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The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved 

antigen involved in sporozoite motility, plays an important role in the traversal of host cells 

during the preerythrocytic stage of Plasmodium species. Recently, it has been considered 

an alternative target when designing novel antimalarial vaccines against Plasmodium 

falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is 

yet to be explored. This study evaluated the naturally acquired immune response against 

a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals 

from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide 

assays to associate the breadth of antibody responses of those individuals with exposi-

tion and/or protection correlates. We show that PvCelTOS is naturally immunogenic in 

Amazon inhabitants with 94 individuals (17.8%) showing speci�c IgG antibodies against 

the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented 

a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) 

and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; 

r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number 

of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/

non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). 

Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses 

(p < 0.0001) was observed. B-cell epitope mapping revealed �ve immunogenic regions 

in PvCelTOS, but no associations between the speci�c IgG response to peptides and 
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INTRODUCTION

Malaria remains a major public health problem worldwide. It is 
caused by protozoan parasites of the genus Plasmodium, being 
responsible for nearly 438,000 deaths and 150–300 million new 
infections in 2015 (1) and the reason of enormous socioeconomic 
impact in endemic settings (2). Among the Plasmodium species 
able to infect humans, Plasmodium falciparum and Plasmodium 
vivax are the most prevalent malaria parasites. P. falciparum is 
extremely prevalent in Africa and is responsible for the major-
ity of cases and deaths worldwide, while P. vivax is the most 
prevalent species outside Africa (3). Despite the reduction in the 
number of malaria cases and deaths over the past decade (1), the 
emergence of drug resistance and the signi�cant ongoing burden 
of morbidity and mortality emphasize the need for an e�ective 
malaria vaccine. Unfortunately, potential P. vivax vaccine candi-
dates lag far behind those for P. falciparum (4). Currently, besides 
the RTS, S vaccine, there are 30 candidate vaccine formulations 
in clinical trials against P. falciparum, while there is only one 
against P. vivax (5). �ese data allied to the impact caused by the 
high P. vivax prevalence (2), the severity of the disease (6–11), 
and the emergence of strains resistant to chloroquine (12–14) 
and primaquine (15–17), reiterate the importance of identifying 
and exploring the potential of vaccine candidates against P. vivax 
as an essential step in the development of a safe and a�ordable 
vaccine.

Malaria liver-stage vaccines are one of the leading strategies 
and the only approach that has demonstrated complete, sterile 
protection in clinical trials. �erefore, vaccines targeting sporo-
zoite and liver-stage parasites, when parasite numbers are low, 
can lead to the elimination of the parasite before it advances to 
the symptomatic stage of the disease (18). Corroborating this 
idea, the sterile protection against P. falciparum by immuniza-
tion with radiation-attenuated sporozoites was demonstrated 
in several studies (19–21) and the protection lasted for at least 
10  months and extended to heterologous strain parasites (22). 
Based on these �ndings, sporozoite surface antigens are one of 
the most promising vaccine targets against malaria, to protect 
and prevent the symptoms and block its transmission. To date, 
RTS,S, the subunit vaccine consisting of a portion of P. falciparum 
circumsporozoite protein (CSP), conferred partial protection in 
Phase III trials and fell short of community-established vaccine 
e�cacy goals (23–26). Conversely, Gruner and collaborators 
have demonstrated that the sterile protection against sporozoites 
can be obtained in the absence of speci�c immune responses to 

CSP (27). In addition, a recent study found 77 parasite proteins 
associated with sterile protection against irradiated sporozoites 
(28). Collectively, these data reinforce the concept that a multi-
valent anti-sporozoite vaccine targeting several surface-exposed 
antigens would induce a higher protection e�cacy.

In this scenario, cell-traversal protein of Plasmodium ookinetes 
and sporozoites, a highly conserved protein among Plasmodium 
species, emerged as a novel target in the development of a vaccine 
against Plasmodium parasites (29). �is secretory microneme 
protein is translocated to the sporozoites and ookinetes surface, 
being necessary for sporozoites and ookinetes to break through 
cellular barriers and establish infection in the new host, having 
a crucial role on cell-transversal ability in both stages (29, 30). 
�e disruption of the genes encoding CelTOS in Plasmodium 
berghei reduces the infectivity in the mosquito host and also 
the infectivity of the sporozoite in the liver, almost eliminating 
their ability to cell pass (29). Interestingly, P. falciparum CelTOS 
(PfCelTOS) was naturally recognized by acquired antibodies in 
exposed populations (31), able to induce cross-reactive immunity 
against P. berghei and inhibit sporozoite motility and invasion of 
hepatocytes in vitro (32). However, the knowledge about P. vivax 
CelTOS (PvCelTOS) has remained limited. Only recently, a 
study reported PvCelTOS as naturally immunogenic in infected 
individuals from Western �ailand. Our group, investigating the 
genetic diversity of genes encoding PvCelTOS in �eld isolates 
from �ve di�erent regions of the Amazon forest, reveals a high-
conserved pro�le. Together, both �ndings support the potential of 
PvCelTOS as an interesting target on P. vivax sporozoite surface, 
but further studies are still necessary to consolidate this protein 
as an alternative in future multitarget vaccines. �erefore, the 
present study aimed at evaluating the naturally acquired humoral 
immune response against PvCelTOS in exposed populations 
from Brazilian Amazon, determining the antibody subclass 
pro�le, identifying its B-cell epitopes and verifying the existence 
of associations between the speci�c IgG and subclass response 
against PvCelTOS and epidemiological data that can re�ect the 
exposition and/or protection degree.

PARTICIPANTS AND METHODS

Study Area and Volunteers
A cross-sectional cohort study was conducted involving 528 indi-
viduals from Rio Preto da Eva (2°50′50″S/59°56′28″W), located 
north of the Amazon River and 80  km distant from Manaus, 
the capital of Amazon state. �is city has an area of 6,000 km2 

exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) 

was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS 

were also responders to this peptide sequence. This study describes for the �rst time the 

natural immunogenicity of PvCelTOS in Amazon individuals and identi�es immunogenic 

regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic 

antibodies (IgG1) and associated with recent malaria episodes. The data presented in 

this paper add further evidence to consider PvCelTOS as a vaccine candidate.

Keywords: PvCelTOS, P. vivax, vaccines, epitope mapping, epitope prediction, malaria vaccines, malaria
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and a population of about 22,000 people, who live in rural areas 
inside the forests. Transmission of malaria in the Amazon occurs 
throughout the whole year, with seasonal �uctuations with maxi-
mum transmission occurring during the dry season from May to 
October and prevalence of infections by P. vivax, responsible for 
more than 85% of reported malaria cases.

Samples and survey data were collected from November 
2013 to March 2015. In addition, we also included, as control 
subjects, 10 naive individuals living in Manaus, and with no 
reported previous malaria episodes. Written informed consent 
was obtained from all adult donors or from parents of donors 
in the case of children. �e study was reviewed and approved by 
the Fundação Oswaldo Cruz Ethical Committee and the National 
Ethical Committee of Brazil.

Epidemiological Survey
In order to evaluate the possible in�uence of epidemiological 
factors on humoral immunity against PvCelTOS, all donors were 
interviewed upon informed consent prior to blood collection. 
�e survey included questions related to personal exposure to 
malaria, such as years of residence in the endemic area, recorded 
individual and family previous malaria episodes, use of malaria 
prophylaxis, presence/absence of symptoms, and personal 
knowledge of malaria transmission. All epidemiological data 
were stored in Epi-Info for subsequent analysis (Centers for 
Disease Control and Prevention, Atlanta, GA, USA).

Malaria Diagnosis and Blood Sampling
Venous peripheral blood was drawn into heparinized tubes and 
plasma collected a�er centrifugation (350 × g, 10 min). Plasma 
samples were stored at −20°C and transported to our labora-
tory. �in and thick blood smears of all donors were examined 
for malaria parasites. Parasitological evaluations were done by 
examination of 200 �elds at 1,000× magni�cation under oil-
immersion and a research expert in malaria diagnosis examined 
all slides. Donors positive for P. vivax and/or P. falciparum at 
the time of blood collection were subsequently treated using 
the chemotherapeutic regimen recommended by the Brazilian 
Ministry of Health.

Recombinant PvCelTOS Expression in 
HEK-293T Cells
As previously described (33), the P. vivax sequence for CelTOS 
(Salvador I; Uniprot accession number Q53UB7) was cloned in 
the expression vector pHLsec, which is �anked by the chicken 
β-actin/rabbit β-globin hybrid promoter with a signal secretion 
sequence and a Lys-His6 tag. �e protein was expressed upon 
transient transfection in HEK-293T cells with endotoxin-free 
plasmids in roller bottles (2,125 cm2). �e secreted protein was 
puri�ed from the supernatant by immobilized Ni Sepharose 
a�nity chromatography. �e presence of proteins in the elu-
tion samples was con�rmed using 6xHis epitope tag antibody 
[horseradish peroxidase (HRP) conjugate] in a Western blot. 
�e sample was concentrated using an Amicon Ultra centrifugal 
�lter system (Life Technologies) until reaching 10  ml of �nal 
volume. Contaminant proteins and salts were removed from the 
concentrate by size exclusion puri�cation (SEC) using Superdex 

medium in the column. Protein concentration a�er recovery was 
tested using a Bradford protein assay, and purity was assessed by 
silver staining and by Western blotting.

Antibody Assays
Anti-PvCelTOS speci�c antibodies were evaluated on plasma 
samples from 528 exposed individuals from Brazilian Amazon 
and 10 healthy individuals, who had no reported malaria 
episodes, using enzyme-linked immunosorbent assay (ELISA), 
essentially as previously described (33, 34). Brie�y, MaxiSorp 
96-well plates (Nunc, Rochester, NY, USA) were coated with PBS 
containing 1.5  µg/ml of recombinant protein. A�er overnight 
incubation at 4°C, the plates were washed and blocked for 1 h 
at 37°C. Individual plasma samples diluted 1:100 in PBS-Tween 
containing 5% non-fat dry milk (PBS-Tween-M) were added 
in duplicate wells. A�er 1  h at 37°C and three washings with 
PBS-Tween, bound antibodies were detected with peroxidase-
conjugated goat antihuman IgG (Sigma, St. Louis) and followed by 
addition of o-phenylenediamine and hydrogen peroxide. Optical 
density was identi�ed at 492 nm using a SpectraMax 250 ELISA 
reader (Molecular Devices, Sunnyvale, CA, USA). �e results for 
total IgG were expressed as reactivity indexes (RIs), which were 
calculated by the mean optical density of an individual’s tested 
sample divided by the mean optical density of 10 non-exposed 
control individuals’ samples plus 3 standard deviations. Subjects 
were scored as responders to PvCelTOS if the RI of IgG against 
the recombinant protein was higher than 1. Additionally, the RIs 
of IgG subclasses were evaluated on responders individuals by 
a similar method, using peroxidase-conjugated goat antihuman 
IgG1, IgG2, IgG3, and IgG4 (Sigma, St. Louis).

B Cell Epitope Prediction on PvCelTOS
�e prediction of linear B-cell epitopes was carried out using the 
program BepiPred (35), which is based on hidden Markov model 
pro�les of known antigens, and also incorporates hydrophilic-
ity and secondary structure prediction. For each input FASTA 
sequence, the server outputs a prediction score for each amino 
acid. �e recommended cuto� of 0.35 was used to determine 
potential B-cell linear epitopes, ensuring sensibility of 49% and 
speci�city of 75% to this approach. Linear B-cell epitopes are 
predicted to be located at the residues with the highest scores. 
In this study, BepiPred was used to predict B-cell linear epitopes 
and to evaluate the prediction value of peptides containing short 
amino acid sequences of PvCelTOS.

�e Emini surface accessibility (ESA) was used to evaluate the 
probability of predicted linear B-cell epitopes to be exposed on 
the surface of the protein. �is approach calculates the surface 
accessibility of hexapeptides and values greater than 1.0 indicate 
an increased probability of being found on the surface (36). 
Sequences with BepiPred score above 0.35 and ESA score above 
1.0 were considered potential linear B-cell epitopes in regions that 
could be accessed by naturally acquired antibodies.

B-Cell Epitope Mapping of PvCelTOS
A peptide library of 32 PvCelTOS synthetic 15-mer peptides over-
lapping by nine amino acids (GenOne Biotechnologies; purity 
95% based on HPLC) was synthesized. To evaluate the speci�c 
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TABLE 1 | Summary of the epidemiological data of the studied 

population.

Overall PvCelTOS IgG 

responders

PvCelTOS 

IgG non-

responders 

(NRs)

Gender—N (%)

Male 284 (53.8%) 55 (58.5%) 229 (52.8%)

Female 244 (46.2%) 39 (41.5%) 205 (47.2%)

Total 528 94 434

Malaria exposure—median (IR)

Age (years) 36 (25–50) 38 (21–55.5) 36 (21–50)

Time of residence in endemic 

area (years)

33 (19–49) 35 (21–55) 33 (19–48)

Number of previous malaria 

episodes (n)

4 (2–10) 4.5 (2–10) 4 (2–10)

Time since the last malaria 

episode (months)

51 (24–91) 60 (13.7–89.2) 51 (24–90.5)

Frequency of recent malaria 

episodes (%)

12.7% 16.0% 13.1%

Previous malaria species contracted—N (%)

Never infected 7 (1.3%) 0 (0%) 7 (1.6%)

Plasmodium falciparum 32 (6.1%) 5 (5.3%) 27 (6.2%)

Plasmodium vivax 125 (23.7%) 25 (26.6%) 100 (23%)

Both species 158 (29.9%) 31 (33%) 127 (29.3)

Not reported/remember 206 (39%) 33 (35.1%) 173 (39.9%)

Values of age, time of residence in endemic areas, number of previous malaria 

episodes, and time elapsed from the last malaria episode represent the median 

(interquartile range), while the parameter “frequency of recent malaria episodes” 

represents the percentage of individuals who reported malaria episode in the last year. 

The frequency of individuals who present recent malaria episodes was compared by 

Fisher’s test, and other epidemiological parameters were compared by Mann–Whitney 

test. No statistical difference was observed between epidemiological parameters of 

responders and NR individuals.
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response to each peptide, the peptide array was performed using 
MaxiSorp 96-well plates (Nunc, Rochester, NY, USA) coated 
with PBS containing 5 µg/ml of each peptide in duplicates. A�er 
overnight incubation at 4°C, the plates were washed with PBS 
and blocked with PBS-Tween containing 5% non-fat dry milk 
(PBS-Tween-M) for 1 h at 37°C. Individual plasma samples were 
diluted 1:100 with PBS-Tween-M and added in duplicate wells 
for each sequence and the plates incubated at room temperature 
for 1 h. A�er three washings with PBS-Tween, bound antibodies 
were detected with peroxidase-conjugated goat antihuman IgG 
(Sigma, St. Louis) followed by addition of o-phenylenediamine 
and hydrogen peroxide. �e absorbance was read at 492 nm using 
an ELISA reader (Spectramax 250, Molecular Devices, Sunnyvale, 
CA, USA). �e results for total IgG were expressed as RIs, which 
were calculated by the mean optical density of the tested samples 
plus 3 standard deviations of pools of control individuals. Subjects 
were scored as positive if the RI was higher than 1.

Root Mean Square Fluctuation (RMSF) and 
Electrostatic Potential Surface Calculation
Molecular dynamics simulations were carried out using 
GROMACS 5.1.2 (37) so�ware package. Gromos53a6 (38) force 
�eld was used. Simple point charge water model (39) was used 
to solvate the system. Charges were neutralized using Na+ and 
Cl− ions. Steepest descent method was used for energy minimi-
zation. Further, 100 ps temperature equilibration was carried out 
at a temperature of 300 K in the presence of position restraints 
of 1,000 KJ/mol and the pressure coupling of 1,000 ps at 1 bar 
of atmospheric pressure. A�er equilibration, the simulation of 
200,000 ps (200 ns) without position restraints was carried out. 
All simulations were run three times, and consistent results were 
recorded. RMSF was analyzed from simulation trajectory using 
GROMACS utilities. �e Electrostatic potential surface for the 
PvCelTOS was calculated using APBS (40) and visualized in 
PyMOL (Pymol LLC) and the electrostatic potential surfaces for 
the contours from −3kT/e (red) to +3kT/e (blue) were visualized. 
�e �gures were rendered using PyMol.

Statistical Analysis
All statistical analyzes were carried out using Prism 5.0 
for Windows (GraphPad So�ware, Inc.). �e one-sample 
Kolmogorov–Smirno� test was used to determine whether a 
variable was normally distributed. �e Mann–Whitney test was 
used to compare RIs of IgG against recombinant PvCelTOS 
between studied groups. Di�erences in proportions of the RI of 
IgG subclasses and epidemiological parameters were evaluated by 
Fisher’s exact test and associations between antibody responses 
and epidemiological data were determined by Spearman rank 
test. A two-sided p value <0.05 was considered signi�cant.

RESULTS

Epidemiological Pro�le of Studied 
Individuals
Most studied individuals were adults and naturally exposed to 
malaria infection throughout the years (Table  1). Age ranged 

from 10 to 89 years with an average of 36.9. �e proportion of 
men was signi�cantly higher (53.8%) than for women (46.2%; 
χ2 = 5.761, p < 0.0164). Regarding the previous personal history 
of malaria, only seven individuals reported no malaria episode 
(1.3%). Among those who remembered the Plasmodium species, 
the majority (29.9%) reported infections by P. falciparum and P. 
vivax. �e number of past malaria episodes also varied greatly 
among donors, ranging from 0 to 50 (mean  =  7.74  ±  16.5). 
Finally, the time elapsed since the last malaria episode ranged 
from 0 to 480  months (mean  =  71.7  ±  77.9). Interestingly, a 
correlation trend was observed between the time of residence in 
the endemic area and the number of previous malaria infections 
(p = 0.0003; r = 0.153). Collectively, the epidemiological inquiry 
indicated that the studied population had di�erent degrees of 
exposure and/or immunity.

PvCelTOS Is Naturally Immunogenic with 
the Prevalence of Cytophilic Antibodies in 
Brazilian Amazon Individuals
To test if the PvCelTOS is a target for naturally acquired 
antibodies in Amazon individuals, we �rst assessed the IgG 
reactivity pro�le against the recombinant protein. �e plasma 
samples collected from the 528 individuals living in the endemic 
area reveal a low frequency of responders to PvCelTOS, since 
only 17.8% of the studied population (94 individuals) presented 
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FIGURE 1 | Reactivity index (RI) of IgG and subclass against PvCelTOS. On both graphs, each point represents an individual RI against PvCelTOS and the 

red traced line represents the cutoff. Ninety-four individuals presented RI against PvCelTOS higher than 1 and were considered responders to this protein. Among 

the responders, IgG1 was the prevalent subclass in comparison to IgG2 (p = 0.0012), IgG3 (p < 0.0001), and IgG4 (p < 0.0001). Additionally, the RI of IgG1 was 

higher than the RI of all other subclasses (p < 0.0001), and the RI of IgG4 was statistically lower than all other subclasses (p < 0.0001).

5

Rodrigues-da-Silva et al. Cell-Traversal Protein for Ookinetes and Sporozoites

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 77

speci�c IgG antibodies against the protein. Interestingly, the 
epidemiological data were similar between responders and NRs 
against this protein (Table 1). On both groups, responders and 
NRs, the age, time of residence in endemic area, the number of 
previous malaria episodes, the number of recent malaria epi-
sodes, the frequency of individuals with recent malaria episodes, 
and months elapsed from the last malaria episode were similar 
(p > 0.05).

Among the group of responders to PvCelTOS, the RI 
ranged from 1.01 to 19.93 (median  =  1.205; interquartile 
range = 1.082; 1.552), re�ecting a wide spectrum in magnitude 
of naturally acquired IgG response. �e IgG subclass pro�le 
was marked by IgG1, the most prevalent subclass, present in 
65.96% of responders, and with major RI (median = 1.15; inter-
quartile range = 0.86–1.68) compared to IgG2 (median = 0.9; 
interquartile range  =  0.66–1.2), IgG3 (median  =  0.88; 
interquartile range  =  0.72–1.06), and IgG4 (median  =  0.62; 
interquartile range  =  0.51–0.76) (Figure  1). Moreover, IgG3 
RIs were directly correlated to the number of recent malaria 
episodes (p = 0.003; r = 0.315; Figure S1A in Supplementary 
Material) and inversely associated with the time elapsed from 
the last malaria episode (p = 0.031; r = −0.258; Figure S1B in 
Supplementary Material).

High IgG RIs against PvCelTOS Are Driven 
by Cytophilic Antibodies and Associated 
with Recent Infections
In order to identify possible factors that could be associated with 
this large spectrum of reactivity against PvCelTOS in IgG-positive 

individuals, we explored epidemiological data among respond-
ers. Initially, we observed that the RI against PvCelTOS was 
directly correlated with the number of previous malaria 
episodes (p  =  0.047; r  =  0.227; Figure S1C in Supplementary 
Material) and inversely correlated with the time elapsed from 
the last malaria episode (p  =  0.045; r  =  −0.24; Figure S1D in 
Supplementary Material). Based on these �ndings, responder 
individuals were divided into two subgroups: high responders 
(HRs; individuals who had RI of IgG against PvCelTOS higher 
than 2) and low responders (LRs; individuals who had RI of IgG 
against PvCelTOS between 1 and 2). Figure  2A illustrates the 
means of epidemiological parameters of HRs, LRs, and NRs to 
PvCelTOS. Interestingly, while NRs and LRs presented a very 
similar pro�le of epidemiological parameters, HRs presented 
a statistically higher number of previous malaria episodes in 
comparison to NR and LR (p = 0.0058; p = 0.0051, respectively). 
Moreover, despite no statistical di�erences could be observed 
on the time elapsed from the last malaria episode (p  =  0.15 
in ANOVA test), the frequency of individuals who reported 
recent episodes of malaria was higher in HR (41.6%) than LR 
(12%, p  =  0.02) and NR (13.1%, p  =  0.016). Moreover, the 
proportion of RIs of cytophilic over non-cytophilic antibodies 
(IgG1 + IgG3/IgG2 + IgG4) presented direct correlation with RI 
of IgG of responder individuals (p = 0.0016; r = 0.32), suggesting 
that higher RI could be associated with a cytophilic pro�le of 
humoral response against PvCelTOS. Interestingly, although the 
proportion of individuals with cytophilic pro�le was similar in 
both groups, HR and LR (83% and 78%, respectively), the ratio of 
(cytophilic/non-cytophilic) antibodies was signi�cantly higher 
in HR than LR (p = 0.0076) (Figure 2B).
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FIGURE 2 | Comparison of pro�les of high responders (HRs), low responders (LRs), and non-responders (NRs) to PvCelTOS. (A) Diagram of 

epidemiological data. The mean values of epidemiological parameters of HRs, LRs, and NRs to PvCelTOS are represented by red, blue, and yellow areas, 

respectively. Age and time of residence in endemic areas are expressed in years, while time elapsed from the last malaria episode is expressed in months and 

frequency of recent malaria episodes indicates the percentage of individuals who reported malaria episodes in the last year. HRs presented a higher number of 

previous malaria episodes and higher frequency of recent malaria episodes than LRs (p = 0.0051 and p = 0.02, respectively) (B) Comparison of ratio (cytophilic/

non-cytophilic) antibodies. Red and blue points represent the HR and LR, respectively. Points above the value of 1 represent individuals with a cytophilic pro�le of 

IgG (IgG1 + IgG3, higher than IgG2 + IgG4).
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Five Immunogenic Regions Identi�ed in 
PvCelTOS and Two Linear B-Cell Epitopes 
Broadly Recognized by Naturally Acquired 
IgG Antibodies
Four B-cell linear epitopes were predicted in silico in the entire 
sequence of PvCelTOS (PvCelTOSK6-N13; PvCelTOSG38-R57; 
PvCelTOSI136-E143; PvCelTOSK166-S191).

In order to validate the prediction data and identify pos-
sible non-predicted immunogenic regions of PvCelTOS, 
plasma from IgG responders to PvCelTOS was tested against 
32 overlapping peptides corresponding to the complete amino 
acid sequence. First, 10 peptides (N13-L27; S19-V33; E73-I87; 
L79-K93; S97-A111; P127-V141; I133-G147; P139-V153; 
L181-L195; E182-D196) were broadly recognized by respond-
ers to PvCelTOS (Figure  3). Two of the predicted epitopes 
(PvCelTOSI136-E143 and PvCelTOSK166-S191) were present (partially 
or entirely) in peptides con�rmed as naturally immunogenic. 
Interestingly, peptides I133-G147 and E182-D196 were recog-
nized by IgG speci�c antibodies of responders to PvCelTOS 
in frequencies higher than 50% (92% and 54%, respectively) 
and presented median of RI higher than 1 (1.79 and 1.14, 
respectively). In addition, peptides P127-V141, P139-V153, 
and L181-L195 were located besides the most immunogenic 
peptides and presented overlapped sequences, which were also 
recognized by IgG antibodies in moderate frequencies. Peptide 
I133-G147 (ASTIKPPRVSEDAYF) presented the highest IgG RI 
(p < 0.0001 by ANOVA test) and the highest frequency of rec-
ognition (92%) compared to all other peptides. While it contains 
the entire sequence of predicted epitope PvCelTOS136-143, pep-
tides P127-V141 and P139-V153, which contain only the partial 
sequence of the predicted epitope, presented minor frequencies 
of recognition (38% and 39%, respectively; p < 0.0001 on Fisher’s 
exact test). �e peptides L181-L195 and 186-196 were both 

partially inserted in the predicted linear epitope PvCelTOS166-191 
and could be the immune dominant sequence of this longer 
predicted epitope. �ese data supported the prediction of 
linear B-cell epitopes PvCelTOSI136-E146 and PvCelTOSK166-S191. 
Conversely, peptides N13-L27, S19-V33, and S97-A111 also 
presented frequency of recognition about 40% (38, 40, and 
36%, respectively). A�er the con�rmation of �ve immunogenic 
regions and two immunodominant epitopes in PvCelTOS, we 
also compared the RI and frequencies between HR and LR for 
PvCelTOS. However, no di�erences were found.

Main B Cell Epitopes Are Present on 
PvCelTOS Surface
Peptides that presented overlapped amino acids and were 
recognized by more than 20% of responders to PvCelTOS 
(Figure  3) were grouped as immunogenic regions. All pep-
tides inserted in identi�ed immunogenic regions are listed 
in Table  2 with their respective frequencies of recognition, 
BepiPred and ESA scores. In this context, we identi�ed �ve 
immunogenic regions PvCelTOSN13-V33, PvCelTOSE73-K93, 
PvCelTOSS97-A111, PvCelTOSP127-V153, and PvCelTOSL181-D196, in 
which B-cell epitopes could be inserted. Interestingly, the pep-
tides with higher frequency of speci�c responders (I133-G147, 
L181-L195, and 182-186) presented a good combination 
of BepiPred and ESA score. �e molecular dynamics and 
electrostatic potential surface of PvCelTOS indicate regions 
P127-V153, N13-V33, and L181-D186 as more �exible than 
E73-K93 and S97-A111 (Figure 4A). Regarding solvent expo-
sure, all immunogenic regions were exposed and accessible in 
solution. Interestingly, the immunogenic regions L181-D196 
and E73-K93 are part of a very negatively charged region, 
while N13-V33 and P127-V153 are in a mostly neutral-positive 
region (Figure 4B).
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FIGURE 3 | Mapping of B-cell epitopes in PvCelTOS. Each column represents a peptide, the numbers indicate the �rst and last amino acid (aa-aa) of the 

peptide. The points represent the value of IgG reactivity index (RI) speci�c for each peptide of one responder to PvCelTOS and the red traced line represents the 

cutoff value. The black lines indicate median and interquartile range. If the RI for one peptide was higher than 1, the individual was considered positive to this 

peptide. The white bar on top represents the linear structure of the protein, in which the blue boxes indicate the BepiPred prediction score and red boxes indicate 

the Emini surface accessibility score of predicted linear epitopes.

7

Rodrigues-da-Silva et al. Cell-Traversal Protein for Ookinetes and Sporozoites

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 77

DISCUSSION

Despite signi�cant advances in the understanding of the biol-
ogy of Plasmodium parasites and the immune response elicited 
by these pathogens, there is not yet a subunit vaccine capable 
of providing long-lasting protection. �e cell-traversal protein 
for ookinetes and sporozoites (CelTOS) has been considered a 
potential novel alternative for a vaccine against malaria (29, 32, 
41), but the knowledge on P. vivax CelTOS potential remains 
scarce. Unfortunately, many conventional vaccinology strategies 
applied to P. falciparum are especially di�cult when dealing with 
non-cultivable microorganisms such as P. vivax. Consequently, 
seroepidemiological studies have played a signi�cant role in 
the identi�cation and validation of P. vivax vaccine candidates 
(42–48). �erefore, we con�rmed the naturally acquired 
humoral response against PvCelTOS (IgG and IgG subclass) and 
identi�ed �ve B-cell epitopes along the entire PvCelTOS amino 
acid sequence, which were recognized by IgG antibodies from 
malaria-exposed populations from Brazilian Amazon.

Plasma samples were collected in three cross-sectional studies 
with Brazilian Amazon communities between 2013 and 2015. 
�e pro�le of the studied individuals shows that our population 
included rainforest region natives and migrants from non-
endemic areas of Brazil who had lived in the area for more than 
10 years. �e majority of individuals reported a prior experience 
with P. vivax and/or P. falciparum malaria. Concerning malaria 
history, the highly variable range of number of previous infec-
tions, time of residence in endemic areas, and time since the last 
infection suggests di�erences in exposure and immunity, since it 
is well known that the acquisition of clinical immunity mediated 
by antibodies depends on continued exposure to the parasite 

(49–51). �e correlation between time of residence in endemic 
areas and months since the last infection observed in our study 
also indicates that this phenomenon could be occurring in low/
medium endemic areas like the Brazilian Amazon. �erefore, the 
selection of these individuals was ideal to detect the presence of 
antibodies against the new recombinant antigen and distinguish 
whether the alterations found were related to malaria exposure 
and/or indicatives of protection.

First, we found 94 individuals presenting speci�c antibodies 
to PvCelTOS and con�rmed the natural immunogenicity of 
PvCelTOS among exposed individuals from Brazilian Amazon. 
Recently, Longley and collaborators also reported the �rst 
evidence of naturally induced IgG responses to PvCelTOS in 
human volunteers from Western �ailand (33). Interestingly, 
the frequency of responders to PvCelTOS observed in our stud-
ied population (17.8%) was similar to the frequency observed 
by Longley on uninfected and clinical malaria individuals (33). 
Moreover, the low humoral reactivity against PvCelTOS is 
commonly found in other Plasmodium preerythrocytic antigens 
(48, 52, 53). �e short life of speci�c antibodies, host genetic 
factors, and/or epidemiological parameters could be possible 
reasons for the low frequency of responders against PvCelTOS 
in endemic areas. �e short life of speci�c PvCelTOS humoral 
response hypothesis does not seem to occur since Longley et al. 
veri�ed that IgG positivity and magnitude of response were 
present over the 1-year period in the absence of P. vivax infec-
tions (33). Our study also describes anti-PvCelTOS antibodies 
in individuals who reported no malaria in the last 10 years or 
more. However, in both cases, the contact between human host 
and sporozoite antigens in transmission areas was not evaluated. 
In relation to host genetic factors, there is a signi�cant body of 
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evidences of its in�uence in malaria outcomes and the capac-
ity to mount a humoral immune response (54–57). To date, 
associations of HLA class II on humoral immune response to 
malaria antigens were reported in individuals living in malaria-
endemic areas from Brazilian Amazon (58, 59) and in human 
vaccine trials (60–62). In P. vivax preerythrocytic targets, the 
presence of HLA-DRB1*03 and DR5 was associated with the 
absence of antibody response to the CSP amino-terminal region 
(48) and HLA-DRB1*07 was related to the absence of speci�c 
antibodies for CSP repeats of VK210 (52). Moreover, Chaves and 
collaborators reported that PvCelTOS gene sequence is highly 
conserved among isolates from di�erent Brazilian geographic 
regions (unpublished data), suggesting a low selective pressure 
by immune response against PvCelTOS. In our view, the in�u-
ence of immunogenetic factors in PvCelTOS-speci�c humoral 
response are feasible, but more studies are still necessary to 
con�rm this hypothesis.

Regarding the in�uence of epidemiological factors, we initially 
tried to investigate the associations between exposition to malaria 
and the frequency of IgG responders to PvCelTOS. Surprisingly, 
although the association of epidemiological data with speci�c 
response against Plasmodium antigens was well characterized on 
several studies (63–65), we observed a similar epidemiological 
pro�le between responders and NRs to PvCelTOS. �erefore, 
we focused on the search of distinct epidemiological and IgG 
subclass pro�les among PvCelTOS responder individuals. �e 
knowledge about the antibody subclass pro�le is critical to sug-
gest functional antimalarial immunity and to evaluate potential 
vaccine candidates. Cytophilic antibodies (IgG1 and IgG3) are 
frequently prevalent on immune serum from high-transmission 
areas (66–69) and o�en correlate with protection from disease 
(70–72). In our study, IgG1 presented higher frequencies of 
responders and median RI than all other subclasses. Moreover, 
IgG3 RIs were directly associated with the number of malaria 
episodes over the last 12 months and inversely correlated with 
the time elapsed from the last malaria episode, suggesting that 
recent P. vivax infections can raise the levels of anti-PvCelTOS 
speci�c IgG3. �e sterile protective immunity to malaria was 
recently associated with a panel of antigens (28), and the relation-
ship of cytophilic antibodies and reduced risk of symptoms are a 
common �nding in high endemic areas (70–74). However, in our 
study, concerning the higher levels of IgG1 for PvCelTOS and 
the association of IgG3 levels with recent infections, we cannot 
con�rm or discard its role as part of protective humoral response 
until more conclusive studies, such as sporozoite inhibition by 
anti-PvCelTOS speci�c antibodies, are conducted. In the same 
way, among responders, IgG RIs were directly correlated with the 
number of previous malaria episodes and inversely correlated 
with the time elapsed from the last malaria episodes, suggesting 
that antibody levels for PvCelTOS could be associated with recent 
infections.

�e in�uence of epidemiological parameters on immunity 
to malaria was previously observed in studies from Brazilian 
Amazon population. Based on previous studies that associated 
high levels of antibodies with multiple preerythrocytic antigens 
with reduced risk of clinical malaria in children (75) and decreased 
risk of infection in adults (68), we also aimed to investigate if 
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FIGURE 4 | Molecular dynamics and electrostatic potential surface for the PvCelTOS. (A) Sausage plot of the PvCelTOS. The red color identi�es the 

immunogenic regions of PvCelTOS. Thickness depicts relative �uctuation as calculated during molecular dynamics. The thinnest segments represent the most 

stable regions of the protein. (B) The surface model shows the electrostatic potential surface of the PvCelTOS, representing the positive (blue) and negative (red) 

charges. The secondary structure in the background represents the immunogenic region.
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the epidemiological parameters could reveal new �ndings about 
the role of exposition on PvCelTOS immunogenicity. �erefore, 
we subdivided the large spectrum IgG RIs among PvCelTOS 
responders into HRs (RI > 2) and LRs (RI < 2). Although LRs 
and NRs to PvCelTOS presented similar exposition factors to 
malaria, interestingly, HR individuals presented a remarkable 
higher number of previous malaria episodes, frequency of recent 
malaria episodes, and a higher ratio of cytophilic/non-cytophilic 
antibodies than LRs. �is observation suggested that higher 
level of exposition to malaria induced a more intense and 
improved humoral response against PvCelTOS. Unfortunately, 
the cross-sectional design of our study limited the investigation 
to retrospective malaria histories, and the best approximation 
of an individual’s protection was the estimated amount of time 
that had passed since their last malaria episode, which presented 
no signi�cant association with IgG response against PvCelTOS. 
Prospective studies on humoral immune responses and studies 
addressing the ability of these antibodies to interfere the motility/

invasion of sporozoites (76, 77) will provide more evidences of 
the protective role of anti-PvCelTOS antibodies.

Information at the amino acid level about the epitopes of pro-
teins recognized by antibodies is important for their use as bio-
logical tools and for understanding general molecular recognition 
events (78). In this context, epitope prediction programs have been 
widely used in malaria research (4, 79–81). Nevertheless, the use 
of chemically prepared arrays of short peptides is a more powerful 
tool to identify and characterize epitopes recognized by antibodies 
(46, 82, 83). It is also important to mention that in order to raise 
antibodies for a peptide, a minimum length of six amino acids is 
required, and peptides of >10 amino acids are generally required 
for the induction of antibodies that may bind to the native protein 
(84). In this context, the synthesis of 15 amino acid peptides, with 
9 overlapping, has allowed the identi�cation of PvCelTOS B-cell 
epitopes encompassed in sequences ranging from 15 to 27 amino 
acids in length. �erefore, a�er the con�rmation of PvCelTOS 
as naturally immunogenic in exposed populations, the present 
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paper describes for the �rst time the �ne B cell epitope mapping 
of a full-length protein. Initially, 10 peptides were speci�cally 
recognized by naturally acquired antibodies from PvCelTOS 
responders. A�er a combination of in  silico approaches and 
recognition of overlapped peptides, �ve immunogenic regions 
were con�rmed (PvCelTOS13-33, PvCelTOS73-93, PvCelTOS97-111, 
PvCelTOS127-153, and PvCelTOS181-196) in di�erent frequencies and 
RIs. Moreover, the main linear epitope (ASTIKPPRVSEDAYF) 
presented highest IgG RI and frequency compared to all other 
naturally recognized peptides, suggesting that the majority of 
naturally acquired antibodies against PvCelTOS are directed to 
the C-terminal region. Moreover, T cell responses to PvCelTOS 
may also help to determine the immunodominant repertoire 
in individuals living in malaria-endemic regions, which could 
also supply information for the development of a vaccine for 
PvCelTOS. In humans, PfCelTOS derivate peptides elicited 
proliferative and IFN-γ responses in ex vivo ELISPOT assays 
using peripheral blood mononuclear cells from naturally exposed 
individuals living in Ghana (30).

Recently, CelTOS was demonstrated as highly conserved 
protein across several large groups of apicomplexan parasites 
including Plasmodium spp., Cytauxzoon, �eileria, and Babesia 
and considered essential to cell infection, traversal, and 
membrane disruption (85). Despite the genetical di�erences 
between PfCelTOS and PvCelTOS, it is important to mention 
that Bergmann-Leitner and colleagues immunized mice and 
rabbits with recombinant PfCelTOS and also observed speci�c 
antibodies for linear B-cell epitopes at C-terminal (82). �ese 
observations suggested that CelTOS could present a similar 
conformation among species, with similar regions targeted by 
antibodies. We considered that the exposition of linear epitopes 
is a critical step to their recognition by circulating antibodies; 
therefore, the combination of ESA, molecular dynamics, and 
electrostatic potential surface was used as a complementary 
approach to predict the exposition of epitope sequences on 
protein surface. All immunogenic regions identi�ed were 
exposed and accessible to antibodies. �is �nding could be 
important in a future subunit vaccine composition based on 
these identi�ed regions. However, the potential of these speci�c 
antibodies directed main PvCelTOS epitopes in the inhibition 
of sporozoite motility, invasion, and/or traversal remains to be 
investigated.
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FIGURE S1 | Associations of humoral response and exposition 

parameters in responders to PvCelTOS. (A) Spearman correlation between 

IgG3 reactivity index (RI) and number of recent malaria episodes; (B) Spearman 

correlation between IgG3 and months elapsed since the last malaria episode;  

(C) Spearman correlation between anti-PvCelTOS IgG reactivity index and 

number of previous malaria episodes; and (D) Spearman correlation between 

anti-PvCelTOS IgG RI and months elapsed since the last malaria episode.
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