering was converted to a

multifurcating tree with a branch representing each cluster. A

consensus tree representing the consensus clustering was then

constructed, using the majority rule consensus method (include all

bipartitions with a frequency larger than 0.5) [118], with the

extension that less frequent bipartitions were also included as long

PfEMP1 Diversity in Seven Genomes

PLoS Computational Biology | www.ploscompbiol.org 19 September 2010 | Volume 6 | Issue 9 | e1000933



as they continued to resolve the tree and did not contradict more

frequent groups. Based on the results of the two clustering

methods, a consensus annotation of the 59 upstream sequences of

the var genes was reached (Figure S5).

Trees were rendered and edited using Dendroscope (version

2.3) [119].

Homology block alignment and trees
The iterative homology search procedure used for defining the

set of 628 homology blocks is described in Text S2.

Alignment of homology blocks was performed with a python

implementation of the Smith-Waterman algorithm with linear

(non-affine) gap penalty and a substitution matrix of the identity

type [120].

To estimate trees based on homology block composition,

homology block feature vectors were constructed for each

sequence, either binary (DBL, CIDR, ATS, ID and NTS trees)

or with counts (PfEMP1 tree), and accordingly distances were

calculated as either Hamming or Manhattan distances. Trees were

constructed as extended 50% majority rule consensus trees, based

on 1000 neighbor joining bootstrap trees, built from distance

matrix using ordinary neighbor joining implemented in Clearcut

(version 1.0.8) [121].

Sequence logos were generated using WebLogo (version 2.8)

[122], where small sample (,40 amino acids) bias is compensated

for by subtraction of an error estimate on each position, the error

bars are 2 times the estimated error.

Prediction of phosphorylation sites and N-terminal N-
myristoylation
Phosphorylation sites were predicted using NetPhos 2.0 [123].

N-terminal N-myristoylation was predicted with the NMT

myristoylation predictor which is trained for several eukaryotic

species including protozoans [95–96].

Supporting Information

Dataset S1 Var gene sequences. Var gene cDNA encoding

the PfEMP1 analyzed in this study. Sequence names in this fasta-

file are the same as used everywhere else in this study, as well as on

the VarDom server.

Found at: doi:10.1371/journal.pcbi.1000933.s001 (2.84 MB

TXT)

Figure S1 Major DBL and CIDR domain classes. (A) NJ

tree based on amino acid alignment of 1242 DBL sequences. Blue

dots mark branches dividing DBL domains into six major groups

and four N-terminal VAR2CSA DBL classes. (B) NJ tree based on

amino acid alignment of 655 CIDR sequences. Blue dots mark

branches dividing CIDR domains into four major groups as well

as the CIDRa1 and CIDRpam subclasses. Leaf names are omitted

from the figure to improve graphical presentation.

Found at: doi:10.1371/journal.pcbi.1000933.s002 (2.49 MB PNG)

Figure S2 Trees showing subclassification of all major
PfEMP1 domain classes. ML trees based on amino acid

alignments of each of the following domain classes are shown in

panels A–M: DBLa0, a1, b, d, e, c, f; CIDRa, b, c, d; NTS; ATS.
Sequence names as well as start and stop position of the domains

are given in the trees, followed by classification of the domain.

Panel N and O: Assignment of sequences to UPS groups by

Markov clustering (N) and neighbor joining (O). The UPS groups

were named as indicated by the text color. The background colors

show the group membership assigned by Kraemer et al. 2007 [16].

Sequences found upstream of domain cassette 8 (Figure 3) are

marked with black squares. (N) The branch labels show the

fraction of Markov clusters with this group present. (O) The

branch labels show the bootstrap values as fractions of 1000

bootstraps. Monophyletic subgroups with a bootstrap support

above 0.7 and containing sequences from at least four different

strains of P. falciparum are highlighted with thick red branches.

Some subgroups were further expanded (without bootstrap

support) to form larger monophyletic groups: UPSA2 and UPSB3

are expanded to include additional sequences annotated to

UPSA2 and UPSB3 respectively by Kraemer et al. 2007 [16],

UPSB2 is expanded to include two genes with same domain

architecture, and UPSC1 is expanded to include three sequences

that fall between UPSC1 and UPSC2 but within the larger

monophyletic group comprising all UPSC sequences. The

sequences are shown with thick black branches. The additional

sequences included by this expansion are denoted with an asterisk

in the annotation in Figure S4 and S5. UPSA3 and UPSB1 are

groups that contain all the sequences not assigned to any other

subgroup in UPSA and UPSB respectively. ND: Not Determined.

Found at: doi:10.1371/journal.pcbi.1000933.s003 (1.11 MB ZIP)

Figure S3 PfEMP1 domain class logos. Sequence conser-

vation logos for major PfEMP1 domain classes (panel A–Z):

CIDRa, a1, a2, a3, b, d, c, pam; DBLa0, a1 (without a1.3), a1.3,
b, d, e (without e1, e2, e11, e13, epam), e1, e2, e11, e13, epam4,

epam5, c, pam1, pam2, pam3, f; NTSA, NTSB, and M3AB.

Found at: doi:10.1371/journal.pcbi.1000933.s004 (2.42 MB ZIP)

Figure S4 Annotated PfEMP1 sequences aligned accord-
ing to C-terminal (A) and N-terminal (B) domain
compositions. Gene names, parasite genome, 59 UPS classes,

PfEMP1 domain annotation (D=domain, ID= Inter Domain)

and origin of sequence data (if sequence is not previously reported

as var gene) are given. Sequences which partially contain

unexpected identical sequence stretches to other sequences

suggesting an incorrect contig assembly are noted ‘‘HBD’’

followed by the name of the potentially redundant sequence.

Red arrows indicate component 1–4. Frames indicate clusters of

correlated domain classes. 1:VAR1; 2: VAR2CSA; 3: VAR3; 4:

DBLf and DBLe domain combinations of component 4; 5:

Cassette 10; 6: Cassette 6; 7: Cassette 9; 8: Cassette 5; 9: Other

Group A PfEMP1 all containing component 2; 10: Cassette 8; 11:

Group B and C genes containing component 2; 12: Group B and

C PfEMP1 with no component 2 or 4; 13: Cassette 14; 14:

Cassette 17,21 and 22; 15: DBLa1-CIDR subclass correlations

including cassette 11,13,15 and 16; 16: DBLa0 subclasses

associated with CIDRa3 subclasses; 17: DBLa0 subclasses

associated with CIDRa2 subclasses. N-terminal segment (NTS),

Duffy binding-like (DBL), Cys-rich inter-domain region (CIDR)

and acidic terminal segment (ATS) are named according to the

distance tree classification. Inter domains are annotated as either

short if ,32 AA (green) or long if .31 (yellow) and ‘‘A’’ or ‘‘B’’ if

encoding M3A or M3AB.

Found at: doi:10.1371/journal.pcbi.1000933.s005 (0.15 MB PDF)

Figure S5 Schematic representation of annotated var

genes sorted by genome origin. Gene names, 59UTR class,

domain architecture and origin of sequence data (if sequence is not

previously reported as var gene) is given. Sequences are noted ‘‘F’’

(Fragment) in comments if predicted not to span a full length

exon1, and ‘‘HBD’’ if incorrect contig assembly is suspected

followed by the name of the sequence which partially contains

unexpected identical sequence stretches. N-terminal segment

(NTS), Duffy binding-like (DBL), Cys-rich inter-domain region

(CIDR) and acidic terminal segment (ATS) are named according

to the distance tree classification.
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Found at: doi:10.1371/journal.pcbi.1000933.s006 (0.05 MB PDF)

Figure S6 Phylogenetic trees for DBL subdomains S1,
S2 and S3, as in Figure 7 but with labels. Edge values are

fractions of 1000 bootstraps, and each subdomain is given as:

protein name, start position, end position, and the domain class

the subdomain is a part of.

Found at: doi:10.1371/journal.pcbi.1000933.s007 (0.22 MB PDF)

Figure S7 Homology block alignments. Homology block

alignments for (panel A–E): DBL, CIDR, NTS, ATS, and whole

PfEMP1, with details of Figure 6, Figure 8, Figure 10 and

Figure 12.

Found at: doi:10.1371/journal.pcbi.1000933.s008 (0.82 MB ZIP)

Figure S8 Tree in Figure 12 with labels. Bootstrap values

are given as fractions of 1000 bootstraps.

Found at: doi:10.1371/journal.pcbi.1000933.s009 (0.33 MB PDF)

Table S1 Examples of HB combinations specific for
DBL and CIDR domain classes. Domain counts and number

of matches of the HB combination are given for the sequence set

with 311 PfEMP1 sequences. The domain combination (17, 19)

signifies a sequence where both HB17 and HB19 are present.

These homology blocks are suggested for use in oligonucleotide

array design, as well as for functional analysis of the domain types.

The list is not exhaustive, and can be supplemented using Figure 6

and Figure 8, as well as the VarDom server.

Found at: doi:10.1371/journal.pcbi.1000933.s010 (0.11 MB PDF)

Table S2 Homology blocks specific for component 1–4
(Figure 12). Homology block numbers are given in parenthesis,

and number of occurrences in the component with 311 sequences,

is given next to the number of occurrences elsewhere. These

homology blocks are suggested for use in oligonucleotide array

design, as well as for functional analysis of the components. The

table is not exhaustive.

Found at: doi:10.1371/journal.pcbi.1000933.011 (0.09 MB PDF)

Text S1 PfEMP1 domain classification by alignment

and distance tree analysis.

Found at: doi:10.1371/journal.pcbi.1000933.s012 (0.15 MB PDF)

Text S2 Defining PfEMP1 homology blocks.

Found at: doi:10.1371/journal.pcbi.1000933.s013 (0.81 MB PDF)

Text S3 PfEMP1 DBL domain relations to CIDR and

paralog DBL domains.

Found at: doi:10.1371/journal.pcbi.1000933.s014 (0.31 MB PDF)
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