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Abstract 

Background: Malaria rapid diagnostic tests (RDTs) play a key role in malaria management and control. The PfHRP-2 

based RDT is the most widely used RDT for malaria diagnosis in Ghana. Deletion of pfhrp2 in Plasmodium falciparum 

parasites affect the diagnostic accuracy of PfHRP-2 based RDT kits. Identifying the prevalence and distribution of P. 

falciparum parasites with deleted pfhrp2 is important for malaria control.

Aim: The purpose of this study was to identify and confirm the prevalence of pfhrp2 deletant P. falciparum parasites 

circulating within different regions of Ghana.

Methods: DNA was extracted from the membrane of spent CareStart™ PfHRP-2 RDT kits and dried filter paper 

blood blots using Chelex-100. Exon 2 of pfhrp2 and pfhrp3 genes were amplified by polymerase chain reaction (PCR), 

resolved by agarose gel electrophoresis and visualized under UV light.

Results: Microscopic analysis of blood smears from samples that were PfHRP-2 RDT positive revealed a parasite 

prevalence of 54/114 (47.4 %) and 2/26 (7.7 %) in Accra and Cape Coast, respectively. PCR analysis increased parasite 

prevalence in the RDT positive samples to 94/114 (82.5 %) and 6/26 (23.1 %) in Accra and Cape Coast respectively. The 

exon 2 of the pfhrp2 gene was deleted in 18/54 (33.3 %) of the microscopy confirmed and 36.2 % (34/94) of the PCR 

confirmed RDT positive samples collected in Accra. No RDT sample, confirmed to contain parasites by either PCR or 

microscopy was negative by pfhrp2 exon 2 PCR in Cape Coast. A survey of an additional 558 DBS revealed that 22.4 % 

(46/205) and 40 % (44/110) of PCR positive samples in Accra and Cape Coast, respectively, lacked the exon 2 region of 

pfhrp2 and possibly the entire pfhrp2 gene.

Conclusions: A high number of P. falciparum parasites, which lack pfhrp2 exon 2 gene have been identified in two 

communities in Ghana. Continuous nationwide monitoring of the prevalence of pfhrp2 deletant parasites would be 

essential to malaria control. The use of RDT kits that are effective at malaria diagnosis despite deletion of pfhrp2, such 

as the PfHRP-2/PfLDH combo RDT kit could enhance the diagnosis of clinical malaria in Ghana.
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Background
Malaria is one of the deadliest infectious diseases 

of humanity, which causes significant mortality and 

morbidity in the tropics, particularly in Africa [1]. 

Malaria is a parasitic disease transmitted through the 

bite of an infectious female Anopheles mosquito. Early 

diagnosis is very important for disease management and 

the effective treatment of malaria. Before the advent of 

malaria rapid diagnostic tests (RDTs), diagnosis was 

based on microscopy of thick blood smears, which is 
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still the gold standard for malaria diagnosis. However, 

in a number of rural and semi urban settings where lack 

of equipment, trained personnel and electricity prevents 

this essential diagnosis, health practitioners diagnose 

malaria based solely on clinical evaluation of symptoms 

[2]. RDTs offer a great potential for rapid immediate 

diagnosis of malaria infections, which has led to prompt 

and appropriate treatment of the disease, particularly in 

highly endemic rural settings [3].

Presently there is a very large demand for malaria RDT 

kits, as the World Health Organization (WHO) has rec-

ommended its use and majority of National Malaria Con-

trol Programmes have accepted it as the first step in the 

diagnosis of malaria. Due to the importance of the results 

of this initial screen, the WHO has established two pro-

grammes, the Foundation for Innovative New Diagnos-

tics (FIND) malaria RDT quality assurance programme 

and WHO-FIND malaria RDT lot testing programme 

whose main mandate are to ensure accurate diagnosis 

of malaria [4]. Malaria RDT kits are designed to detect 

either Plasmodium falciparum specifically or discrimi-

nately detect both P. falciparum in addition to another 

human malaria parasite or indiscriminately detect all 

human malaria parasites [4, 5]. �e main antigens that 

malaria RDT kits detect are PfHRP2, parasite lactate 

dehydrogenase (pLDH), and parasite aldolase (pAldo). 

PfHRP-2 is a P. falciparum specific antigen with the 

advantage of being highly abundant and heat stable how-

ever, the PfHRP-2 antigen remains in circulation for up 

to 4 weeks after the malaria parasites have cleared [6, 7]. 

Some monoclonal antibodies directed against PfHRP-2 

have been found to cross react with PfHRP-3, a structural 

homologue of PfHRP-2 [8, 9]. �us although PfHRP-2 

based RDT kits have the highest sensitivities [4], they 

also have high false positive rates. By 2015, 171 differ-

ent malaria RDT products had been tested by the WHO. 

Forty-five of these products detect only P. falciparum, ten 

detect P. falciparum as a part of a mixed infection with 

other human malaria parasites, one is Plasmodium vivax 

specific and 115 detect and distinguishing P. falciparum 

from either P. vivax mixed infections or mixed infec-

tions containing all the other human malaria parasites, P. 

vivax, P. ovale and P. malariae [10].

�e accuracy of malaria RDT results can be affected 

by test antibody stability, product design and quality as 

well as the transport and storage conditions of the kits 

and sample parasite density [10]. Accurate diagnosis 

of malaria by PfHRP-2 RDT kits can be affected by the 

pfhrp2 and or pfhrp3 genotype of the parasite [5, 10, 11], 

the amount of PfHRP-2 antigen produced by the para-

site [12, 13] as well as the longevity of PfHRP-2 antigen 

after parasite clearance. One major obstacle in the diag-

nosis of malaria by RDT, without additional confirmation 

of parasitaemia is false positive test results, which leads 

to the unnecessary administration of anti-malarial drugs 

when no malaria parasites are actually present in the 

patient. False positive RDT test results are frequently 

obtained immediately following an anti-malarial drug 

regimen, when parasites are cleared or densities very low, 

but the antigen remains in circulation weeks later [14, 

15].

In some facilities in Ghana, where microscopy is una-

vailable, malaria is treated based on RDT results. It is thus 

very important to monitor the accuracy of RDT results 

as well as identify factors that affect the diagnostic abil-

ity of malaria RDTs. So far the main studies conducted in 

Ghana have determined the sensitivity and specificity of 

different brands of malaria RDT kits, including the Car-

eStart™ and Paracheck RDT Kit [13, 16–18], in different 

cohorts of malaria �is study systematically identifies and 

confirms the presence of pfhrp2 deletant (pfhrp2−) para-

sites as well determines the prevalence of P. falciparum 

parasites with deletions in pfhrp2 and pfhrp3 (pfhrp3−) 

in two communities in Ghana.

Methods
Ethics, consent and permissions

�is study was approved by the Institutional Review 

Board (IRB) of the Noguchi Memorial Institute for Medi-

cal Research, University of Ghana. Prior to enrollment, 

the study was explained to all participants after which 

written informed consent was obtained. Parental con-

sent was obtained from parents and guardians of all chil-

dren in addition to child assent obtained from children 

between 12 and 17 years.

Study area and sample collection

Abura Dunkwa, also known as Abura, is the district capi-

tal for Abura-Asebu-Kwamankese district and the Cape 

Coast Metropolis of the Central Region with a rural 

population of 31,768 for children under 14  years of age 

[19]. �e Central Region is situated 165 km west of Accra 

(capital of Ghana). Malaria peak season coincides with 

the major rainy season between June through August. 

�e community is a farming community.

Obom is in the Ga south municipality of the Greater 

Accra Region with a rural population of 22,368 for chil-

dren under 14  years of age [20]. Malaria is perennial 

although it increases during the peak rainy season from 

June to August. �e community is a fishing community. 

In 2014, malaria was estimated by microscopy to account 

for 35 % of all out patient visits at the local Obom health 

centre.

�e study utilized a total of 226 spent PfHRP-2 based 

RDT kits as well as 558 filter paper blood blots from con-

senting healthy children within the two study sites in 
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2015. �ick and thin blood smears as well as DBS sam-

ples were obtained from healthy school children as part 

of a monthly malaria-screening programme from Febru-

ary through May. In April, RDT was performed according 

to manufacturers instructions in addition to the DBS and 

blood smears. �e spent RDT cassettes were stored at 

room temperature for a maximum of 1 week, after which 

their membranes were processed for DNA. Approxi-

mately 50  μl of finger-pricked blood was spotted on to 

filter paper to make the DBS and thick blood smears. 

DBS were kept in sealed plastic bags with a desiccant and 

stored at −20 °C for no longer than 2 weeks after which 

they were processed for genomic DNA (gDNA). �e 

slides containing the thick and thin blood smears were air 

dried and stored in slides boxes.

A sample was defined as negative by microscopy when 

two independent microscopists confirmed the absence of 

P. falciparum parasites on a Giemsa-stained thick blood 

smear. A sample was considered PCR positive when P. fal-

ciparum parasite genotyping using standard WHO geno-

typing procedures yielded a product. A positive RDT result 

was referred to as RDT positivity results, while a sample was 

considered positive for P. falciparum by RDT when the posi-

tive test strip was confirmed by microscopy or PCR. RDT 

positivity is used frequently as an indication of malaria in 

some facilities in Ghana where microscopy is unavailable.

Microscopic estimation of malaria parasite

�ick and thin blood smears as well as dried filter paper 

blood spots (DBS) were each made from a drop (~50 μl) 

of finger-prick blood. �e blood smears were processed 

and then stained with 10  % Giemsa for 15  min. �e 

stained slides were subsequently air-dried and viewed 

under 100X oil immersion microscope. Two independ-

ent microscopists read the slides and parasitaemia was 

determined as the   % of malaria parasite infected RBCs 

observed per 200 white blood cells (WBCs).

Extraction of parasite DNA

Genomic DNA was isolated from the membranes of the 

previously used PfHRP-2 RDT kits and dried filter paper 

blood spots (DBS) using either Tris–EDTA (TE) [21] or 

chelex [22]. Briefly, the RDT cassette was opened and 

portions between the filter paper through to the nitrocel-

lulose membrane and some of the conjugated pad were 

cut and placed into a 1.5  ml microcentrifuge tube con-

taining 200  μl TE; a separate scalpel was used for each 

RDT. Similarly, a 3  mm punch was used to punch two 

3  mm2 disks from each of the dried blood spot (DBS). 

Each sample pieces was put into a 1.5 ml microcentrifuge 

tube containing 200 µl TE. �e sample tubes were heated 

at 97 °C for 15 min on a dry heating block, centrifuged at 

10,000g for 30 s after which the supernatant transferred 

into a 500 μl tube for storage at −20  °C. For the chelex 

extraction, 150 μl of 6 % chelex in PBS was added to the 

tube with the punched DBS disks. �e tubes were then 

incubated at 95  °C for 30  min with intermittent mixing 

by vortexing followed by a quick centrifugation step. �e 

samples were centrifuged at 6000g for 6 min, after which 

120  μl of the supernatant was transferred into a 500  µl 

tube for storage at −20 °C.

Plasmodium falciparum genotyping

�e WHO malaria parasite genotyping protocol [23] 

was followed with slight modifications. PCR reactions 

were carried out in 15  μl volumes for both the primary 

and nested reactions. Briefly, the 200  nM M2-0F and 

M2-0R primers were used to amplify 4 μl of gDNA using 

One Taq polymerase (NEB). �e nested reaction was 

carried out using 1 μl of the primary PCR product with 

200 nM each of the combination of S1Fw/N5rev for the 

3D7 type alleles or S1Fw/M5rev for the FC27 type alleles. 

For GLURP, the G-F3 and G-F4 primer pair was used for 

the outer PCR reaction and the G-NF and G-F4 primer 

pair used for the nested inner reaction. All the PCR frag-

ments and the digested products were viewed under UV 

after resolving on a 2 % agarose gel containing 0.5 μg/ml 

ethidium bromide. Samples were classified as positive by 

PCR genotyping if the MSP2 and or GLURP PCR yielded 

a product following gel electrophoresis.

PCR‑based detection of pfhrp2 and pfhrp3 genes

�e PCR amplification was adapted from Baker et  al. 

[23] with very minor modifications. Briefly, 2 μl of gDNA 

was used as a template in a 20 μl PCR reaction mixture 

that contained 200  mM of each primer and 1X Ampli-

Taq Gold® Fast PCR Master Mix UP. �e DNA was ini-

tially denatured at 96 °C for 10 min followed by 41 cycles 

of denaturation at 95  °C for 50 s, annealing at 55  °C for 

50 s (pfhrp2 gene) or 51 °C (pfhrp3 gene) and extension 

at 68 °C for 1 min. �e final extension was performed at 

72 °C for 5 min then to 4 °C. Genomic DNA from Dd2.

(pfhrp2−), HB3 (pfhrp3−) and 3D7 (wild type) were 

used as controls for the PCR amplifications. �e primers 

used in the amplification of the exon 2 regions of pfhrp2 

and pfhrp3 were pfhrp2-F1, pfhrp2-F2 and pfhrp2-R1 for 

pfhrp2; pfhrp3-F1, pfhrp3-F2 and pfhrp3-R1 for pfhrp3, 

as previously listed [23].

PCR amplification for all samples that gave a negative 

result for any primer set was repeated using twice the 

volume of gDNA as template. All PCR amplifications 

were either nested or semi nested.
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Resolution of PCR amplicons by agarose gel 

electrophoresis

PCR products were separated by electrophoresis on a 

2.0  % agarose gel stained with ethidium bromide in 1X 

TAE buffer. 10 µl of PCR amplicons were loaded onto the 

gel, which was run for 1 h at 100 V then observed under 

UV light. �e resolved fragment sizes were determined 

by comparison with 0.5  μg/μl Gene Ruler 100  bp DNA 

ladder (�ermo Scientific) loaded on the same gel.

Data analysis

Crosstab descriptive analysis was performed using IBM 

SPSS Statistics (version 22). Microsoft Excel was used to 

draw the table and graphs.

Results
Plasmodium falciparum parasite carriage by microscopy

Parasite carriage observed by microscopy in Obom 

(Accra) and Abura (Cape Coast) for February through 

May of 2015 was 41.2  % (120/291) and 0.7  % (2/267) 

respectively (Fig. 1a).

Parasite genotyping by PCR

A parasite carriage rate of 70.4  % (205/291) and 41.2  % 

(110/267) was identified by PCR genotyping in Accra and 

Cape Coast respectively during the period of February 

through May 2015 (Fig. 1a).

In Accra, 46/205 (22.4 %) of the PCR positive samples 

contained P. falciparum parasites that lacked exon 2 of 

pfhrp2. Twenty percent (35/179) of the samples did not 

yield a product after PCR amplification and were classi-

fied as pfhrp3− (Table 1). Twenty-six of the PCR-positive 

samples collected in Accra were omitted from the pfhrp3 

PCR analysis.

In Cape Coast, 40.4  % (44/110) of the PCR positive 

samples contained P. falciparum parasites that lacked 

exon 2 of pfhrp2. Forty-five percent (49/109) of the sam-

ples lacked exon 2 of pfhrp3. One sample was omitted in 

the pfhrp3 PCR analysis. Overall, 27.5 % of the samples 

contained parasites that lacked exon 2 of both pfhrp2 and 

pfhrp3 (Table 1).

RDT positivity rate

Two hundred and twenty six (226) spent PfHRP-2 RDT 

kits were obtained from school children in Accra and 

Cape Coast in April, 2015. Four of the test kits collected 

in Accra gave invalid results. An RDT positivity rate of 

75 % (114/152) was observed in Accra and 35.1 % (26/74) 

in Cape Coast (Fig. 1b).

Malaria estimation by PfHRP‑2 RDT

Microscopic examination of Giemsa-stained thick 

smears made from the same sample spotted onto the 

PfHRP-2 RDT kit identified P. falciparum in 54/152 

(35.5 %) and 1/74 (1.4 %) of the samples from Accra and 

Cape Coast, respectively (Table 2). However PCR analy-

sis of these RDT positive samples confirmed parasites 

in 94/114 (82.5 %) of the samples from Accra and 7/26 

(26.9 %) from Cape Coast (Table 2). False negative RDT 

results were obtained in 18/38 (47.4  %) of the negative 

branded RDT kits from Accra and 8/46 (17.4 %) of the 

negative branded RDT samples obtained from Cape 

Coast.

Contributions of pfhrp2 and pfhrp3 to malaria diagnosis 

by PfHRP‑2 RDT

Genomic DNA from positive and negative branded 

PfHRP-2 RDT kits that were confirmed to contain P. fal-

ciparum by PCR genotyping were subjected to pfhrp2 

and pfhrp3 exon 2 PCR amplification.

In Accra, 34/94 (36 %) of the PCR-confirmed RDT pos-

itive samples lacked pfhrp2 (Table  3), 30/34 (88.2  %) of 

these samples were positive for pfhrp3 and 4/34 (17.8 %) 

of the samples lacked both pfhrp2 and pfhrp3 (Fig.  2). 

�e prevalence of double pfhrp2− and pfhrp3− parasites 

Fig. 1 Prevalence of Plasmodium falciparum in samples collected in 

2015. a Giemsa-stained thick blood smears were read and parasite 

prevalence estimated by microscopy was compared with data 

obtained from the PCR genotyping of genomic DNA extracted from 

a DBS. Each Giemsa-stained blood smear analyzed had a correspond-

ing DBS sample. b The frequencies of positivity (obtaining a positive 

test results) obtained by PCR, PfHRP-2 RDT and microscopy in the 

samples collected in April 2015 from Accra and Cape Coast
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increased from 4.3  % (4/94) to 7.4  % (4/54) in micros-

copy-confirmed RDT positive samples. �e prevalence 

of pfhrp2−/pfhrp3+ samples however decreased from 

31.9 % (30/94) to 25.9 % (14/54) (Fig. 2). No pfhrp2− par-

asite was identified in any of the RDT positive sample 

collected in Cape Coast. 

Prevalence of pfhrp2− and pfhrp3− parasites

In an additional survey of gDNA extracted from DBS, 

the prevalence of pfhrp2− parasites that had intact 

pfhrp3 (pfhrp2−/pfhrp3+) was to be 14  % (25/205) in 

Accra and 13  % (14/110) in Cape Coast and the preva-

lence of parasites with intact pfhrp2 that were pfhrp3− 

(pfhrp2+/pfhrp3−) was 16 % (29/201) in Accra and 17 % 

(19/109) in Cape Coast (Fig. 3).

Discussion
�e recent recommendation for accurate classification of 

pfhrp2− parasites calls for an initial microscopic evalu-

ation of the parasites, followed by Plasmodium species-

specific PCR analysis, after which confirmation is carried 

out by pfhrp2 specific gene amplification to determine 

the absence of the gene or antigen analysis using a sec-

ond quality PfHRP-2 based RDT or PfHRP-2 based 

ELISA [24]. Many studies have reported the presence of 

pfhrp2− parasites in a number of South American coun-

tries [25–28], one study analysed 68 isolates and did not 

find any deletions in the pfhrp2 gene nor its flanking 

sequences but rather found 50 % of the isolates to have 

deletions in the pfhrp3 gene and its flanking genes [27]. 

Such variation between nearby countries raises the need 

for all malaria endemic countries to engage in nationwide 

pfhrp2 surveillance.

In Ghana, RDTs are used for malaria diagnosis through-

out the year, during both peak and off peak seasons. A 

common practice in a number of health facilities is to rule 

out malaria in patients that test negative with an RDT kit, 

without further confirmation. �is makes accurate malaria 

diagnosis using RDT kits very essential for malaria control.

�e few previous studies on the PfHRP-2 based RDT 

kits in Ghana have focused on determining the sensitivity 

and specificity of Pf-HRP2 RDT kits [17, 29]. �is study 

provides some preliminary evidence for the existence 

of pfhrp2− parasites as well as determines how mutant 

parasites with deletions in one or both pfhrp2 and pfhrp3 

Table 1 Prevalence of pfhrp2− and pfhrp3− parasites in samples collected from February to May 2015

pfhrp2− no product obtained after pfhrp2 exon 2 PCR, pfhrp3− no product obtained after pfhrp3 exon 2 PCR, pfhrp2+ a product was obtained after pfhrp2 exon 2 

PCR, pfhrp3+ a product was obtained after pfhrp3 exon 2 PCR. Frequency of occurrence is stated in parenthesis alongside prevalence expressed as a percent of the 

total population of 179 in Accra and 109 in Cape Coast

pfhrp2−/pfhrp3− pfhrp2−/pfhrp3+ pfhrp2+/pfhrp3− pfhrp2+/pfhrp3+

Accra (179) 3.9 % (7) 14 % (25) 16.2 % (29) 65.9 % (118)

Cape Coast (109) 27.5 % (30) 12.8 % (14) 17 % (19) 42 % (46)

Table 2 Comparison of microscopy, PCR genotyping and PfHRP-2 RDT results from the samples collected in April 2015

PCR− P. falciparum negative by PCR genotyping, PCR+ P. falciparum positive by PCR genotyping, microscopy− P. falciparum negative by microscopy, microscopy+ 

P. falciparum positive by microscopy, RDT+ sample produced a positive PfHRP-2 RDT test strip, RDT− sample produced a negative PfHRP-2 RDT test strip. A total 

of 114/152 and 38/152 positive and negative branded RDT kits respectively were collected from Accra and 26/74 positive and 48/74 negative branded RDT kits 

respectively were collected from Cape Coast

PCR− PCR+ Microscopy− Micros‑
copy+

Accra (RDT−) 31.6 % (12/38) 68.4 % (26/38) 47.4 % (18/38) 52.6 % 
(20/38)

Cape Coast (RDT−) 75 % (36/48) 25 % (12/48) 97.9 % (47/48) 2.1 % (1/48)

Accra (RDT+) 17.5 % (20/114) 82.5 % (94/114) 52.6 % (60/114) 47.4 % 
(54/114)

Cape Coast (RDT+) 73.1 % (19/26) 26.9 % (7/26) 96.2 % (25/26) 3.8 % (1/26)

Table 3 Prevalence of  pfhrp2− in  false negative PfHRP-2 

RDT test determined by PCR

Samples that were con�rmed as P. falciparum positive by PCR genotyping 

were grouped according to their PfHRP-2 RDT result, PfHRP-2 RDT positive 

(PfHRP-2 RDT+) or PfHRP-2 RDT negative (PfHRP-2 RDT−). pfhrp2 exon 2 PCR 

ampli�cation was performed on each sample to estimate e�ect of the presence 

of absence of pfhrp2 on malaria diagnosis by PfHRP-2 RDT kits

PfHRP‑2 RDT− PfHRP‑2 RDT+

pfhrp2 PCR− (Accra) 23 % (6/26) 36 % (34/94)

pfhrp2 PCR+ (Accra) 77 % (20/26) 64 % (60/94)

pfhrp2 PCR− (Cape Coast) 0 % (0/12) 14 % (1/7)

pfhrp2 PCR+ (Cape Coast) 100 % (12/12) 86 % (6/7)
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influence the accuracy of malaria diagnosis by PfHRP-2 

RDT in Ghana.

Parasite prevalence estimated by PCR genotyping of 

70  % for February to May was almost twice what was 

estimated by microscopy of corresponding thick blood 

smears in Accra. In Cape Coast, parasite prevalence esti-

mated by microscopy of 0.7 % was only a small fraction 

of that estimated by PCR (41.2 %) (Fig. 1a). �is suggests 

that more sensitive diagnostic tools are needed to accu-

rately diagnose malaria in settings with a high prevalence 

of sub microscopic parasites.

To estimate the true prevalence of pfhrp2− 

parasites, which includes double pfhrp2− and 

pfhrp3− (pfhrp2−/pfhrp3−) parasites; each gDNA sam-

ple was analyzed by PCR genotyping prior to pfhrp2 and 

pfhrp3 exon 2 PCR.

False positive PfHRP-2 RDT results are not uncom-

mon in malaria endemic settings as the PfHRP2 antigen 

persists for weeks after parasite clearance; however, in 

Accra where P. falciparum parasite prevalence was high, 

the PCR estimate of parasite prevalence was compara-

ble to the RDT positive rate (Fig. 1b). Despite the similar 

diagnostic read out between PCR genotyping and RDT, 

PCR confirmed the presence of P. falciparum in 94/114 

of the RDT positive samples, suggesting a false positive 

rate of 17.5  % (20/114). Microscopic evaluation of the 

Fig. 2 Contributions of pfhrp2 and pfhrp3 to PfHRP-2 RDT read out. Genomic DNA obtained from either the membrane of the PfHRP-2 RDT kit or 

the corresponding DBS sample was subjected to pfhrp2 and pfhrp3 exon 2 PCR amplification. The presence or absence of pfhrp2 and or pfhrp3 in 

negative (a) and positive (b) banded PfHRP-2 RDT kits collected from Accra and Cape Coast was identified. Each RDT kit was confirmed as P. falcipa-

rum positive by PCR and microscopy
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RDT samples increased the false positive rate to 60/114 

(52.6 %) in Accra. PCR genotyping identified 26/38 nega-

tive branded RDT kits to be positive for P. falciparum, 

out of these 26 samples, 12 were positive by microscopy.

In Cape Coast, the RDT positive rate was higher than 

parasite estimation by both microscopy and PCR, con-

firming PfHRP2 antigen persistence. �ere were only 

two positive microscopy slides over the entire 4 months 

(Table 2). �e low prevalence and density of P. falciparum 

parasites causes the persistence of PfHRP2 to become 

more evident.

False negative RDT results are obtained when parasite 

carriage is confirmed by either microscopy or PCR, how-

ever the RDT kit produces a negative test results. �is 

can have severe consequences in malaria endemic set-

tings where negative RDT kit results are not confirmed by 

any other diagnostic tests such as microscopy. �e preva-

lence of false negative RDT results increased from 18/38 

when the samples collected in Accra were confirmed by 

microscopy to 26/38 when confirmed by PCR (Table 2). 

�is increase was due to PCR confirming more samples 

as parasite positive than microscopy. Twenty-three per-

cent (6/26) of the false negative samples carried deletions 

in the pfhrp2 gene (Table 3), which suggests other factors 

including low parasite density contributed more to the 

negative RDT diagnosis than deletions in pfhrp2.

In Cape Coast, PCR genotyping confirmed the pres-

ence of 12 false negative RDT tests. All 12 samples were 

positive for pfhrp2 by exon 2 PCR, confirming our obser-

vation that factors other than pfhrp2 deletion, includ-

ing the high prevalence of submicroscopic parasites 

accounted for the false negative RDT results (Table 3).

Persistence of PfHRP-2 antigen from a recent past 

infection could explain the false positive RDT test, 

however possible compensation of pfhrp3 for the lack of 

pfhrp2 could also contribute to the positive RDT results 

obtained in samples that lacked pfhrp2. Eighty-eight per-

cent of the samples from Accra that were pfhrp2− but 

were positive by PfHRP2 RDT and PCR genotyping were 

pfhrp3+ (Fig.  2). Although the sensitivity for the Car-

eStart™ PfHRP-2 RDT has proven to be very high in rela-

tion to microscopy in the recent WHO screen [4, 10] and 

between 100 and 96 % in Ghana [16, 17]. During the off-

peak malaria season, the prevalence of false negative tests 

was as high as 68.4 % by PCR and 52.6 % by microscopy. 

�e specificity of the CareStart™ PfHRP-2 RDT has pre-

viously been found to be between 70 and 73 % in Ghana 

[16, 17], however the false positive RDT results obtained 

in Accra were 17.5 % by PCR and 52.6 % by microscopy.

Double pfhrp2−/pfhrp3− parasites have been found 

to be as high as 25.7  % in some countries within the 

Amazon basin [25, 28]. �e prevalence of parasites with 

pfhrp2−/pfhrp3− was 28  % in samples obtained from 

Cape Coast over February through May (Fig. 3), however 

the subset of these samples that were analysed in April 

did not contain any double pfhrp2−/pfhrp3− parasite. 

�e prevalence of double pfhrp2−/pfhrp3− parasites 

obtained in Accra over the months of February to May 

was 4.3 %, which was similar to 3 % that obtained in the 

samples collected in April.

Limitations
�is study was carried out in the off-peak malaria sea-

son, where P. falciparum prevalence and density is rel-

atively low in most parts of Ghana. Although this is a 

major limitation, PfHRP-2 RDT kits are used for malaria 

diagnosis over this period, making this study highly 

important.

Conclusion
Plasmodium falciparum parasites that lack pfhrp2 alone 

or in addition to pfhrp3 have been identified in two 

regions of Ghana based on the assumption that dele-

tions in exon 2 of these genes represents deletions of 

the entire gene. Malaria RDT testing is highly suitable 

for diagnosis in communities where parasite densities 

are high but become less accurate when parasite densi-

ties are low and also where pfhrp2 deletant parasites are 

prevalent. More accurate diagnosis of malaria would be 

obtained in countries such as Ghana where pfhrp2 dele-

tant parasites exits when a more sensitive RDT kit such 

as the pLDH/PfHRP-2 combo RDT kit that is able to 

detect pfhrp2 deletant parasites is used. More studies 

are needed to evaluate RDT use in the peak malaria sea-

son as well as identify the possible influence pfhrp2 and 

pfhrp3 sequence diversity has on the diagnostic read out 

of PfHRP-2 based RDT kits across Ghana.

Fig. 3 Prevalence of P. falciparum parasites lacking exon 2 of pfhrp2 

and or pfhrp3. Samples that were confirmed positive for P. falciparum 

by PCR genotyping were further analyzed for the presence of pfhrp2 

and pfhrp3 by PCR amplification of exon 2. Samples were grouped 

according to the presence or absence of either or both pfhrp2 and 

pfhrp3
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Abbreviations

RDT: rapid diagnostic test; PfHRP-2: Plasmodium falciparum histidine rich 

protein-2; pfhrp2: Plasmodium falciparum histidine rich protein-2 gene; pfhrp3: 

Plasmodium falciparum histidine rich protein-3 gene; PCR: polymerase chain 

reaction; ELISA: enzyme linked immunosorbent assay; pfhrp2-: parasite with 

pfhrp2 deleted; pfhrp3-: P. falciparum with pfhrp3 deleted.
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